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Abstract 

Partial order renders a helpful tool in many ranking problems. Especially when multi-
indicator systems come into play, the product order as a special order relation is an 
adequate mathematical structure. A typical outcome of partial order analysis are the 
chains, where the values of the indicators are weak monotonously increasing. However, 
one also finds in partial order analysis incomparable elements. In this paper we suggest 
the construction of a special type of a binary relation, a tripartite graph. By means of the 
tripartite graph the role of indicators causing incomparabilities can be clarified. 
Furthermore, quantities derived from tripartite graphs help to decide whether or not the 
sets of incomparable elements are topologically connected. Hence, tripartite graphs 
enlighten the interpretation of complex data sets. 

 

1. Introduction 

Chemicals can be harmful to humans and the environment. How do we find out whether they 

are hazardous? There are many time-consuming and expensive investigations necessary to 

perform a risk assessment. After experimental determination of chemicals’ properties the 

exposure and its toxicological consequences for humans and the environment is determined. 

One of the first attempts to develop mathematical models was the software package 

E4CHEM, which was developed 1984-86 [10], now the software package EUSES is widely 
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used (see e.g. [41,42]). Even with the simplified version of EUSES, described by [41], there is 

still much effort to perform the risk assessment.  Hence the question is: with which chemicals 

to begin at first? Thus ranking is needed to give the more involved investigations a reasonable 

operating sequence ([29] or in the context of EUSES: [25]). Once accepted that a ranking is 

needed, we discover that there is no intrinsic property of a chemical through which it can be 

ranked. Hence, several aspects of a chemical need to be simultaneously considered and the 

central question arises: how to rank chemicals characterized by several attributes?  

Partial order theory as a discipline of discrete mathematics can be very helpful in ranking 

studies, see for example [7,9,11,19,21,26,31-34,36-38]. Here we introduce at a new tool 

supporting the analysis of partial order especially with respect to incomparabilities and 

introduce the “tripartite graph”.  

The paper is organized as follows: 

First we start with the basics of partial order, and then we introduce the example, a set of 

chemicals to be ranked. After discussing the example we explain the concept of a tripartite 

graph, derive some properties and apply this tool on our example. A discussion concludes the 

paper. 

2. Basics of the theory of partially ordered sets 
2.1 Product order 
Although the application of partial order on data matrices is explained in detail in many 

references, we introduce some concepts at the sake of convenience for the reader. For more 

theoretical background, see e.g. [23,28,35]. See also a review of application of partial order in 

the field of chemistry, [27]. 

Let us suppose that an “object set” X (in technical terms also called a “ground set”) is of 

interest. Suppose that X is a finite set (and we do not mention it further). We wish to compare 

objects S X. Therefore we use the symbol � as a binary relation among the objects. In our 

case - an n x m data matrix is at hand, the special order relation called product- or 

componentwise order must be applied: Let x, y be two different objects of the object set X. 

Let Q be the space of measurements may be of different scaling levels. Let q(x) be the data 

row for x and q(y) that for y, i.e q(x), q(y) S Q: x � y if and only if q(x) � q(y), q(x) � q(y) if 

and only if qj(x) � qj(y) for all j, j = 1, 2, …,m. We call qj the attributes or indicators of the 

study. 
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An analysis of the data matrix by partial order is meaningless without the information about 

the aim of ranking. When the aim of ranking is known, the indicators are to be checked for 

their common orientation with respect to the aim. If necessary, the columns of the data matrix 

must be appropriately transformed (for example by multiplication by -1).   

If x, y are different objects but q(x) = q(y), i.e. qj(x) = qj(y) for all j, then the objects x and y 

are called equivalent under the equivalence relation ‘equality’. Equivalence is denoted as: x @ 

y. If we want to exclude equivalence, then we write x < y. Consequently: x < y if and only if 

q(x) � q(y), q(x) � q(y) with at least one qj*, for which qj*(x) < qj*(y) is valid. Consider 

representatives of each equivalence class and add the information about the other equivalent 

elements, whenever needed.  

Component: when in a directed graph any two vertices are reachable without taking care of 

the orientation of the edges, then we speak of a weak connection and the maximal subset of 

vertices which is weakly connected is called a component of the graph. 

Further notations: (i) Sometimes it is necessary to specify the � or < relation. In that case � or 

< get an appropriate subscript, eg. �{qi,qj} indicates that a partial order based on the indicators 

qi and qj, is considered. (ii) Posets  based on a data matrix are indicated by (X, IB), whereby 

IB={q1,..,qm}is the set of attributes (indicators), also called the information base [8]. (iii) We 

speak of ‘elements’ if their membership to a set is considered and of objects in a more general 

sense. (iv) If neither x � y nor x � y then x and y are incomparable, notated as:  x || y.  (v) If 

we want to indicate comparability for objects x and y without specifying the orientation, we 

write: x [ y. (vi) If a partial order is to be denoted without reference to an attribute set, we use 

the notation (X, �). (vii) When A is a finite set, we denote by |A| the number of its elements. 

2.2 Hasse diagrams  
We first introduce the ‘cover-relation’: x is covered by y if there is no element z S X for 

which x < z and z < y. We write this as x �: y. With the cover-relation at hand, we can get a 

diagrammatic representation of the partially ordered set:  Let us consider x and y, and assume 

that x �: y. Then we draw x in a vertical plane below y and connect both with a straight line. 

This is repeated for every ordered pair, i.e. for all pairs of two objects for which �: - relation 

holds. The resulting diagram is known as Hasse diagram. Example: X= {a, b, c, d, e, f} 

(Figure 1): 
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Figure 1: Hasse diagram representing a poset (X, �) 

2.3 Some additional concepts: 
1. The fact that a � e can be easily deduced from the Hasse diagram: because of 

transitivity, no line appears for a � e.  
2. If there is no incomparability, then we speak of a complete, total or linear order. 

In the case of a complete order, the objects x S X can be arranged in a sequence  
x1 < x2 <… < xn,  i.e. a ranking is found. 

3. Chain: If a subset X’ V X can be found such that for all (x, y) S X’ R X’, a complete 
order can be found, then this subset, together with the partial order relation, is a chain. 
Let C be a chain, if there is no outside element, whose inclusion into a C is possible 
maintaining the comparabilities, then C is a maximal chain. In Figure 1 ({d, a, b}, �) 
is a chain, but is not maximal, because object e can be included. 

4. Bifurcation of chains: Two chains C1 and C2 have a subset of objects in common. For 
example:  ({a, d, e}, �) and ( {a, b}, �). 

5. Weak order: Representative elements of equivalence classes are in a chain, but there 
are nontrivial equivalence classes. 

6. Antichain: If a subset X’ V X can be found such that, for no (x, y) S X’ R X’, x [ y, 
i.e. x � y or y � x holds, then this subset, equipped with the partial order relation, is 
called an antichain. 

Hasse diagrams provide answers to “where is an object and why it is, where it is”, because 
chains, bifurcation of chains and subsets of objects with common pattern of indicator values 
can be identified (Figure 1). If the Hasse diagram is too messy to get chains by inspection, 
software tools (e.g. PyHasse, [15,39,40]) help to find chains.  
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2.4 Formal Concept Analysis 
Formal concept analysis (FCA)  is a well known method which also belongs to the theory of 
partially ordered set. There are many publications available, see [1,3,22,24]. For the sake of 
the convenience of the reader we explain FCA following the lines of [2]: Formal concept 
Analysis is based on a triple (X,Q,I) , where X is the set of objects, Q the set of properties (in 
the case of multivalued attributes a preprocessing step, called scaling, has to be performed, 
[24], and I is a relation between X and Q. We write (x I q) if x S X  has the property q S Q or 
if q S Q is realized by x S X. Having all possible relations, I, a set of concepts can be derived. 
A concept is a pair of object subset X’ and property subset Q’’ such that W x S X’ and for all 
q S Q’’ it is valid: (x I q). The concepts can be partially ordered on the basis of the inclusion 
relation applied to the object subsets of each context. In [43], it has shown that the resulting 
poset has the properties of a lattice. 

The main point of FCA which is of interest here is the “symmetric” view on objects and 
properties, whereas a Hasse diagram, as shown in Figure 1 only shows the order relations 
focusing on the objects. 

3. Example 
The basis of this example is a study, in which chemicals in the German river Main were 
monitored in order to support management plans for that river. It was found that 19 organic 
compounds are of special interest. By applying a simple simulation model EXWAT, see 
[5,6,10] which is part of the evaluation package E4CHEM indicators were calculated which 
describe the fate of these chemicals on basis of their substance properties and the 
environmental properties of the river Main (for details, see [12]).  

EXWAT couples as far as possible deterministically (that means on the basis of known 
processes and first principles like mass conservation, thermodynamics and kinetic laws) 
chemical properties like log KOW, which is a measure for accumulating in solids (soils, 
sediments, suspended particles), and like Henry Law Coefficient, which is a measure about 
the thermodynamical tendency to accumulate in the air. 

These properties are purely related to the chemical substances and are therefore depending on 
the chemical structure. The application of the model relates these chemical properties to 
actual tendencies to volatize, or to accumulate in the sediments, or just to stay in the water 
body. These are the three environmental fate descriptors used in this example.   

The indicators obtained from the model EXWAT are neither describing only the chemical nor 
the river itself but the effect of transport and distribution mechanism due to the hydrological 
conditions on the chemicals. The indicators were transformed into scores, see Table 1. 
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Table 1: Scores of three indicators describing the fate of polychlorinated biphenyls (pcb) and some 

chloroalkanes,- alkenes (alk)  in the river Main (Vl: Volatilization flow, Se: Sedimentation flow, 

Ad: Flow downstreams). pcb: Polychlorinated biphenyls, alk: Alkanes/Alkenes *) 

 name Volatilization 
(Vl) 

Sedimimentation 
(Se) 

Advection 
(Ad) 

Pcb 12 PCB 28 3 3 2 
Pcb 13 PCB 52 2 3 2 
Pcb 14 PCB 101 2 4 1 
Pcb 15 PCB 138 2 4 1 
Pcb 16 PCB 153 1 4 1 
Pcb 17 PCB 180 1 4 1 
alk ch chloroform 4 1 2 
alk tt tetrachloromethane 4 1 3 
alk tn trichloroethane 4 1 3 
alk tr trichloroethene 4 2 2 
alk pe tetrachloroethene 3 2 3 

*) Some of these data were  used as an example concerning Environmental Impact Assessment 
[20] 
 

From the scores the following Hasse diagram was obtained (Figure 2). As labels we do not 

include the chemical classes ,i.e. the additional information like “ pcb” or “alk”. 

When an evaluation, decision or even a ranking is wanted then this Hasse diagram is a poor 

result, as the length of the maximal chains (number of elements in a chain) is 2, which is 

compared to the possible length of a linear order a very small degree of separation: 2/8 = 0.25. 

The methodology of partial order offers several tools to obtain nevertheless a linear or weak 

order. In [17], some methods are discussed, as well as in [32], the crucial role of weights is 

discussed in case one is considering of deriving a weighted sum from the indicators.  

 

Figure 2: Fate of 8 organic compounds in the river Main, due to the simulation model EXWAT. 
The abbreviations are given in Table 1. Equivalent Objects: {tt, tn} {14, 15} {16, 17}.  At the top 
are the relatively hazarduous chemicals. 
 

Here, however we want to focus on the nonlinearity of partial order, which is expressed by the 
most striking pictorial effect, namely the bifurcation of chains and the appearance of 
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components. We see that ({14, 16}, �) is one component of the directed graph (Hasse 
diagrams are acyclic directed graphs whose underlying usual graph does not contain 
triangles), other component are ({13, 12}, �), ({pe}, �) (an isolated element) and {tr,  ch,  tt}, 
�). Furthermore we see that there is no connection between the chemical (contextual) defined 
subset of {tr,  tt,  ch,  pe} and the polychlorinated biphenyls, which themselves are not in one 
component.  
We discuss two tools, one is the separability, which is already published [16] and the other: 
the tripartite graph, which is the new tool we want to explain in this paper in some detail. 

4 Separability and tripartite graph as tools in partial order   
   analysis 
4.1 Separability 
Let us identify two disjoint subsets of X/@: X1 and X2 . Two subsets X1 and X2 are separated, 
if x S X1 and y S X2 imply x||y Wx S X1 and W y S X2. We also want to speak of a degree of 
separation of subsets. Therefore we introduce the ‘separability’ Sep(X1, X2, IB): The possible 
number of relations (i.e. of < or > or ||-relations) N(X1, X2) between X1 and X2 is:  N(X1, X2) 
= |X1|*|X2|. We define: U(X1, X2, IB) = {(x,y): x ||IB y, x S X1, y S X2, X1 \ X2 = :}. 
Then the separability between X1 and X2 is calculated as follows: Sep(X1, X2, IB) =  |U(X1, 
X2, IB)| /N(X1, X2). We note:  Sep(X1, X2, IB) = Sep(X2, X1, IB). If Sep(X1, X2, IB) = 1 then 
X1 and X2 are separated.  

We call IB’ U IB the set of antagonistic attributes/indicators and abbreviate it by AIB(X1, X2) 
if W (x,y) S X1*X2 with Sep(X1, X2, IB) = 1 we find: x ||IB’ y. For more details, see [16].  

When |AIB| = 2 then we can visualize the order relations in a 2D scatter plot. Several 
situations may appear, Figure 3 shows some examples: 

 

  (a)    (b)    (c) 

Figure 3: The two coordinates are the attributes of AIB, with |AIB| = 2. The different patterns 
show to which area the objects belonging to the two separated subsets belong. (a): example of 
topologically connected, (b) and (c): examples of topologically non-connected. 
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Observation 1: In a space, spanned by the attributes of AIB the objects of X1 and X2, with 

Sep(X1, X2, AIB) = 1 do not necessarily belong to topological connected subsets of IR2. ( two 

dimensional space of real numbers). 

In case of |AIB| >2 one can find separated subsets and a minimum set of coordinates. 

However a) the graphical display is difficult and b) the possibility of non-topological 

connected subsets of IR|AIB| will also be hard to be identified. 

4.2 Application of FCA 
Basically the  problem can be formulated as follows: Which values of which attribute lead to 

certain positions of the objects within a Hasse diagram. Formal concept analysis with its 

“symmetric view” on objects and attributes could be applied.  The problem is that especially 

in multivalued contexts in general we obtain a  large number of concepts, so that it is wise to 

look for alternatives.  Here however with a pretty small set of objects we can consider the 

lattice of concepts, (see Figure 4). 

 

Figure 4: Lattice of the eight chemicals and three attributes, transformed by an ordinal scaling. 
Explanation of abbreviations are found in Table 1. 

 
Why for example are {16,14} and {12, 13} separated? By inspection of Figure 5 we see that 

common for both sets are Se3, Vl1, and Ad1 (Ad<i> means for example: advection with the 

value i). Furthermore one can see that Se4 is exclusively a property common for {16, 14} and 

the maximal value with respect to Advection Ad is Ad1. In contrast: {12, 13} have the 

property Se3 (are not in that extent underlying a sedimentation process), but Ad2. Hence the 

ch

Ad1� Se1 Vl1

Se2�

Se3�

Se4�

16�

14�

Vl2

Ad2

Vl3

13

12 pe tr tt

Ad3�

Vl4�
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separation of the two subsets is explained by Se4, Ad1 of {16, 14} but Se3, Ad2 of {12, 13}. 

We further see that two attributes are sufficient to explain the separation of the two sets. We 

also see that we can find in IR2 spanned by advection and sedimentation two open sets, 

covering {16, 14} on the one side and covering {12, 13} on the other side. {tr, pe} and {tt} is 

another example of separated subsets. Se2 and Vl3 are common for {tr, pe} but for {tt} we as 

antagonistic indicator at first hand only Se1. Ad3 is common for pe and tt, cannot separate the 

two sets, vl4 is common for tr and tt. Only if we accept beside attribute Se also the attributes 

Vl and Ad we can characterize the separation: Se2, Vl3: {16, 14}, {tt} is characterized by 

Se1, Vl4 and Ad3. Without Ad or without Vl the separation cannot be explained.  

4.3 Multi-coordinate representation 
How the attributes and their values explain the separation of {tr, pe} and {tt} can also be 

visualized by interpretation of the product order as an order of intervals, displayed by directed 

lines, representing each attribute (Figure 5): 

Figure 5: Display of separated subsets as intervals in a multi-coordinate representation. Grey 
hatched the position of tt, to indicate that tt belongs to another separated subset (see Table 1). 

 
By Ad and Se tt and tr become incomparable, by V1 and Se tt and pe become incomparable. 
The determining fact is that we observe the elements of the one set once to the left and once to 
the right side of the other set along the coordinates.  
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Observation 2: To identify separated subsets in a multi-coordinate representation we do not 
need the single numerical values of the objects, but only whether the ranges of attributes 
representing subsets of the objects are in that way mutually oriented that one family of subsets 
constitutes the one, and another family of subsets constitutes the other separated subset. 

4.4 Tripartite graph 
4.4.1 Introduction 

Motivated by observation 2 we define a tripartite graph as follows:  

V2 = {(x1,x2):  x1 S X1 , x2 SX2, Sep(X1,X2,IB)=1} 

and two copies of vertices formed by the attribute’s names, namely: 

V1 = {qi S IB } 

V3 = {qi S IB } 

In the drawing plane we arrange V2 in the middle, V1 at the left and V3 at the right side. 

We connect vertices of V1 with a vertex S V2 if and only if  x1 >qi x2, (x1, x2) S V2 

and connect V3 with a vertex of V2 if and only if : x1 <qi x2, (x1,x2) S V2 . Figure 6 shows the 
tripartite graph in case of the separated subsets {12,13},{14, 16}: 

 
Figure 6: Example of a tripartite graph, constructed from the separated subsets {12,13} and {14, 
16} (PyHasse software). Vl: Volatilization, Se: Sedimentation, Ad: Advection. 

  
For convenience in the PyHasse outcomes the lines indicating a >-relation are coloured red, 
whereas those of the <-relation blue software: PyHasse).  

We see for example the pair of incident edges (Ad, (13,14)), ((13,14),Se) : It describes that 13 
>Ad 14 but 13 <Se 14, as it must be, as 13||14.  

An obvious observation: (observation 3) Incident edges (qi S V1, (x, y)), ((x, y), qi SV3) 
cannot appear, because such appearance would imply: x >qi y and at the same time x <qi y, 
which is impossible. 
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As Ad S V1 one the one side and Se S V3 on the other side are connected with all pairs S X1* 
X2 , we conclude that two coordinates namely Ad and Se are sufficient  to explain the 
separation of the subsets {12, 13} and {14, 16}. Following observation 3 Se S V1 cannot have 
any connection to one of the pairs (x, y) S X1* X2, because Se S V3 is connected with all 
pairs. Similarly Ad S V3 cannot be connected with pairs S X1* X2 because Ad S V1 is with 
all pairs connected.  

Observation 4: Reconstruction of the partial order: Let X1 , X2 be two disjoint object subsets, 
which are not necessarily separated. Then there may be pairs (x, y) S X1* X2, with x < y. In 
the tripartite graph such a pair would have exclusively incident edges either with V1 (x > y) or 
with V3 (x < y). Hence it is possible, also to analyze subsets X1, X2, whose Sep(X1, X2, IB) 
<1. 

In the following we first show, how the separated subsets {tr, pe} and {tt} can be analyzed 
within the framework of tripartite graphs, then we will extend the analysis to “almost-
separated subsets”. 
In Figure 7 the example {tr, pe}, {tt} is revisited: 

 

Figure 7: Separated subsets {tr, pe} and {tt} and their tripartite graph (PyHasse software). 
 
From Figure 7 we learn: 

1. With respect to Se all pairs obey the relation (x>y).  

2. Two coordinates are not sufficient. For a separation Sep(X1,X2,IB’) =1 we need {See on 
the one side and both: Vl and Ad on the other side.  

In the last example we demonstrate how the tripartite graph looks when we select the disjoint 
but not separated subsets {pe, tr} and {tt, ch} (Figure 8). 

 

Figure 8: Tripartite graph of the disjoint subsets {pe, tr}, {tt,ch} (PyHasse software). 
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We see that (tr,ch) has no connection to the vertices of V3. Hence we have tr > Se ch. As there 
are no further incident edges, tr and ch must have equal values with respect to Vl and Ad., 
which is true as an inspection of Table 1 verifies.  

Observation 5: A Hasse diagram shows in a compact manner comparabilities. In the case of 
incomparabilities, however, the Hasse diagram is of only limited use: One cannot see in 
which way the attributes are leading to incomparabilities. A tripartite graph renders this 
information: Looking for example to (tr, tt): We see that (tr, tt) has edges incident to V1 and to 
V3, therefore  it is valid: tr || tt. We see furthermore that tr > tt with respect to Se, but tt > tr 
with respect to Ad. 

In the last example we study the separated subsets {12, 13, 14, 16} and {tt, tr, ch, pe} which 
also obey the chemical distinction between Alkanes/Alkenes and the Polychlorinated 
biphenyls (Figure 9). 

 

Figure 9: Tripartite graph of  {12, 13, 14, 16} and {tt, tr, ch, pe} (PyHasse software). 

 

One can see that (i) Se is causing that the PCBs are all greater than the alkanes/alkenes, 

therefore Se S V3 is not connected to any pair S X1* X2  and (ii) not all pairs are at the same 

time connected with two vertices of V3, hence AIB must contain all three attributes, i.e. AIB = 

IB. 

4.4.2 Individual analyses 

Two practical questions appear: 
1) Considering the graph in Figure 10 it is hard to decide, which descriptor Vl or Ad is more 
contributing to the fact that Alkanes/Alkenes have larger scores than the PCBs.  
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2) Although the graph in Figure 10 is simple one may have more complex situations, 
therefore we need tools to “zoom in”. 
We answer the second question first: 
a) We can select one pair (x, y) (here (13, pe) and see their relations to V1 and V3 ,  b) we can 
select one attribute qi (here Vl, volatilization) and show the subgraph induced by the vertex qi 
S V1 and qi S V3,  

c) we can select either one element x from the pair (x,y) S V2 to see all its relations (x,.) to V1 
and V3 or d) y in order to see all relations (.,y) to V1, V3. In Figure 10 all four variants are 
shown: 

  

  

Figure 10: Individual analysis of the tripartite graph (PyHasse software) 

 

(a)� (b)

(c)� (d)�
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By means of Figure 10 b) we can count how often each attribute is contributing to >, =, or < - 

relation. However, and this answer for the first question we can do this job simultaneously for 

all attributes (Figure 11). 

 

 

Figure 11:  Contribution of attributes to the >, < and =-relation between the objects of the two 
separated subsets {12, 13, 14, 16} and {tt, tr, ch, pe} (PyHasse software).  

 

4.4.3 Mixing analysis 

We started with the problem as to how far separated subsets are forming topological 

connected sets in IRm. Inspecting Figure 4 we see that topological non-connected subsets 

should have the property that one attribute is once responsible for a >- relation and once for a 

<-relation. We formalize this observation as follows: Let X1i subsets of X1 and X2i subsets of 

X2 with Sep(X1, X2, IB)= 1. Furthermore we write qi(X1i) > qi((X2j)  to indicate that for all x S 

X1i and for y  X2j  qi(x) > qi(y). A situation like that in Figure 3 (b) appears if we find: 

qi(Xrj1) > qi(Xsi) > qi(Xrj2)  r=1 or 2 then s=2 or 1. 
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The attribute qi must therefore appear once as a connected vertex of V1 and once as a 

connected vertex of V3. We calculate the mixing degree as follows: 

Let val(qi(Vk) (k=1 and 3) the valence of a selected vertex qi S Vk. We count how often qi of 

V1 and at the same time qi of V3 has a connection with (x, y) S X1*X2 . Hence mixing-degree, 

mix, is proportional to val(qi(V1)) * val(qj(V3)), j � i. The product is unequal zero if both 

factors at the same time have values  > 0. We normalize by: floor(m2/4) which is the 

maximum value accessible for any val(qi(V1)) * val(qj(V3)).  In the example case there is no 

mixing degree � 0. So we can imagine that for the alkanes/alkenes vs PCBs a representation 

must be possible with X1 and X2 as topological connected subsets. To show how a situation 

where topological non-connected subsets appear (unfortunately the chemical examples does 

not show this feature), we examine a fictitious data matrix (Table 2). 

Table 2: Fictitious data matrix for demonstration of  topological non-connected separated subsets. 

 q1 q2 q3 
a 1.0 1.0 1.0 
b 3.0 1.0 1.0 
c 4.0 4.0 4.0 
d 2.0 3.0 2.0 
e 2.0 4.0 1.0 
f 4.0 5.0 6.0 
g 6.0 5.0 4.0 
h 1.0 6.0 2.0 

 

In Figure 12 the Hasse diagram and the tripartite graph (separated subsets: X1= {b, d} and 

X2={h, e} ) are shown: 

  

Figure 12:  Hasse diagram of the data of Table 2 and the tripartite graph (see text) 

In Figure 13, we see that q3 is as a connected vertex in V1 as well as in V3. Therefore the 

mixing degree will be � 0 for q3 (Table 3) 
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Table 3: Mixing degree for the fictitious example (PyHasse software): 

 q1 q2 q3 
mix% 0 0 0.5 
  

Indeed for a subset of X1 , namely {b} we find that it is less a subsets of X2, namely {h, but 

another subset of X1, namely {d} is larger than {e} V X2.  Schematically written: b <q3 {h,  e} 

<q3 d, i.e. set X1 is not topologically connected with respect to coordinate q3 or “q3 has some 

mixing degree �0. character”. 

4.4.4 Reduction of the tripartite graph 

We construct an adjacency matrix, T, of the tripartite graph as follows:  

There are m*(m-1) rows of all pairs (qi, qj) i � j. the set A, and |X1|*|X2| columns, 

corresponding to the pairs (x, y) S X1*X2.   An entry Trs at the crossing of the rth  row (qi, qj) 

and sth column (x, y)  is unequal zero if it is valid: 

x> qi  y and  x < qj y. 

As in Formal Concept Analysis a mapping g is defined: (qi, qj) S A � (x,y)  if the 

corresponding entry of the matrix T has a value unequal 0. Obviously those attribute pairs are 

sufficient to explain a separation of  X1,  X2 for which is valid: ] g(qi,  qj) ^ X1*X2 . If T is 

considered as the usual adjacency matrix the entries are 0 or 1.  

A simple meta-algorithm for a reduction is now:  

Start: set B = ø , the set of pairs to be found 

(1) Find the row with the maximum  of the row sums. 

(2) Mark the corresponding row with a “*” 

(3) Set B _ g(qi, qj) of row *. 

(4) Set all entries in rows other than the *-row = 0, where the entry in the row * unequal zero. 

(4) Repeat the process by starting with (1) until B = X1*X2. 

The crucial point in this meta-algorithm is that with an adjacency matrix with 0, and 1 as 

entries we can find in step (1) several rows, having the same maximal value of their row sum. 
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Therefore the entry in T is not 0 and 1 but 0 and |qi(x)-qj(y)| . The maximum row sum 

corresponds then to that pair of qi and qj with the largest discrimination between x and y.  By 

this modification the chance to get the same row sum is somewhat reduced. When there are 

still several rows with the same maximal row sum, then the first row is taken. 

By this procedure we obtain a reduced tripartite graph by appropriate translation of the 

remaining pairs of A together with the pairs of X1*X2 into a tripartite graph as explained in 

4.3.1. For the separation of the alkanes/alkenes versus PCBs we obtain the reduced tripartite 

graph, shown in Figure 13: 

 

Figure 13: Reduced tripartite graph. 

Fifteen pairs (out of 16) S X1*X2 have the same constellation: namely Se as attribute 

responsible for x S X1 > y S X2. and Vl for x S X1 < y S X2. Only because of one pair: pair 

no 7 we need the third property Ad to obtain the needed separation. 
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5. Discussion and Conclusion 

We started from two questions (problems): 

1) If we find separated subsets, what can be said about the attribute values, causing the 

separation and  

2) Can we give a characterization of the two subsets in terms of their topological 

connectedness? 

By means of the tripartite graph and eventually with the possible individual analyses we 

obtain an insight about the reasons why two object subsets are separated as an outcome of the 

partial order analysis. 

With the mixing degree we can quantify how attributes are causing a “in-between” situation 

of subsets of the separated subsets. Therefore we consider tripartite graphs as a useful 

supplement of partial order analysis. 

It should be clear that the simple fact of |AIB|= 2 does not necessarily mean that X1 and X2 

have a simple, namely topological connected structure.  

There are still open points: 

a) Is the mixing degree sufficient enough to deduce statements about the topological character 

of the two separated subsets? 

b) Instead of a tripartite graph the more common bipartite graph with the set A (see section 

before) together with set X1 * X2 would also do the job of allowing an insight how attributes 

are causing the separation of the subsets X1 and X2. However in the case of a bipartite graph 

the user has to be aware which role the first component and which role the second component 

in the pair (qi,qj) plays.  

c) The reduction algorithm is not unique. Even if the entries are numbers unequal zero and 

deviating from 1 one may find several maximal rows and to select just the first row makes the 

procedure dependent on the enumeration of the attributes by the user.  

d) Often separated subsets are found from the context as in the example studied here. Can we 

find directly from any posets separated subsets (without an a priori contextual background)? 

In the software PyHasse simple search routines are available. A systematic approach seems to 
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be possible by applying Formal Concept Analysis [4].  However, other algorithms without 

applying Formal Concept Analysis (with its need of scaling) are necessary. 

e) Even by reduction, the tripartite graph may be large and complex. It is planned in a further 

upgrade of PyHasse to define equivalence classes among  the pairs S X1*X2 , where the 

equivalence relation is called: incidences with the same vertex sets. We indicated this kind of 

reasoning in 3.4.4. 

Summarizing: We showed that it is feasible to interpret the vertical component of Hasse 

diagrams, which are more or less the chains. Now, with the tripartite graph also a way is 

found to interpret the horizontal dimension of a Hasse diagram, namely the set of antichains. 
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