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University of Nǐs, Faculty of Sciences and Mathematics, Vǐsegradska 33, 18000 Nǐs,
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Abstract

We present a relation between the Fowler-Manolopoulos predictor of fullerene
stability, defined as the standard deviation of the hexagon neighbor indices, and the
counts of a few simple fullerene substructures made up jointly from pentagons and
hexagons. This result extends the previous approach of Ju et al. [MATCH Commun.
Math. Comput. Chem. 64 (2010) 419–424] that was applicable to isolated pentagon
fullerenes only.

1 Introduction

A fullerene is a molecule made up of n carbon atoms, whose molecular graph is a cubic,

planar graph consisting of 12 pentagonal and n
2
− 10 hexagonal faces. It was very early

observed that pentagon adjacencies influence the stability of fullerenes [1, 2], leading to

the rule that the isolated pentagon (IP) fullerenes are more stable from those that contain

adjacent pentagons. However, besides dividing fullerenes into two groups of more stable

(IP fullerenes) and less stable (non-IP fullerenes), this rule does not distinguish stabilities

of fullerenes within the same group. The number of other predictors of fullerene stability
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have been proposed in the literature, among which the Kekulé counts [3], the Wiener index

[4, 5], the independence number [6, 7], the bipartivity [8] and the Fowler-Manolopoulos

predictor [9, 10, 11].

Recently, Ju et al. [12] presented a relationship between the Fowler-Manolopoulos

predictor and a particular hexagon structure counts, in order to provide a graphical

explanation for the predictor. However, their discussion is valid for isolated pentagon

fullerenes only, and our task here is to extend this type of relationship to all fullerenes.

2 Main result

The neighbor index of a hexagon in a fullerene is the number of other hexagons adjacent to

it [13]. Let hk be the number of hexagons in a fullerene with neighbor index k, k = 0, . . . , 6.

Fowler and Manolopoulos introduce the standard deviation σh of the neighbor index

distribution as a predictor of fullerene stability [9]. That is,

σh =
√
〈k2〉 − 〈k〉2,

where

〈k〉 =
∑

k

khk

/∑

k

hk

and

〈k2〉 =
∑

k

k2hk/
∑

k

hk.

Ju et al. [12] expressed σh for IP fullerenes in terms of the number of vertices n and the

number w of pairs of nonadjacent hexagon edges shared with two other hexagons (see

Fig. 1):

σh =

√

18 +
4w − 600

n− 20
−
(
6− 120

n− 20

)2

.

Figure 1: Structures that contribute to the number of pairs of nonadjacent hexagon edges
shared with two other hexagons.

However, as the stability of fullerenes appears to depend on the distribution of pen-

tagons, we find it more convenient to relate σh to the numbers of structures formed jointly

from hexagons and pentagons. Further, since each structure contains at least one pen-

tagon, and the whole fullerene contains just 12 pentagons, it is much easier to count such
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structures which are localized in pentagon neighborhoods, than to enumerate w, whose

structures are spread all over the fullerene.

In particular, we express σh in an arbitrary fullerene by the following structure counts:

the number a of edges common to a pentagon and a hexagon; the number b of vertices

common to a pentagon and two hexagons; and the number c of pairs of hexagon edges

belonging to neighboring, mutually nonadjacent hexagon and pentagon (see Fig. 2).

Figure 2: Structures that contribute to the a, b and c counts.

Theorem 1 For an arbitrary fullerene F holds

∑

k

khk = 3(n− 20)− a, (1)

∑

k

k2hk = 18(n− 20)− (6a+ 2b+ c), (2)

σh =

√√√√12a− 4b− 2c

n− 20
− 4a2

(n− 20)2
. (3)

Proof. Each hexagon in F has one of 13 different neighborhood types depicted in Fig. 3.

Here hk for k ∈ {0, 1, 5, 6}, or hk,j for k ∈ {2, 3, 4}, denote the number of hexagons with

corresponding neighborhood type. Note that hk = hk,1 + hk,2 + hk,3 for k ∈ {2, 3, 4}. In

table below we give the a, b and c counts produced by each neighborhood type:

h0 h1 h2,1 h2,2 h2,3 h3,1 h3,2 h3,3 h4,1 h4,2 h4,3 h5 h6

a 6 5 4 4 4 3 3 3 2 2 2 1 0
b 0 2 2 4 4 2 4 6 2 4 4 2 0
c 0 3 6 4 4 7 5 3 6 4 4 3 0

If we sum these counts over all hexagons in F , then each a and c structure is counted

once, while each b structure is counted twice. Hence

6h0 + 5h1 + 4(h2,1 + h2,2 + h2,3) + 3(h3,1 + h3,2 + h3,3) + 2(h4,1 + h4,2 + h4,3) + h5 = a,

2h1 + 2h2,1 + 4h2,2 + 4h2,3 + 2h3,1 + 4h3,2 + 6h3,3 + 2h4,1 + 4h4,2 + 4h4,3 + 2h5 = 2b,

3h1 + 6h2,1 + 4h2,2 + 4h2,3 + 7h3,1 + 5h3,2 + 3h3,3 + 6h4,1 + 4h4,2 + 4h4,3 + 3h5 = c.
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Figure 3: Possible neighborhoods of a hexagon in a fullerene.

Then

∑

k

khk

= 6(h0 + h1 + h2,1 + h2,2 + h2,3 + h3,1 + h3,2 + h3,3 + h4,1 + h4,2 + h4,3 + h5 + h6)

− (6h0 + 5h1 + 4(h2,1 + h2,2 + h2,3) + 3(h3,1 + h3,2 + h3,3) + 2(h4,1 + h4,2 + h4,3) + h5)

= 6
(
n

2
− 10

)
− a = 3(n− 20)− a

and

∑

k

k2hk
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= 36(h0 + h1 + h2,1 + h2,2 + h2,3 + h3,1 + h3,2 + h3,3 + h4,1 + h4,2 + h4,3 + h5 + h6)

− 6 (6h0 + 5h1 + 4(h2,1 + h2,2 + h2,3) + 3(h3,1 + h3,2 + h3,3) + 2(h4,1 + h4,2 + h4,3) + h5)

− (2h1 + 2h2,1 + 4h2,2 + 4h2,3 + 2h3,1 + 4h3,2 + 6h3,3 + 2h4,1 + 4h4,2 + 4h4,3 + 2h5)

− (3h1 + 6h2,1 + 4h2,2 + 4h2,3 + 7h3,1 + 5h3,2 + 3h3,3 + 6h4,1 + 4h4,2 + 4h4,3 + 3h5)

= 36
(
n

2
− 10

)
− 6a− 2b− c = 18(n− 20)− (6a+ 2b+ c).

Finally,

σh =

√√√√
∑

k k2hk∑
k hk

−
(∑

k khk∑
k hk

)2

=

√√√√18(n− 20)− (6a+ 2b+ c)

n/2− 10
−
(
3(n− 20)− a

n/2− 10

)2

=

√√√√12a− 4b− 2c

n− 20
− 4a2

(n− 20)2
.

3 On the behaviour of σh and 〈k2〉
Among IP fullerenes, the a and b counts are constant and equal to 60 each. Thus, among

IP fullerenes both σh and 〈k2〉 depend on the c count only:

σh =

√
480− 2c

n− 20
− 14400

(n− 20)2
,

〈k2〉 = 36− 960 + 2c

n− 20
.

Each pair of pentagons at distance two from each other in an IP fullerene reduces the c

count by two of four, depending on whether the two pentagons have one or two hexagons

as common neighbors. Thus, σh and 〈k2〉 clearly favorize those IP fullerenes with smaller

number of pairs of pentagons at distance two.

The maximum count of c structures is 180, obtained when every two pentagons in

a fullerene are at distance at least three from each other. Such fullerenes have smallest

σh =
√

120

n−20
− 14400

(n−20)2
and smallest 〈k2〉 = 36 − 1320

n−20
, and they should represent most

stable IP fullerenes. However, note that σh and 〈k2〉 do not distinguish such fullerenes

from each other, and have no implications on their geometry.

On the other hand, a relatively small value of c = 100 structures is obtained for

tubular IP fullerenes having two caps as shown in Fig. 4, which have larger values σh =
√

280

n−20
− 14400

(n−20)2
and 〈k2〉 = 36− 1160

n−20
.

The predictive behaviour of σh and 〈k2〉 becomes quite different when pentagons are

allowed to be adjacent. A tubular fullerene with two caps as shown in Fig. 5 has two

pairs of adjacent pentagons, and thus a = 56, b = 56 and c = 168. Clearly, σh =
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Figure 4: A cap of an IP tubular fullerene with c = 100.

Figure 5: A cap of a non-IP tubular fullerene with a = b = 56 and c = 168.

√
112

n−20
− 12544

(n−20)2
and 〈k2〉 = 36− 1232

n−20
. Thus, its second moment lies between the two IP

fullerenes mentioned above.

Another tubular fullerene with two caps as shown in Fig. 6 has six pairs of adjacent

pentagons, and thus a = 48, b = 48 and c = 132. Clearly, σh =
√

120

n−20
− 9216

(n−20)2
and

〈k2〉 = 36− 1032

n−20
. Thus, its σh lies between the two IP fullerenes above for n ≥ 53.

Altogether, the ranges of σh values for IP and non-IP fullerenes have nonempty overlap,

meaning that σh cannot separate IP from non-IP fullerenes. The same observation holds

the ranges of 〈k2〉 values. Moreover, non-IP fullerenes usually have smaller σh value from

IP fullerenes, clearly prohibiting us from extending the expectation that smaller σh yields

more stable fullerene from IP fullerenes to all fullerenes.

To conclude, Theorem 1 shows that the Fowler-Manolopoulos predictor depends only

on the configuration of 12 pentagons and their second neighborhoods in a fullerene. The

number of such configurations is certainly finite and, in principle, it would be possible to

enumerate them all and rank them according to values of σh and 〈k2〉 they produce. This
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Figure 6: A cap of a non-IP tubular fullerene with a = b = 48 and c = 132.

ranking could be used to elaborate the correlation between σh, 〈k2〉 and fullerene stability

in more detail, and we leave it as an interesting problem for future research, especially in

the light of above remarks.
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