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Abstract

In this work we study a generalized integrable biparametric family of 4-D isotropic oscillators.
This family allows to treat, in a unified way, oscillators defined by the potential given by Hart-
mann related with the benzene molecule and other ring shape ones. These potentials belong to
two larger families of 3-D integrable Hamiltonian systems and have received a special attention
since are related with the benzene molecule, as well as other models in quantum chemistry and
nuclear physics. Using the Liouville-Arnold theorem and a particular analysis of the momentum
map at its critical points, a complete topological classification of the different invariant sets of the
phase flow of this problem is presented. By means of this topological study and the calculation
of the action-angle variables the classification of periodic and quasiperiodic orbits are stated.
The main aim of this paper is to study the stability properties of these orbits and to prove the
integrability of the system correcting a mathematical mistake of [Ferrer et al., Cel. Mech. Dyn.
Ast., in press|.

1 Introduction
In this paper we study a 4-D integrable dynamical system defined by the parametric
Hamiltonian function # : R® — R determined by
H=Ho+ Hi.
being
@+ +Q3+Qitwlel +é +d3+dd) (1)
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Ho=
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the isotropic oscillator, and

1 a b
H:7(7+7) 5
o\g+ad  d+4 @

another Hamiltonian where a,b and w are three structural constants of the system that
are considered to be positive.

This Hamiltonian is related with two families of 3-D integrable Hamiltonian systems,
H:éHXHZ-i-Vi with axial symmetry, namely systems with potentials given by
Iz P Q

+ + s
Virakad vl @Hady/al+ad+al

dubbed as Smorodinsky-Winternitzand potential, and

Vi= 3)

P
(23425 +a23) + =5+ Q

Q
Vo= 2 2 2
225 (27 +a3)

2
- (1)
(where p,Q, P are parameters, () is the momentum and z; are the variables of the prob-
lem).

The relation of those 3-D systems with a 4-D integrable dynamical system can be
shown by means of two canonical extensions.

If we make a canonical transformation from cartesian to polar symplectic coordinates

in the classical way see [1], then (1) and (2) in the new variables are

2, p2, Al A3 > 2
Ho = P1+P2+?+?+W(P1+P2) )
1 2

(i)
noon)

Note that 6; and 6y are cyclic, thus A; and A, are first integrals.

Hi =

DO = N =

The system is made separable in two subsystems of 1-DOF, defined by the Hamiltonian

functions
1 A? a
H :f(P2+—1+wp2+—>, ()
A
1 A2 b
Hb:f(P“’+—2+wp“’+—)., (6)
2\ ;T
with the same internal structure, such that
H=H,+ M (7

Due to the structure of the subsystem (5) and (6) it is enough to study H, to deduce

the corresponding results for H;,. Finally, because (7) we obtain the complete study of H.



-179-

Note that, H, : E, — R where E, = RT x S x R? is the phase space where the
Hamiltonian is defined.

The particular case of system (2) when a = b was consider by Kibler and Négadi [7]
when they studied the Hartmann potential using the Kustaanheimo—Stiefel transforma-
tion. Therefore, in this sense the proposed Hamiltonian (1) represents a generalization of
theirs.

Note that potentials V; belong to a larger family of integrable systems which are known
to be separable (see Makarov et al. [10]). These potentials have received special attention
since the pioneer work of Hartmann et al. due to its relation to the benzene molecule, as
well as other models in quantum chemistry and nuclear physics. When we take ) =0 in
the potential V; we have the Hartmann model [8].

In order to do a qualitative study of the dynamics associated to the Hamiltonian
system, in a similar way to [9], we are going to consider the following sets

En, =M, (he) ={z €Ey: H, (2) = ha},
Jy, ={z€E,: A =k},
Thury = En, N iy,

where z = (p1, 01, P, A)) € E, and (h,, k) € R2.

These sets are invariant by the flow associated to the Hamiltonian, being H, and A;
two first integrals of motion, independent and in involution.

The steps of this work for obtaining the topological classifications, which complete the

studies presented in [5] and [3|, are:
e The descriptions of the foliations of
(i) the phase space E, by the invariant sets Ej,_,
(i) Ey, by the invariant sets Iy, , and
(iii) Ip,k, by the flow of the Hamiltonian system.
e To calculate the action-angle variables for the systems H, and H,.

e To obtain the region where the action-angle can be defined.
e To classify the periodic orbits of the systems H, and H,.

e To obtain the classification of the orbits of H.
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e To use the canonical transformations to reduce the 4-D system into (3), in order to

see how the orbits of H are transformed.

The aim of the paper is to state the stability of the periodic and quasiperiodic orbits
previously described and to prove the integrability of the systems correcting a mathemat-
ical mistake stated in [5] where the integrability of the problem is not proved in a correct

way.

The paper is organized as follows. In Sec. 2 we study the connection between the
4-D isotropic oscillator and ring-shaped potentials. In Sec. 3 we study the topology of
the Hamiltonian #, and H. In Sec. 4 we classify the periodic orbits of the ring-shaped
potentials. In Sec. 5 we study the biparametric oscillator and its integration. In Sec. 6
we transform some orbits of H to the 3-D system of Hartmann and finally in Sec. 7 we

study the stability of the periodic and quasiperiodic orbits of the system.

2 Relations between Isotropic Oscillators and
Ring—-Shaped Potentials

The aim of this section is to show the relation of the 3 D systems previously stated with
a 4 D integrable dynamical system defined by the Hamiltonian function (1). In the next
two subsections we shall establish, respectively, the relation between the oscillator and
the systems defined by the potentials (3) and (4). The key point for doing this is to use in
each case adequate four dimensional transformations and their canonical extensions which
allow to relate the the parameters P and @ of the potentials with integrals and parameters

of the 4-D oscillator via a linear system. We shall use too some results from [5].

2.1 The oscillator and the generalized Hartmann potentials

We show first the relation of the Hamiltonian system defined by (1) and the generalized
Hartmann potentials defined by the potentials V;. In order to do that we make use the

transformation: (r, ¢, X\,¥) — (q1,¢2, g3, 1) given by

;w, (13:\/?cos?sinAJH’Z}7
2 2 2 (8)
¢ Aty

A —
QQ:\/;singsinTw7 Q4:\/FCOS§COS 9

A
¢ =+/7sin % cos




-181-

with (r, ¢, \,¢) € RTx (0,7) x [0, 27] X (7; g) and whose jacobian is —rsin ¢/8. Later
on we will need the inverse transformation given by

r=ai+a+a+d

snpVGrBNE ) L Gai—a—ag
GHE+d+a G+aE+@+4d
. 4193 + G244 4194 — 4243
SINA= —e s, CosA=— e,
Vi +a3)a3+ai) Vi +a3)as+ai)
. Q143 — G244 ) 4194 + G243
Siny=——=——o——, cost¥=

Vi +aa+a) Vi +aa+ i)
The canonical extension associated to the transformation (8) is readily obtained as a

Mathieu transformation, satisfying
> Qidg; = Rdr + ®dg + AdA + Vdip.
R,®, A and ¥ are called the momenta of the problem. Note that the relations among

these momenta are given by

1
R= m(%@l + Q2 + 3Q3 + 1Q4),

N Q1+02Q2) 45 +03) — (43Q3+0Qu)dF +43)
2y/(ai + @3)(3 + ai)

1
A= 5(—%@1 + Q2 + Qs — ¢3Qu),

1
S 2
The Hamiltonian (1) in the new variables may be written as
w 1 o2 A?
H=dr|=+- R+ 5 +—%—
! [8 Jr2 ( * r2 +r2 sin2¢)

U2 — 2 AV cos¢ c+dcos¢}

ol

)

v (2Q1 — 1Q2 + @1Q3 — q3Q4).

272 sin ¢ 2r2sin® ¢
where
a+b a—2b
- d=
N 2

Note that A and ¢ are cyclic variables, with A and W as first integrals. In other words

the differential systems is
dr _OH do_oM dR_ oM _ oM
dr  OR’ dr 0® dr  or’ dr  9¢

and two quadratures

A= [(OH/ON)dr, = [(OH/OV)dr.
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Using Poincaré notation and introducing a change of independent variable 7 — s given

by dr = 4r ds, the Hamiltonian takes the form

1
w1, @7 A?
—§+§(R+ﬁ+m (10)

U2 —2AVU cos¢p c+dcoso ho
272 sin® ¢ 272 sin? ¢ 4r’

where ho is a fixed value of the Hamiltonian H for chosen initial conditions, and the flow
is defined now on the manifold I = 0. We prefer to use a slightly different form; we

consider the Hamiltonian

K:1@2+¢2 A2 ) ho | (W240)/2
2

2 p2sin? 10) 4 p2sin? 10)
. (d/2 — AT) cos

r2sin’ ¢

(11)

in the manifold K = —%. Denoting

_ 1 2 @2 A2 }LO
%K’i(R Tt e o
the differential system defined by (11) is given by
dr Ko
ds  OR
s _ Ko _ @
ds 00 12
dR _ 0Ko _  OHx
ds or or (12)
2(\I/2+c)/2 2(d/ZfA\I/) cos &
3 sin ¢ 3 sin® ¢
dd Ko OHxk N @+c)/2 9 (1
ds  do ¢ r? ¢ \sin’¢
N @R—AY) 0 (cos¢
r2 ¢ \sin%¢
and two quadratures
Ko A U cos ¢
= ds= — ds, 1
A OA i /<r2 sin?¢ 72 sin? gb) @ (13)
Ko W — A cos ¢
= | —ds= | —————ds. 14
v aw / 2 sin? ¢ N (14)
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If we consider now the differential system defined by the Hamiltonian with potential
V1, Eq. (3) in spherical variables (r, ¢, \)

T1 = rsing cos\,
Zo = rsin¢ sin A, (15)
T3 =T1COSQP
and their momenta (R, ®, A), we check that those equations coincide with equations (12)
and (13), when we restrict to the manifold ¥ = 0 and we take the following values for the

coefficients

ho = 4pu, c=2P, d=2Q,

and we identify the variable s with the physical time t.

Thus, we have shown that the dynamics of the oscillator defined by Hamiltonian (1)
corresponds to the family of the generalized Hartmann potentials. If we assume U = 0,
the particular case of the Hartmann model is obtained when d = 0, 4. e. when we take

for the oscillator the following values

Ho = 4u w:fSICO a=b=P.
3 Qualitative Study of the Hamiltonian Flow

3.1 Study of the Hamiltonian %,
3.1.1 Introduction

In this part of the paper we study the Hamiltonian H,. Remember that the Hamiltonian
H, : E, — R is given by

Ha,:%(l’f+f—§+wp%+%), (16)
where E, = RT x S x R? is the phase space where the Hamiltonian (16) is defined and
(p1,0, P, Ay) € E,. These kind of coordinates are the most appropriated because they
let us note that the Hamiltonian is integrable. The parameters a > 0 and w > 0 are two
structural constants of the system.

The Hamiltonian system is

dpr _ dMa
dt — dP,

d  dH. A

dt — dA, g2

Pl:

(17)
dPy 7d’H,1 _ wpt — A2 —a dA,

ar; dA; _ dH. _
dt — dp Vi At do

0.
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We denoted by g : Rt x R? — R the map define by g (p1, P, A1) = H (p1,0, P, Ay).
If h, € R is a regular value of the map g and g~*(h,) # 0, then g~'(h,) is a surface of
R* x R? called energy surface.

In order to do a qualitative study of the dynamics associated to the Hamiltonian

system, in a similar way to |9], we are going to consider the following sets:
Ep,=H'(h)={2€E, : H(2)=ha},
Joy ={2€E,: A =k}, k1 €R,
Tk = B, O Iy, (ha, k1) € R2

with z = (py1, 01, P, A)) € B, and (h, ki) € R2.

Note that Ej, ~ g '(h,) xS' and is called constant energy manifold, .J;,constant
momentum manifold and I, ;, constant energy-momentum manifold. These sets are in-
variant by the flow associated to the Hamiltonian, being H, and A; two first integrals of
motion, independent and in involution. Hence, the Hamiltonian system (17) is integrable.

The main results of this section are the description of the foliation of the phase space
E, by the invariant sets Ej,, the energy sets Ej, by the invariant sets [, and Ip, i,
by the flow of the Hamiltonian system. This foliation provides a good description of the
phase space when (h,, k1) € R? and depends on the different values of a and w.

The main tool for this study is the Liouville-Arnold theorem:

Theorem 1 (Liouville-Arnold). The Hamiltonian system with two degrees of freedom
defined on the phase space B has the Hamiltonian H and angular momentum pe as two
independent first integrals in involution. If I, = 0 and (h,k) is a reqular value of the

map (H,pg), then the following statements hold:

(a) Ink is a two-dimensional submanifold of E invariant under the flow of the Hamiltonian

system.

(b) If the flow on a connected component I, of Iy is complete, thenl}, is diffeomorphic
either to the torus St x S, or to the cylinder S* x R. We note that if I}, is compact

(i.e. Ij, =~ St x S1), then the flow on it is always complete.

(c) Under the hypothesis (b) the flow on Ij, is conjugated to a linear flow either on
St x St or on ST xR.
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For more details about Hamiltonian systems and the proof of the previous theorem see
Abraham and Marsden [1] and Arnold [2]. In general, under the assumptions of statement
(b), I, can also be diffeomorphic to the plane R2.

The Liouville-Arnold theorem shows that, for integrable Hamiltonian systems, the in-
variant sets associated with the intersections of all independent first integrals in involution
are generically submanifolds of the phase space. Moreover, if the flow on such submani-
folds is complete, then these submanifolds are diffeomorphic to the union of generalized
cylinders and the flow on them is conjugated to a linear flow.

Let us define what are for us a critical and a regular value and an equilibrium point.
The value (hg, k1) is a critical value for the momentum mapping (H,, A;), if this map is
not differentiable in this value. If (h,, k) is not critical, it is named regular value. We
obtain an equilibrium point for the map #H, : E, — R when we equal the system (17)

to zero.

We applied this theorem to the momentum map (H,, A1) : E, x R — R? at regular
values. When it is not stated by the Liouville-Arnold theorem we have to do a particular
study for the sets Iy, for critical values (hq, ki) € R? of the momentum mapping. These
values correspond either to equilibrium points of H, or to values where A; = ki is a

maximum or a minimum of the energy surface.
3.1.2 Equilibrium points

In order to calculate the equilibrium points we need to equal the Hamiltonian system (17)
to zero.
This system has only a real solution for p; > 0 and Va,w. This solution is
P =0, A =0,
p1= {1/57 0, =0,.

If we substitute these values in our Hamiltonian H, we obtain h,, = \/aw, that is the
value of the equilibrium point.

3.1.3 Function potential. Hill regions

The Hamiltonian (16), in polar symplectic coordinates, can be written as follows

1 A2\
Ho == P2+—1)+V 1),
2( 1 p% (/l)



-186-

where

a
V(p1) :WPfJF? (18)
1

is the potential. Moreover, the Hill regions are completely characterized by means of this
potential function.

Now, the regions of the phase space where exits real motion are determined for the
critical points of V and these come given by the real positive roots of the polynomial
equation

a
wpr + — = 0. (19)
P1

that we obtain doing the derivate of (18) with respect to p; equal to zero.

Using the Sturm algorithm we discuss, according to the values of the parameters a
and w, the number of positive real roots respect to p; of the equation (19). Is it easy to
see that VYa,w we have only a real positive root because

a
Ple = ; (20)
p1e is called critical point of V.

Let 7 : E, — RT x S! be the natural projection. For each h, € R the Hill region

Ry, of Ej, is defined by Ry, = 7 (Epq)-

a

Ry, = {(p1,01) €R" x S1:V < h,} =
{(p1,01) € RT x St wp? + % < ha}
1

Note that Ry, ~S!x g~1(h,) where ~ means diffeomorphic to.

In which it follows the value of the potential, in the critical point p;., will be denoted
by he, = aw = 17(/)16). The values p), j = 1,2 will be the intersection points between
the graph of the potential and V=h,.

To a clearer understanding of the topology of the Hill regions the following figure is

presented. The table give us the topological classification of the Hill regions.

Table 1: Topological classification of the Hill regions for the different values of h where
hg is the critical point.

h<ha | R, =0
Va,w | h = hg, | Ry, = {hs,} x S*
haw < I | Ry, ~ [pl, p2] X S
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hg

51

Figure 1: Graph of the potential, where h,, is
the critical point.

3.1.4 Relative extremes of the energy surface

Using the implicit function theorem we can see that the extremes of the energy surface

g~ (hg) come given by the real roots of the polynomial equation
1 he 5 4 ahg
Al+ (20— — | Al +a" — —=0. (21)
w w

The Sturm Algorithm is used to calculate the number of real roots of (21) respect to Aj.
Tt is easy to see that (21) has two or zero real positive roots denoted by A;,,¢ = 1,2 and

corresponding to the extremes of the energy surface m,,,i = 1,2. The extremes of g~'(h,)

. . Jja+ A2
come given by mq, = Mo (p1,, _, Pr, A1) i = 1,2, where P, = 0,p, = \[ ——
w

3.1.5 Topological classification of £, and I,

In this section we study the topology of the invariant manifolds H, '(h) = Ej,, and I, ,.
To give the topological classification of these invariant sets we need some notation and
some new results.

Note that z. = (p1,,64., P1., A1,) € E, is an equilibrium point of the Hamiltonian flow
if and only if Z, = (p1_, 61, ) is a critical point of the potential. Moreover 7 (z.) = Z., where
m:E, — RT x S! is the natural projection. For this reason we know that we have only
a family of equilibrium points.

Let S ! be the sphere in R", with n > 1 and Ay, = 1,2 the values of A; that
correspond to the extremes of the energy surface ¢! (h,). Finally h,, is the value of the
equilibrium point for the Hamiltonian #,,.

The different cases can be shown by means of Figure 2.



Figure 2: Energy surface for H;'(h,)/S", with h, < h, where m,, and m,, are the
extremes of the surface.

We obtain the topological classification for £, and I, .

Table 2: Topological classification of the sets £, and I, ,, for all the values of a and w,
that we considered to be positive, and (hg, k1) varying.

h. [ Bn Tom
e <ha | 0 | Vi ]
ha =t | ST | k1 =0 ST
kl > A11 @
ki = Ay, !
hag < hg 53 A12 <k < All Stx St
kl = A12 Sl
ki < A12 0

3.2 Study of the Hamiltonian H

Remember that

H=Ha+ Ho,

Due to the decomposition of H, we use the results obtained in the study of H, to
deduce the corresponding results for .

Let S ! be the sphere in R, with n > 1, Ay, = 1,2 the value of A; that correspond
to the extremes of the energy surface g~ (h,) and h,, the value of the equilibrium point of
the Hamiltonian H,. Finally, Ay ,j = 1,2 correspond to the values of P that correspond
to the extremes of the energy surface g~ (hy) and hy, the value of the equilibrium point

of the Hamiltonian #,,.
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The topological classification of H is presented in the tables from the 3 to the 11.

Table 3: Topological classification of the sets Ej, and Ip, for all the values of a,b and w,
that we considered to be positive, Vki, h, < h,, and hy, ko varying.

ha hb kl kZ Eh ]hk

hy < h{,a vk, Vko [] 0

hb = h[,a Vkl k2 = Sl Sl
ko > Agl 0
ks = Ay, st

he < has hbe < hy Yk A22 < ky < A21 93 Stx St

kz = A22 Sl
ko < AQZ 0

Table 4: Topological classification of the sets Ej, and I, for all the values of a,b and w,

that we considered to be positive, ky =0, hy = h,, and hy, ko varying.

ha I k1 ko Ep Tpy,

hy < hbg ki=0 Vko St St

hb:hbg k1:0 ]i‘Q:O SIUSI SIUS]
ko > A21 ST
k?g = AQl Sl @] Sl

ho =ha, | he, < hp | k1 =0 | Ay, < ks < Ay Stu s Stu{S! x s}

ks = Ao, S1U S
ke < A22 St

4 Periodic Orbits of Ring-Shaped Potentials

Now, we want to characterize the periodic orbits of the Hamiltonian system (1). In order
to carry out this characterization it is necessary to calculate the action-angle variables for
this system. First, we calculate the action-angle variables for the susbsystem #, and, for

the structure of both subsystems, we obtain the expression of # in these variables.

4.1 Action-angle variables for the subsystem #,
By means of Hamilton-Jacobi Theory we are able to define the action-angle variables

ng = A1 = ]fl, (22)
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Table 5: Topological classification of the sets Ej, and Iy, for all the values of a,b and w,
that we considered to be positive, Vky, h,, < hg, hy < by, and k; varying.

ha hy ky ) By T,
k> Ay 0
kl = Ah Sl
ha, < hg | hy < hy, | Ay, < kg <Ay, | Yk S8 St xSt
k’l = A12 Sl
](71 < A12 @

Table 6: Topological classification of the sets Ej, and Iy, for all the values of a,b and w,
that we considered to be positive, ky = 0, h,, < hq, hy = hy,, k1 varying.

ha hiy ky ko Ey, Ine
ki > Ah ST
k= Ay, Sty s
ha€<ha hb:hbe A12<k’1<A11 ko =0 S3u st {SlXSI}Usl
Ifl = A12 Sl U Sl
k< Ay, St

1 [~ —k? —a+ 2h.p? — wpi
7, :27/ PVH PP (23)
™ Jo, p1
where p, and p,, are the two positive real roots of the polynomial
P(p1) = —ki — a+ 2hap? — wpi, (24)

for this reason, the transformation from polar-symplectic variables to action-angle vari-
ables can be only defined in the region where the polynomial (24) has two different positive
real roots according to the parameters a, w, ky and h,.

In order to calculate J, we use the Cauchy Residue theorem and we obtain the

Obtaining the value of h, in (25) we have the Hamiltonian 7, expressed in action-angle

Ha = Vi (2, +\[ T3, +a). (26)

The condition that must satisfy the parameters a, w, k; and h, in order to have defined

expression

variables

the action-angle variables is

he > /(a4 k) w.
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Table 7: Topological classification of the sets Ej, and Ip, for all the values of a,b and w,
that we considered to be positive, ky > Ay,, ha, < ha, hs, < hy and ko varying.

hq hy, ky ko Ey, T,
k‘g > A21 @
k‘g = A21 Sl
h/ag < h, hbc < hy | k1 > A] A22 < ky < Agl CRAVECS: St x St
]{72 = A22 Sl
ko < A22 0

Table 8: Topological classification of the sets Ej, and Iy, for all the values of a,b and w,
that we considered to be positive, k; = Ay, ha, < hq, hy, < hy and ky varying.

ha hy k1 ko L, Inp,
ko > Agl ST
Ky = Aa, stu st
hae < hq hbe < hy k1= Ah A22 < ko < Agl S2u s Sty {Sl X Sl}
k2 == A22 Sl @] Sl
ko < A22 0

The region where the action-angle variables can be defined is

h.

Cireulas orbits
T b, = oW
) k

Figure 3: Region where (J,,, Jy,) can be de-
fined.

We can observe in this figure that the line h, = \/(a + k})w corresponds with the
extremes of the energy surface Ej,,, i. e. in these points we have circular orbits. For the
case k1 = 0, the energy takes the value h, = \/aw, i. e. we are in the equilibrium point
of the system. Due to the topology of the energy surface, we can assure that in the gray
region the orbits are going to be bounded, therefore, we will have periodic or quasiperiodic

orbits.
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Table 9: Topological classification of the sets Ej, and I, for all the values of a,b and w,
that we considered to be positive, A, < k1 < Ay,, ha, < ha, by, < hy and ks varying.

hq hy, ky ko Ey T,
ky > As, {St x St}
kZIAgl {Sl XSI}Usl
has < h, hbe < hy A12<k1<A11 A22 < ko < Azl S3U S8 {Sl X Sl} U {Sl X Sl}
ks = Ay, {S' x S} U St
kg < A22 {Sl X Sl}

Table 10: Topological classification of the sets £}, and Iy, for all the values of a,b and w,
that we considered to be positive, ky = Ay,, ha, < ha, hy, < hy, and ky varying.

ha hy, k1 ko Ey Ink
ko > A21 St
](72 = AQI Sl U Sl
hac < hyg h/b(, < hy| k1= A12 A22 < ko< A21 S3uU S8 Sty {Sl X Sl}
ky = Ay, Sty st
ko < A22 St

4.2 Classification of periodic orbits of H,

4.2.1

Circular orbits

The circular orbits have constant radius, p, = C. These orbits are the solution of

dpl ng

an =P =

dt ap, =0

@_7({/{@_&]/)?*142*&_0

at— dpy ot -

where
a+ A? VWA,

)= Looi(r) = ———t.

pl() w 1( ) \/m

They correspond to the maximum and minimum of the energy surface.

4.2.2 Rectilinear orbits

The rectilinear orbits have constant angle, §; = C, therefore
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Table 11: Topological classification of the sets £}, and Iy, for all the values of a,b and w,
that we considered to be positive, k; < Ay, ha, < ha, hs, < hy and ko varying.

ha Iy, ky ko En >
k’g > AQl @
ko = As, St
ha, < hg | he, < hy | k1 < Ay, | Agy, < ko < Ay, S3u S8 St x St
kg = A22 Sl
ko < Ay, 0
db, _d'Ha _ Ay ~0
dt T dA, pr

where A; = 0.

The rectilinear trajectories are the solutions of the system

APy a—wp!

dp
R :
a0 Ty P

4.2.3 Periodic and quasiperiodic orbits

An orbit of H, is periodic if

oy OH./0J, 2\/a+ T3, n

n=—= —
ny  OHMa/0Js, Jo, Q1

is a rational number. In the other case we have quasiperiodic orbits.
Obtaining the value of Jy, respect to p; and ¢;. we obtain the condition
Jo = 4 2Yon
Vi = 4q?
where p; and ¢ are integer numbers.
Now, we return again to the region where the action-angle variables are defined to
classify the periodic orbits.
In this figure, we can observe that, for k; = 0 (central vertical line), we obtain recti-
linear orbits. These orbits are bounded too. And now, for each pair of integer numbers

(p1, 1), we have two vertical lines where the system has periodic orbits.
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Figure 4: Example of periodic orbit for the
parameters ¢ = 2, w = 1, p = 5, ¢ = 2,

— L =4
Jp, =15 and Jp, = 3. .

|

Figure 5: Example of quasiperiodic orbit for
the parameters ¢ = 2, w = 1, p =5, ¢ =
V3.9, J, = 15 and Jp, = 1.88.

4.3 Characterization of the orbits of H

Remember that
H=H,+ Hy,

where the result of H, are analogous for H,,.
4.3.1 Action-angle variables for H

Taking into account that

Ho= Vi (20, + [ T3, + ).

Hy = o (20, + [ T3, + ).

we obtain the Hamiltonian # in action-angle variables

H =y (2, + [ T3+ a2, + [T +b).

Now, the periodic orbits must verify

mo_pom_@ ™
7 _P

ng @1 M3 P2 N4 G2



Periodic | .h Periodic
. orbits Rectiinear a o urhits
onbits —__
/\.\\\
B = (ot M) o
;\.\ _
| ! = ha, = aw
| Circular orbits | k,
2.4 2 /a4
Ky = -t [ ]
Vit R

Figure 6: Characterization of the periodic or-
bits of the Hamiltonian H,.

where
Lo OMe OM, Oy OH
YT od, T ady 0, T A,

and py, q1, p2, @2 are integer numbers.
We obtain the conditions

2v/aq 2v/aq,

Jo =+ R A :
LV i (27)

2v/b
Jo, = i%,
V3 —4g;
with p1, q1, p2 and ¢y integer numbers.
We can characterize the periodic orbits of H considering the periodic orbits of H, and

Hs.

Table 12: Characterization of the orbits of H,

Periodic orbits of H,
Fixed
point A; =0 and h, = +y/aw
Rectilinear
orbits Ay =0 and h, > ++/aw
Circular JJa—+ A3
orbits m(t) = \/T and h, > ++/aw
2\/a
Periodic Jo, = i% and h, > ++/aw
orbits . P — =i
with pp, ¢1 integer number
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Table 13: Characterization of the orbits of H,,

Periodic orbits of H,

Fl).(ed Ay =0 and hy, = +Vbw
point
Rectilinear | 1, _ o and hy > +vow
orbits

o A?
Circular p(t) = </b+ 2 and hy > +Vbw

orbits w
2v/ b
Periodic Jo, = i& and hy > +vbw

orbits \% p; — 4q3

with ps, g2 integer number

Table 14: Characterization of the orbits of H res- pect to the orbits of H, and #H,. Note
that, the periodic orbits must verify the conditions (27).

Periodic orbits of H

Ha Hb th Hb
{ha(;} X {hbﬁ} Sl X {h},ﬂ}
}Z{ x Eg{inpél gi x [églfinp%]

a} X X
{ho.} x T? St ox 17
AR, RS
p1. P % p3. p3 1% % [p3, 3]
o1l x St 72 x St
oL pl x T? T x T?

5 The Biparametric Oscillator and its Integration

Having already shown the relation of both families of ring-shaped systems with the oscil-
lator, we focus now the integration of our oscillator. The Hamiltonian function (1) defines
an integrable system, due to 0; and 6 are cyclic, thus A; and Ay are first integrals. In
other words, the system is made separable in two subsystems of 1-DOF, defined by the
Hamiltonian functions (5) and (6). We integrate the differential system defined by (1)
immediately. Let

~ . A2+4a
Q = 27‘[(1 - Wpf - 1[)2 )
1
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and consider the quantities a; and b; defined by

A ta
ai+b = 2<H“+ 1“)7
w

A2 +a
(Ll—blz 2(7-[&— 1+(1>7
w w
then we may write
A w
Q=5 - AR - ),
1

We see that the equation @ = 0 has real roots when H, > /w (A2 +a). The system

defined by H, reduces to
. ~ . A
P1:P1:\/57 (11:*217
Pi

i.e., to two quadratures. From the first quadrature we obtain immediately

p1(r) = \Jat cos?(yor) + B sin(v/er)

and the angle 6,(7), after some computations, is given by

5 h2—(a+k?)w
01(7’)\/&7%[arctan( ﬁ

+ arctan (

ha tan(y/w 7)— hz—(a{»k%)w
\/(a+k'f)w

f0r0§T<g.And

h2—(a+k})w
91(7—):\/”117% [arctan( ﬁ

an(v/@ ) — /12— (atk2
+ arctan (hatd (ﬁ\/() k:; (Hkl)w) + mr] )
a+ky w

for 2(2n —1) <7 < 5(2n+1), with n > 1

Similar expressions are obtained for ps and 0. With the quantities ay and by given by

[ 42
a2+b2: 2<,Hb+ AQ_H))/
w w
) Hy  [AS+D
w w ’

az — by
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we have

pa(T) = \/ag cos?(v/wt) + b3 sin(v/wr),
where py(0) = by and the angle 6y = 0,(7), after some computations, is given by
L2— :ZUJ
Oa(7)=—F= |:arctan ( e Gal

N (b+h )w
hp tan(y/w 7)—1/hZ—(b+k3 Jw
+ arctan OV v o) ,
V(o+k3)w

for 0 <7< 2. And

N (b+k3)w

+ arctan (hb La"(ﬁ\/T()_V:‘f‘(b*'kg)w) + nw] ,
btk3 Jw

By (T)=—22 |:arctan< B (o+hd)w

for 3(2n —1) <7 < Z(2n+1), with n > 1.

Finally replacing such values in the previous equations we obtain the ¢; variables.

6 Transformation of Some Orbits of H
to the 3-D System of Hartmann

We make use of the canonical transformation

After some computations, the solutions of the Hamiltonian with potential V) are
Ty =rsingcos\ Ty =rsingsin A x3 = rcoso

Now, we can show how some of the periodic orbits of #H are transformed into the

Hartmann system.

7 Stability of Periodic Orbits

In this section we study the stability of the different periodic orbits of the system (17).

The variational equations of the previous system are

5 0 01 o0 op
50 B _2/%2 00 % 30 -
o || () 0o | e
SA po 00 (f SA
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@) -4 -12 <10 -0 06 04 -2

06
08

/

Figure 7: a) Rectilinear orbit of tho subsystem #, for the parameters a = 2,
w=1Lp=5q=2J, = To and Jy, = 0. b) Rectilinear orbit of the
subsystem H, for the parameters b =1, w =1, py =5, 2 =1, J,, = % and
Jp, = 0. c¢) Rectilinear orbit x Rectilinear orbit reduced to the system of

Hartmann.

_

EE T

o

B

05

Figure 8: a) Rectilinear orbit of the subsystem 7, for the parameters a = 3,
w=1Lp=5qa=21J, = % and Jy, = 0 b) Circular orbit of the subsystem
Hy, for the parameters b=1, w=1,ps =5, 2 =1, J,, =0 and Jy, = \/% c)
Rectilinear orbit x Circular orbit reduced to the system of Hartmann.

Figure 9: a) Circular orbit of the subsystem H, for the parameters a = 3,
w=1,p=5q=2J, =0and J, = % b) Circular orbit of the subsystem
Hy for the parameters b =lLw=1p =5 ¢=1J, =0and J, =2. c)
Circular orbit x Circular orbit reduced to the system of Hartmann.
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2 108 b pon 1T o 1 g 48 g 18

Figure 10: a) Rectilinear orbit of the subsystem H, for the parameters a = 3,
w=1p=5q=2J, =%and Jy, =0. b) Periodic orbit of the subsystem
H, for the parameters b=1, w=1,py =5, =1, J, = % and Jy, = \/% c)
Rectilinear orbit x Periodic orbit reduced to the system of Hartmann.

05 10 L§

Figure 11: a) Circular orbit of the subsystem H, for the parameters a = 3,
w=1,p=5q=2J, =0and Jy, = % b) Periodic orbit of the subsystem
Hy, for the parameters b=1,w=1,py =5, =1, J, = % and Jy, = \/% c)

Rectilinear orbit x Circular orbit reduced to the system of Hartmann.
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Figure 12: a) Periodic orbit of the subsvstem H, for the parameters a = 3,
w=1,p1=5q=2J, =0and Jy, = b) Periodic orblt of the subsystem

Hy, for the parameters b =Lw=lLp=5¢=1,J,=: Land Jp, = ﬁ' c)
Periodic orbit x Circular orbit, reduced to the system of Hartmann.

The previous system in the case of a periodic rectilinear orbit () = (p, 6y, p, 0) with

\/h V/(h? = aw) sin(2t) simplifies to

op =0P

00 = %514
3a

0A = cte

The previous system is integrable by quadratures. We won’t make the complete inte-

gration of this system. We will only keep in mind that

t
ds

00(t) = 06y + cte
© ! J h—+/(h? — aw) sin(2s)

is not bounded, and we conclude that the rectilinear periodic solutions are unstable.

E? \Jwkt
In the case of the circular periodic solutions y(t) = (4 ot \/\ka k) we have
a+
that (28) is

op 0 01 0 %

: 2k 1

06 -= 00 = o0

Sl = P 7,
opP 4w 0 0 _24 oP

: p
SA 0 00 0 0A
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a linear system with constants coefficients. The characteristic polynomial is p(s) =
5%(s? +4w). The stability index of the system K (see [4] for details) are K = 2 cos(4m/w)
then these orbits are linearly stable. Observe that when w = (Hé# bifurcations of these
circular orbits take place.

In the case of the remaining periodic orbits, the stability of the system (28) are directly

related to the study of the stability of the following equation
- 3(a+ k?
5ﬂ+ (%‘FW) 5[):0

with p(t) = \/5 (h - VPP =a T F)sin(2ty/a)), 4 = k.

This linear differential equation of second order with periodic coefficients will be stud-

ied numerically by means of the Floquet theory (see |[11] for details). For example for the
2v/21

case in that k = ==,

w =1, a = 1, we are interested in the stability of this family of

ORI

Figure 13: Orbits for k = 21 ,w=1,a =1 with h varying. Observe you that when h
increases the orbits are very ’'starry’.

orbits.

Computing numerically the trace of the monodromy matrix we obtain the following

diagram of stability.

-1 _-"

-2

Figure 14: Trace of the monodromy matrix varying h. For 0 < h < 0.0601811 this orbits
are linearly stable. For A > 0.0601811 the orbit are unstable.
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Conclusions

In the present paper we have established the relation of two families of ring-shaped type
systems with a 4-D isotropic oscillator. This allows a unified treatment which is of interest
both in quantum and classical studies. By means of this relation we have deduced some
results on the periodic and quasiperiodic orbits of the family of 3-D systems related with
generalization of the Hartmann model for the Benzene molecule.

First, we have shown the relation of the Hamiltonian system defined by (1) and the
generalized Hartmann potentials defined by the potential V.

We have made the qualitative study of the Hamiltonian flow (1). We have described
the Hamiltonian dynamics of H. A complete topological classification of the invariant
sets I, Iy and [ is given by means of Liouville Arnold theorem and some specifics
techniques. The action-angle variables have been obtained and the region of the phase
space where they can be defined. The system is made separable in two subsystems of
1-DOF, defined by the Hamiltonian functions. Due to the structure of the subsystem
(5) and (6) it has been enough to study H, to deduce the corresponding results for H,,.
Finally, due to (7) we have obtained the complete study of H.

We have classified the periodic orbits of ring-shaped potentials. In order to carry out
this characterization it has been necessary to calculate the action-angle variables for this
system. First, we have calculated the action-angle variables for the subsystem 7, and,
for the structure of both subsystems, the expression of # in these variables is obtained.

The periodic orbits of H, are circular orbits with constant radius and they correspond
to the maximum and minimum of the energy surface; the rectilinear orbits, have constant
angle (0; = C); the periodic and quasiperiodic orbits must verify or not a particular
condition that depends on ny = 9H,/dJ,, and ny = OH,/dJp,. If the quotient of ny/ny
is a rational number we obtain periodic orbits, in the other case we have quasiperiodic
orbits.

Having already shown the relation of both families of ring-shaped systems with the
oscillator, we have faced on the integration of our oscillator correcting a mathematical
mistake stated in [5]. The Hamiltonian function (1) defines an integrable system, due to
01 and 0, are cyclic, thus A; and A, are first integrals. In other words, the system is made
separable in two subsystems of 1-DOF, defined by the Hamiltonian functions (5) and (6).

We have integrated the differential system defined by (1) immediately, following closely
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the steps of the classical Deprit’s method. Later, we have studied the transformation of
some orbits of H to the 3-D system of Hartmann anf finally we conclude with the study
of the stability of the periodic and quasiperiodic orbits of the system. After this study
the problem of the characterization periodic dynamics of this system is closed in the line

of results presented in the papers [6] or [7].
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