
On the Anti–Kekulé and Anti–Forcing
Number of Cata–condensed Phenylenes

Qianqian Zhang1, Hong Bian2 ∗and Elkin Vumar1 †
1 College of Mathematics and System Sciences,
Xinjiang University, Urumqi 830046, P.R.China

2 School of Mathematical Sciences,
Xinjiang Normal University, Urumqi 830054, P.R.China

(Received January 5, 2010)

Abstract

The anti-forcing number is defined as the smallest number of edges that have to
be removed in order that any graph remains with a single Kekulé structure. Simi-
larly, the anti-Kekulé number is defined as the smallest number of edges that have
to be removed in order that any graph remains connected but without any Kekulé
structure. It is shown that the anti-Kekulé number of cata-condensed phenylenes is
3 and the anti-forcing number of a cata-condensed [h]-phenylene is h, where h is the
number of the hexagons in the cata-condensed phenylene. Moreover, it is proved
that for a Kekulé structureM of a cata-condensed [h]-phenylene, the forcing number
ϕ(M) is bounded by 	h2 
 ≤ ϕ(M) ≤ h.

1 Introduction

Let G be a graph and let M be a perfect matching(or Kekulé structure) of G. A

subset S of M is said to force M if S is in no other perfect matching. The forcing number

ϕ(M) of M is the cardinality of a smallest subset S that forces M . The notion of forcing

number of a perfect matching M is introduced by Harary et. al in [4], and it has arisen

earlier in papers of Klein and Randić with the name “innate degree of freedom ”([5], [9]).

Note that similar concept have been studied with different names in different fields
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(see [1]). While there are some study on forcing numbers (sets) of hexagonal systems in

the context of chemistry, only few other classes of graphs have been considered, and there

are also many interesting open problems on the forcing numbers (sets)(see, e.g. [1], [6],

[8], [10], [15] and [16] and the references therein).

Very recently, two novel quantities that are opposite to the forcing number have been

introduced by Vukičević and Trinajstić [13], i.e., the anti-forcing and anti-Kekulé number.

Let G = (V,E) be a graph that admits a perfect matching. A subset S of E is said to be

an anti-forcing set of G if G− S has only one perfect matching. The anti-forcing number

afn(G) of G is defined as the cardinality of a smallest anti-forcing set. A subset S of E

is said to be an anti-Kekulé set of G if G− S is connected, but has no perfect matching

(Kekulé structure). The anti-Kekulé number akn(G) of G is defined as the cardinality

of a smallest anti-Kekulé set of G. In [13], the anti-Kekulé and anti-forcing number are

determined for benzenoid parallelograms, and in [14] these two parameters are determined

for cata-condensed benzenoids.

In this paper, we consider the anti-Kekulé and anti-forcing number of a special class

of conjugated hydrocarbons-phenylenes [7]. These compounds are composed of six- and

four-membered rings, where the six-membered rings (hexagons) are adjacent only to four-

membered rings and every four-membered ring is adjacent to a pair of hexagons. A

phenylene containing h hexagons is called an [h]-phenylne. It is assumed that the number

of four-number rings of an [h]-phenylne amounts to h− 1, meaning that the structures in

which alternating six-and four-membered rings are linked together in phenylenic super-

rings are not considered in this paper. In Section 2, we determine the anti-Kekulé and

anti-forcing number of cata-condensed phenylenes, and in Section 3, we present a lower

and upper bounds for the forcing number of a given perfect matching of cata-condensed

phenylenes.

2 Anti-Kekulé and anti-forcing number of

cata-condensed phenylenes

The main results of this section are the following three theorems.

Theorem 2.1. Let P be a cata-condensed phenylene. Then akn(P ) = 3.

Proof. We only prove the theorem for cata-condensed [h]-phenylenes without rings, the

proof for ring cata-condensed phenylenes is similar.
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Figure 1:

First, we show that akn(P ) ≤ 3. Note that P has the segments presented below Figure

1:(a), where the hexagon denoted byX has no additional neighboring four-membered ring.

It is easy to see that P − {e1, e2, e3} is a connected graph without Kekulé structure.

Next we show akn(P ) ≥ 3.

Obviously, P − e has a Kekulé structure for any e ∈ E(P ).

Now let e′, e′′ be any two edges of P , we distinguish the following cases.

Case 1. e
′
, e

′′
belong to the same hexagon. Then either P − {e′

, e
′′} is disconnected or

has a Kekulé structure.

Case 2. e′, e′′ belong to the two distinct hexagons.

Obviously P − {e′, e′′} has a Kekulé structure.

Case 3. e′ belongs to some six-membered ring and e′′ belongs to some four-membered

ring.

Then again P − {e′, e′′} has a Kekulé structure.

Case 4. Both e′, e′′ belong to the four-membered ring(s).

Then either P − {e′, e′′} is disconnected or has a Kekulé structure.

Hence akn(P ) ≥ 3 and the claim follows.

Theorem 2.2. Let P be a cata-condensed [h]-phenylene without rings. Then afn(P ) = h.

Proof. First, we show afn(P ) ≤ h by induction on h. Consider the case when h = 2

exemplified in Figure 1:(b). If S = {e1, e2}, then obviously P −S possess only one Kekulé
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structure. Now suppose that the claim holds for all cata-condensed [k]-phenylenes with

1 ≤ k ≤ h − 1 and let P be a cata-condensed [h]-phenylenes. Let us present this case

by Figure 1:(c). Note that edge e′ fixes double bonds of X as depicted in the figure.

Eliminating the vertices covered by these double bonds, we get phenylene P ′ with h− 1

hexagons. Hence there is, by induction hypothesis, a set S ′ with h− 1 elements that fixes

all double bonds on P ′. And then the set S ′ ∪{e′} with h elements fixes all double bonds

on P .

Next, we show afn(P ) ≥ h by induction on h. If h = 1, 2, the claim is obvious. Hence,

suppose that the claim holds for all cata-condensed [k]-phenylenes with 1 ≤ k ≤ h−1 and

let P be a cata-condensed [h]-phenylenes with h ≥ 3. Again we denote by X a hexagon

that has only one neighboring four-membered ring. Set P ′ = P − V (X), then P ′ is a

cata-condensed [h− 1]-phenylene.

Case 1. The restriction of the only Kekulé structure κ ( of P ) to P ′ is a Kekulé structure

of P ′.

In this case, obviously, the restriction of the only Kekulé structure κ to P − P ′ is a

Kekulé structure of P −P ′. Therefore afn(P ) ≥ afn(P
′
)+ afn(P −P

′
) ≥{by induction

hypothesis}≥ h− 1 + 1 = h.

Case 2. The restriction of the only Kekulé structure κ ( of P ) to P ′ is not a Kekulé

structure of P ′ as depicted in Figure1:(d).

In this case, e1, e2 ∈ κ. If e3, e4 ∈ κ, from the uniqueness of κ, it follows that there are

at least two edges of H1, H2 in S. Also note that the restriction of κ to P −V (H1∪H2) is

the Kekulé structure of P − V (H1 ∪H2) and then it follows that afn(P ) ≥ 2 + afn(P −
V (H1∪H2)) ≥{by induction hypothesis}≥ 2+h−2 = h. Suppose that e3 does not belong

to κ or e4 does not belong to κ, as shown in Figure 2:(a). Because of the uniqueness of κ,

there are at least i edges of H1 ∪H2 ∪ · · · ∪Hi in S. (As each four-membered ring is an

alternating cycle, there is at least an edge of a four-membered ring in S. Also note that

the border is an alternating cycle. So there are at least i edges of H1 ∪H2 ∪ · · · ∪Hi in

S.) Similarly, afn(P ) ≥ i+ afn(P − V (H1 ∪H2 ∪ · · · ∪Hi)) ≥ i+ h− i = h.

All the cases are exhausted and the theorem is proved.

Theorem 2.3. Let P be a ring [h]-phenylene. Then afn(P ) = h.

Proof. By Theorem 2.2, it is easy to see that afn(P ) ≥ h.
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Figure 2:

Next we prove afn(P ) ≤ h. We choose three hexagons H1, H2, H3 and take an edge

ei on Hi(i = 1, 2, 3), see Figure 2:(b).

Again by Theorem 2.2, there is a set S ′ with h−3 elements that fixes all double bonds

on P −V (H1∪H2∪H3). But then the set S ′∪{e1, e2, e3} with h elements fixes all double

bonds on P . Hence afn(P ) = h.

3 Forcing number of cata-condensed phenylenes

We first define some terms which will be used in the proof of the main result of this

section.

Let G be a graph and let M be a perfect matching of G. Recall that the forcing

number ϕ(M) of M is defined as the smallest number of double edges that completely

determine M .

Definition 3.1. An alternating path in a matching M is a sequence v1, e1, v2,

e2, v3, e3, · · · , vn−1, en−1, vn satisfying

(i) vi and vi+1 belong to the edge ei.

(ii) ei ∈ M when i is odd and ei 
∈ M when i is even.

Alternating cycles are alternating paths where the final vertex is the same as the initial

vertex.
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Edges in an alternating path which are not in the matching will be called alternate

edges. If all the edges in an alternating path(resp. cycle) are distinct, the alternating

path(resp. cycle) will be called simple.

Definition 3.2. We shall denote by c(M) the maximum number of disjoint, simple, al-

ternating cycles in a matching M of a graph G.

Definition 3.3. Let G be a finite directed graph. A feedback set is a set of edges in G

that contains at least one edge of each directed cycle of G.

Using the terminology of Alon et al.[2], we shall say that a directed graph G has the

cycle-packing property if the maximum size of a collection of edge disjoint cycles equals

the minimum size of a feedback set. An undirected graph will be said to have the cycle-

packing property if every orientation of the edges results in a directed graph with the

cycle-packing property.

Theorem 3.4 ([8]). Let M be a perfect matching M of a bipartite graph G with the

cycle-packing property. Then ϕ(M) = c(M).

Theorem 3.5. Let P be a cata-condensed [h]-phenylene and let M be a perfect matching

of P . The forcing number of M is bounded by 	h
2

 ≤ ϕ(M) ≤ h.

Proof. Obviously, P is a bipartite graph. Next, we prove that P satisfy the cycle-packing

property by induction on h. We only prove that cata-condensed phenylenes without rings

satisfy the cycle-packing property, the proof for ring cata-condensed phenylenes is similar.

When h = 1, 2, it is easy to check that every orientation of the edges results in a

directed graph with the cycle-packing property.

Now, suppose that the claim holds for all cata-condensed [k]-phenylenes with 1 ≤ k ≤
h− 1 and let P be a cata-condensed [h]-phenylene with h ≥ 3. Recall that the graph P ′

is obtained from P by deleting the vertices of a hexagon X that has only one neighboring

four-membered ring. It is easy to see that the maximum size of a collection of edge disjoint

cycles of P is either the maximum size or the maximum size + 1 of a collection of edge

disjoint cycles of P ′. By induction hypothesis, the maximum size of collection of edge

disjoint cycles equals the minimum size of a feedback set of every orientation of P .

Also, it is obvious 	h
2

 ≤ c(M) ≤ h, and then the claims follows from Theorem 3.4,

	h
2

 ≤ ϕ(M) ≤ h.

Note that for linear phenylenes these bounds are sharp.
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4 Conclusion

The analysis of cata-condensed phenylenes shows that these phenylenes possess only

one value of the anti-Kekulé number: 3. The anti-forcing number of cata-condensed

phenylenes is h, where h is the number of hexagons in a cata-condensed phenylene. It is

also shown that for a Kekulé strcture M of an [h]-phenylene, the forcing number ϕ(M)

of M is bounded by 	h
2

 ≤ ϕ(M) ≤ h.
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[15] D. Vukičević, J. Sedlar, Total forcing number of the trianglar grid, Math. Commun.

9 (2004) 169–179.

[16] F. Zhang, X. Li, Hexagonal systems with forcing edges, Discr. Math. 140 (1995)

253–263.

-806-


