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Abstract

In this paper, we give a new proof that among all trees with n vertices, the star
Sn and the path Pn have the maximal and the minimal Balaban index, respectively.
This corrects some errors of proofs in [H. Dong, X. Guo, Character of graphs with
extremal Balaban index, MATCH Commun. Math. Comput. Chem. 63 (2010)
799–812] and [L. Sun, Bounds on the Balaban index of trees, MATCH Commun.
Math. Comput. Chem. 63 (2010) 813–818]. We also characterize the trees with the
second minimal and maximal Balaban index, respectively.

For a simple and connected graph G with vertex–set V (G) and edge–set E(G), dG(u, v)

denotes the distance between vertices u and v in G, and DG(u) =
∑

v∈V (G)

dG(u, v) is the

distance sum of vertex u in G, i. e., the row sum of distance matrix of G corresponding

to u. The Balaban index of G is defined as

J(G) =
m

μ+ 1

∑

uv∈E(G)

1√
DG(u)DG(v)

where m is the number of edges and μ is the cyclomatic number of G, respectively.

The Balaban index was proposed by A. T. Balaban [1,2], which also called the average

distance–sum connectivity or J index. It appears to be a very useful molecular descriptor

with attractive properties.

Recently, it was showed in [3] that

Theorem 12 ([3]). If T is a tree with n ≥ 2 vertices, then J(Pn) ≤ J(T ) ≤ J(Sn)

with left (or right) equality if and only if T = Pn (or T = Sn), where Pn and Sn are the

path and the star on n vertices.

The proof of theorem above is dependent on Lemma 6 in [3]. But, the following

example 1 shows that Lemma 6 is incorrect.
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Example 1. (see Figure 1) Let P = p1p2p3 be a path in a graph G0, where G0 = P

is the path itself, and Gj(1 ≤ j ≤ 3) are the component of G0 − E(P ) containing pj.

H1 = u1u2u3, H2 = v1v2v3, H
′
1 = u1u2 and H ′

2 = v1v2v3u3 are also paths. We have

|V (H1)| + |V (H2)| = |V (H ′
1)| + |V (H ′

2)| and |V (H ′
1)| < |V (H1)| ≤ |V (H2)| < |V (H ′

2)|.
Construct the graph G by identifying p1 to u2 in H1 and p3 to v1 in H2, and the graph G′

by identifying p3 to u2 in H ′
1 and p3 to v1 in H ′

2. Clearly, |V (Gi)| ≤ |V (Gl+1−i)| since Gi is

an isolated vertex, l = 3 and 1 ≤ i ≤ � l
2
� − 1. However, we have JG(P ) > JG′(P ), where

JG(P ) =
∑

uv∈E(P )

1√
DG(u)DG(v)

= 1√
12×11

+ 1√
11×12

and JG′(P ) =
∑

uv∈E(P )

1√
DG′ (u)DG′ (v)

=

1√
16×13

+ 1√
13×12

.

Also, it was showed in [4] that

Theorem 2.2 ([4]). If T is a tree with n ≥ 2 vertices, then J(T ) ≥ J(Pn) with

equality if and only if T = Pn.

But the following example 2 shows that its proof in [4, lines 1-3 on page 818] is

incorrect.

Example 2. (see Figure 2) Let P = v1v2v3v4 be a longest path in T , and v1 the root

of T . Then the other vertices of T can be divided into levels by the distance on v1. Let Li

be the set of vertices in level i (1 ≤ i ≤ 3), where L1 = {v2}, L2 = {v3, x} and L3 = {v4}.
However, for x ∈ L2, Dx = DT (x) = 8, and D3 = 6 since Di =

(n−i+1)(n−i)
2

+ (i−1)i
2

and
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n = 5. We have Dx > D3.

Now, we will give a new proof of the results above.

The path-sliding transformation. Let G0 be a graph with n0 ≥ 2 vertices, and

P = v1v2 · · · vr a path of length r − 1 ≥ 2. If G (resp. G′) is the graph obtained by

identifying a vertex v0 in G0 to vk (resp. vk−1) in P , 2 ≤ k ≤ r
2
, then G′ is called the

path-sliding transformation of G (see Figure 3).

For any u ∈ V (G0),

DG(u) =
∑

v∈V (G0)

dG(u, v) +
r∑

i=1

dG(u, vi)− dG(u, v0)

= DG0
(u) +

r∑

i=1

[dG(u, v0) + dG(vk, vi)]− dG(u, v0)

= DG0
(u) +DP (vk) + (r − 1)dG0

(u, v0)

(1)

and

DG(vt) =
∑

v∈V (G0)

dG(vt, v) +
r∑

i=1

dG(vt, vi)− dG(vt, v0)

=
∑

v∈V (G0)

[dG(vt, v0) + dG(v0, v)] +DP (vt)− dG(vt, v0)

= DG0
(v0) +DP (vt) + (|V (G0)| − 1)dG(vt, v0)

= DG0
(v0) +DP (vt) + (n0 − 1)|k − t| .

(2)

Similarly,

DG′(u) = DG0
(u) +DP (vk−1) + (r − 1)dG0

(u, v0) (3)

and

DG′(vt) = DG0
(v0) +DP (vt) + (n0 − 1)|k − 1− t|. (4)

where DP (vt) =
(r−t+1)(r−t)

2
+ (t−1)t

2
, t = 1, 2, · · · , r.

Note that Dp(v1), DP (v − 2), · · · , DP (vr) is symmetric and DP (v1) > DP (v2) > · · · >
DP (v� r

2
�) = DP (v� r

2
	) < DP (v� r

2
	+1) < · · · < DP (vr).
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Lemma 1. If G′ is the path-sliding transformation of G, then J(G) > J(G′).

Proof. From (1) and (3), ∀e = uv ∈ E(G0), DG(u) < DG′(u) and DG(v) < DG′(v)

since DP (vk) < DP (vk−1) for 2 ≤ k ≤ r
2
. Thus

1√
DG(u)DG(v)

>
1√

DG′(u)DG′(v)
(5)

From (2) and (4),

DG(vt)−DG′(vt) =

⎧
⎨

⎩

(n0 − 1), 1 ≤ t ≤ k − 1;

−(n0 − 1), k ≤ t ≤ r.

(i) For t = 1, 2, · · · , k − 1, because k ≤ r
2
, DP (vt) > DP (v2k−t−1) and DP (vt−1) >

DP (v2k−t). By (2), DG(v2k−t) < DG(vt−1)− (n0−1) and DG(v2k−t−1) < DG(vt)− (n0−1).

Note that f(x, y) = 1√
xy
− 1√

(x+(n0+1))(y+(n0+1))
is a decreasing function of x and y since

∂f
∂x

< 0 and ∂f
∂y

< 0.

1√
DG(v2k−t)DG(v2k−t−1)

− 1√
(DG(v2k−t) + (n0 − 1))(DG(v2k−t−1) + (n0 − 1))

>
1√

(DG(vt−1)− (n0 − 1))(DG(vt)− (n0 − 1))
− 1√

DG(vt−1)DG(vt)
,

i.e.,
1√

DG(v2k−t)DG(v2k−t−1)
− 1√

DG′(v2k−t)DG′(v2k−t−1)

>
1√

DG′(vt−1)DG′(vt)
− 1√

DG(vt−1)DG(vt)

and [
1√

DG(vt−1)DG(vt)
− 1√

DG′(vt−1)DG′(vt)

]

+[
1√

DG(v2k−t)DG(v2k−t−1)
− 1√

DG′(v2k−t)DG′(v2k−t−1)
] > 0 .

(6)

(ii) For t = 2k − 1, 2k, · · · , r, we have DG(vt) < DG′(vt) and

1√
DG(vt)DG(vt+1)

>
1√

DG′(vt)DG′(vt+1)
(7)

for t = 2k − 1, · · · , r − 1.

(iii) By (2) and (4), DG(vk−1) +DG(vk) = DG′(vk−1) +DG′(vk), and

DG(vk) < DG′(vk−1) < DG(vk−1), DG(vk) < DG′(vk) < DG(vk−1)
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since DP (vk) < DP (vk−1). We have DG(vk−1)DG(vk) < DG′(vk−1)DG′(vk). So,

1√
DG(vk−1)DG(vk)

>
1√

DG′(vk−1)DG′(vk)
(8)

From (5)-(8), we can obtain

J(G)− J(G′)

= (n− 1)

⎡

⎣
∑

uv∈E(G)

1√
DG(u)DG(v)

−
∑

uv∈E(G′)

1√
DG′(u)DG′(v)

⎤

⎦

= (n− 1)

⎛

⎝
∑

uv∈E(G0)

[
1√

DG(u)DG(v)
− 1√

DG′(u)DG′(v)

]

+
1√

DG(vk−1)DG(vk)
− 1√

DG′(vk−1)DG′(vk)

+
k−1∑

t=2

[
1√

DG(vt−1)DG(vt)
− 1√

DG′(vt−1)DG′(vt)

+
1√

DG(v2k−t)DG(v2k−t−1)
− 1√

DG′(v2k−t)DG′(v2k−t−1)

]

+
r−1∑

t=2k−2

[
1√

DG(vt)DG(vt+1)
− 1√

DG′(vt)DG′(vt+1)

])
> 0 .

Using the path-sliding transformation repeatedly, we can easily obtain the following

result by Lemma 1.

Theorem 1. If T is a tree with n ≥ 2 vertices, then

J(T ) ≥ J(Pn) = (n− 1)
n−1∑

i=1

(DiDi+1)
− 1

2

with equality if and only if T = Pn is the path with n vertices, where Di =
(n−i+1)(n−i)

2
+

(i−1)i
2

.

For a tree T with n ≥ 4 vertices, if T is not a path, then T can be changed into a

tree of diameter n − 2 by a series of path-sliding transformations. Moreover, using the

path-sliding transformation, any tree with n vertices and diameter n− 2 can be changed

into the tree T0, which is obtained by attaching a pendant vertex vn to v2 of the path

v1v2 · · · vn−1 (see Figure 5). So, we can characterize the tree with the second minimal

Balaban index by Lemma 1.
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Theorem 2. Let T be a tree with n ≥ 4 vertices. If T is not a path, then J(T ) ≥ J(T0)

with equality if and only if T = T0.

The edge-lifting transformation. Let G1 and G2 be two graphs with n1 ≥ 2 and

n2 ≥ 2 vertices, respectively. If G is the graph obtained from G1 and G2 by adding

an edge between a vertex u0 of G1 and a vertex v0 of G2, G
′ is the graph obtained by

identifying u0 of G1 to v0 of G2 and adding a pendent edge to u0(v0), then G′ is called

the edge-lifting transformation of G (see Figure 4).

In the graph G, if u ∈ V (G1), then

DG(u) =
∑

v∈V (G1)

dG(u, v) +
∑

v∈V (G2)

dG(u, v)

= DG1
(u) +

∑

v∈V (G2)

[dG(u, u0) + 1 + dG(v0, v)]

= DG1
(u) +DG2

(v0) + [dG1
(u, u0) + 1]n2

(9)

Similarly, if u ∈ V (G2), then

DG(u) = DG1
(u0) +DG2

(u) + [dG2
(u, v0) + 1]n1 (10)

In the graph G′, if u ∈ V (G1), then

DG′(u) =
∑

v∈V (G1)

dG′(u, v) +
∑

v∈V (G2)

dG′(u, v)− dG′(u, u0) + dG′(u, w0)

= DG1
(u) +

∑

v∈V (G2)

[dG′(u, u0) + dG′(u0, v)]

− dG′(u, u0) + dG′(u, u0) + dG′(u0, w0)

= DG1
(u) +DG2

(v0) + n2dG1
(u, u0) + 1

(11)

Similarly, if u ∈ V (G2), then

DG′(u) = DG1
(u0) +DG2

(u) + n1dG2
(u, v0) + 1 (12)
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And

DG′(w0) = DG1
(u0) +DG2

(v0) + n1 + n2 − 1 (13)

Lemma 2. If G′ is the edge-lifting transformation of G, then J(G) < J(G′).

Proof. From (9)-(13), we have

DG(u) = DG′(u) +

⎧
⎨

⎩

n2 − 1, u ∈ V (G1);

n1 − 1, u ∈ V (G2)

and ∀uv ∈ E(G1) ∪ E(G2),

DG(u)DG(v) > DG′(u)DG′(v).

DG(u0)DG(v0) = DG′(u0)DG′(w0) + (n1 − 1)(n2 − 1) > DG′(u0)DG′(w0).

By the definitions of J(G), we have J(G) < J(G′).

Using Lemma 2 and the edge-lifting transformation repeatedly on a tree T , we can

obtain

Theorem 3. If T is a tree with n ≥ 2 vertices, then

J(T ) ≤ J(Sn) = (n− 1)3/2(2n− 3)−1/2

with equality if and only if T = Sn is the star with n vertices.

Finally, we characterize the tree with the second maximal Balaban index.

If a tree T with n ≥ 4 vertices is not a star, then T can be changed into a tree of

diameter 3 by a series of edge-lifting transformations. Moreover, any tree of diameter 3

with n vertices is a double-star Sr,s with r ≥ 1, s ≥ 1 and r + s = n − 2 (see Figure 5).

By Lemma 2, we only need to find the tree with the maximal Balaban index among all

double-star with n ≥ 4 vertices.

It can be computed that the Balaban index of Sr,s is

J(Sr,s) =
r√

(1 + 2r + 3s)(1 + r + 2s)
+

1√
(1 + r + 2s)(1 + s+ 2r)

+
s√

(1 + s+ 2r)(1 + 2s+ 3r)
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Let a = n− 2. Then s = a− r and 1 ≤ r ≤ a− 1.

f(r) = J(Sr,s)

=
r√

1 + 5a+ 6a2 − 2r − 5ar + r2
+

a− r√
1 + 3a+ 2a2 + 2r + 3ar + r2

+
1√

1 + 3a+ 2a2 + ar − r2

It can be easily computed that

4f ′′(r) =
A1(r)

A(r)
+

B1(r)

B(r)
+

C1(r)

C(r)

where

A(r) = (1 + 5a+ 6a2 − 2r − 5ar + r2)5/2 ,

B(r) = (1 + 3a+ 2a2 + 2r + 3ar + r2)5/2 ,

C(r) = (1 + 3a+ 2a2 + ar − r2)5/2 ,

A1(r) = 8 + 60a+ 148a2 + 120a3 − 16r − 80ar − 97a2r + 8r2 + 20ar2 ,

B1(r) = 8 + 44a+ 76a2 + 43a3 + 16r + 64ar + 57a2r + 8r2 + 20ar2 ,

C1(r) = 4 + 12a+ 11a2 − 8ar + 8r2 .

Note that 1 ≤ r ≤ a − 1, we have f ′′(r) > 0, i.e., f(r) is concave for 1 ≤ r ≤ a − 1.

So, f(r) ≤ max{f(1), f(a− 1)} = f(1) = f(a− 1), i.e., J(Sr,s) ≤ J(S1,a−1) with equality

if and only if r = 1, s = a− 1 or r = a− 1, s = 1.

Theorem 4. Let T be a tree with n ≥ 4 vertices. If T is not a star, then J(T ) ≤
J(Sn−1,1) with equality if and only if T = S1,n−3.
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