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Abstract

Let G = (V,E) be a graph, du the degree of its vertex u , and uv the edge connecting the

vertices u and v . The atom–bond connectivity index and the sum–connectivity index of G

are defined as ABC =
∑

uv∈E
√

(du + dv − 2)/(du dv) and χ =
∑

uv∈E 1/
√
du + dv , respec-

tively. Continuing the recent researches on ABC [B. Furtula, A. Graovac, D. Vukičević,

Atom-bond connectivity index of trees, Discr. Appl. Math. 157 (2009) 2828–2835] and

χ [B. Zhou, N. Trinajstić, On a novel connectivity index, J. Math. Chem. 46 (2009)

1252–1270] we obtain novel upper bounds on these vertex–degree–based graph invariants.

1 Introduction

In mathematical chemistry a variety graph invariants, usually referred to as topolog-

ical indices, are used for predicting molecular properties [10]. Among these are some

that are defined by means of the vertex degree sequence of the underlying (molecular)

graph.

Let G = (V (G), E(G)) be a simple graph with n = |V (G)| vertices and m =

|E(G)| edges. The degree (= number of first neighbors) of a vertex u ∈ V (G) will be
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denoted by du . The edge connecting the vertices u and v will be denoted by uv .

The oldest and most studied vertex–degree–based topological indices are the

Randić index R(G) =
∑

uv∈E(G) 1/
√
du dv and the so-called first and second Zagreb

indices:

M1(G) =
∑

u∈V (G)

d2u and M2(G) =
∑

uv∈E(G)

du dv

respectively [10].

A few years ago Estrada et al. [5] introduced a further vertex–degree–based graph

invariant, nowadays known as the atom–bond connectivity index . It is defined as:

ABC(G) =
∑

uv∈E(G)

√
du + dv − 2

du dv

Furtula et al. [6] have recently characterized trees with the maximum and minimum

values of the ABC index. In particular, they proved that among n-vertex trees, ABC

is maximal for the star K1,n−1 .

Also quite recently, Zhou and Trinajstić [16] introduced and studied the so-called

sum–connectivity index , defined as:

χ(G) =
∑

uv∈E(G)

1√
du + dv

.

They established lower and upper bounds for χ in terms of number of vertices, number

of edges, maximum vertex degree Δ , and minimum vertex degree δ . They also

determined the unique n-vertex tree with a given number of pendent vertices, having

minimum χ .

The Zagreb indices have been much studied in the past (see [4, 7, 12, 14] and

references cited therein). De Caen [3] gave an upper bound on the first Zagreb index

in terms of the number of vertices and edges. Bollobás and Erdős [1, 2] determined

the graph with the given number of edges, having the maximum value of the second

Zagreb index.

In this paper we present a relationship between ABC and M2 for a graph with n

vertices and m edges. Using this and some previous results, we obtain upper bounds

for ABC for some classes of graphs. Also upper bounds for the sum–connectivity

index are given.
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2 Preliminaries

In this section we list some previously known results that will be needed in the

subsequent sections. Bollobás and Erdős [1] proved that ifm =
(
k
2

)
then the maximum

second Zagreb index of a graph with m edges is m(k − 1)2 , with equality holding if

and only if G is the union of Kk and isolated vertices. This result can be reformulated

as follows.

Lemma 2.1. [1] Let G be a graph with m edges. Then

M2(G) ≤ m

(√
2m+

1

4
− 1

2

)2

with equality if and only if m is of the form m =
(
k
2

)
for some natural number k , and

G is the union of the complete graph Kk and isolated vertices.

In [4] the following upper bound for the second Zagreb index was obtained:

Lemma 2.2. [4] Let G be a graph with n vertices, m edges and minimum vertex

degree δ . Then

M2(G) ≤ 2m2 −mδ(n− 1) +
1

2
m(δ − 1)

(
2m

n− 1
+ n− 2

)
with equality if and only if G ∼= K1,n−1 or G ∼= Kn .

The eccentricity of a vertex v is the greatest distance between v and any other

vertex. The radius of a graph is the minimum eccentricity of any vertex. Yamaguchi

[12] studied maximum values of the Zagreb indices for triangle– and quadrangle–free

connected graphs, and obtained:

Lemma 2.3. [12] Let G be a triangle– and quadrangle–free connected graph with

n vertices, m edges, and radius r . Then M1(G) ≤ n(n + 1 − r) and M2(G) ≤
m(n+ 1− r) , with equality in either place if and only if G is isomorphic to a Moore

graph of diameter two or is the cycle of length six.

3 Atom-bond connectivity index

A bipartite graph is called semiregular if each vertex in the same part of a bipartition

has the same degree.
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Theorem 3.1. Let G be a graph with n vertices and m edges. Then

ABC(G) ≤
√

m

(
n− 2m2

M2(G)

)
(1)

with equality if and only if G is a regular or a semiregular bipartite graph.

Proof. By the arithmetic–harmonic mean inequality,∑
uv∈E(G)

1

du dv
≥ m2∑

uv∈E(G) du dv
=

m2

M2(G)
. (2)

Let n0 be the number of isolated vertices of G . Then∑
uv∈E(G)

(
1

du
+

1

dv

)
=

∑
u∈V (G), du �=0

(
du ·

1

du

)
= n− n0 . (3)

Bearing this in mind, by the Cauchy–Schwarz inequality we get

ABC(G) =
∑

uv∈E(G)

√
1

du
+

1

dv
− 2

du dv
≤

√
m

√√√√ ∑
uv∈E(G)

(
1

du
+

1

dv
− 2

du dv

)

=
√
m

√
n− n0 − 2

∑
uv∈E(G)

1

du dv

and thus

ABC(G) ≤
√
mn− 2m

∑
uv∈E(G)

1

du dv
. (4)

Combining (2) and (4), we get the inequality in (1).

Suppose now that equality holds in (1). Then all inequalities in the above ar-

gument must be equalities. Thus from (2), du dv is a constant for each uv ∈ E(G) .

Then we prove that each component of G is a regular graph or a semiregular bipartite

graph. Let C(G) be a component of G and u be a vertex in C(G) . Since du dv is

a constant, neighbors of vertex u must have the same degree. Hence C(G) has only

two types of degrees du and dv because C(G) is connected. If C(G) contains an odd

cycle, then clearly all vertices on this cycle have equal degrees. Hence it is easy to

see that du = dv . Thus C(G) is regular. If C(G) does not contain an odd cycle,

then it is bipartite. Hence C(G) is semiregular bipartite. Then from (4) follows that

n0 = 0 and (du + dv − 2)/(du dv) is a constant for each uv ∈ E(G) . Since du dv is a

constant, du + dv is also constant for each uv ∈ E(G) . Hence G is a regular graph or

a semiregular bipartite graph.
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Conversely, if G is a regular graph then one can easily see that the equality holds

in (1). Now, suppose that G is a semiregular bipartite graph with two types of degrees

du and dv . Then we have

m

(
1

du
+

1

dv

)
= n

that is
m(du + dv − 2)

du dv
= n− 2m2

mdu dv
.

Multiplying both sides of the above equality by m and taking the square root, we get

equality in (1). This completes the proof.

At this point is should be noted that nowadays a large number of upper bounds

for the second Zagreb index M2 is known, either in terms of other graph invariants

or valid for special classes of graphs (see e. g. [8,9,11,13–15]). By means of Theorem

3.1, from each of these we could deduce upper bounds for ABC .

The following theorems are immediate consequences of Theorem 3.1, and are ob-

tained by using the lemmas from the previous section.

Theorem 3.2. Let G be a graph with n vertices and m edges. Then

ABC(G) ≤
√

m

(
n− 8m

(
√
8m+ 1− 1)2

)
with equality holding if and only if G ∼= Kn .

Moore graphs are regular graphs of degree k and diameter d that have the maxi-

mum possible number of vertices, namely 1+k+k(k−1)+ · · ·+k(k−1)d−1 . Hoffman

and Singleton proved that Moore graphs of diameter two are the pentagon, the Pe-

tersen graph, a 7-regular graph with 50 vertices (the Hoffman–Singleton graph) and

possibly a 57-regular graph with 572 + 1 vertices (which still is an open problem).

Theorem 3.3. Let G be a triangle– and quadrangle–free connected graph with n

vertices, m edges, and radius r . Then

ABC(G) ≤
√

m

(
n− 2m

n+ 1− r

)
with equality if and only if G is isomorphic to a Moore graph of diameter two or is

the cycle of length six.
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Let us denote

ϕ(n,m, δ) := 2m− δ(n− 1) +
1

2
(δ − 1)

(
2m

n− 1
+ n− 2

)
.

Theorem 3.4. Let G be a graph with n vertices, m edges, and minimum degree δ .

Then

ABC(G) ≤
√

m

(
n− 2m

ϕ(n,m, δ)

)
(5)

with equality if and only if G ∼= K1,n−1 or G ∼= Kn .

Corollary 3.1. [6] Let T be a tree with n vertices. Then

ABC(T ) ≤
√
(n− 1)(n− 2) (6)

with equality holding if and only if T ∼= K1,n−1 .

Proof. Since T is a tree, m = n − 1 and δ = 1 . Hence ϕ(n,m, δ) = n − 1 and

inequality (6) follows from (5).

4 Sum–connectivity index

Zhou and Trinajstić [16] established several bounds for the sum–connectivity index

in terms of basic graph invariants. Most of these are lower bounds. In particular,

they showed that χ(G) <
√
nm/2 . We now improve this bound and, in addition,

give an upper bound for triangle– and quadrangle–free connected graphs in terms of

the number of vertices n and radius r .

Theorem 4.1. Let G be a graph with n vertices and m edges. Then

χ(G) ≤ 1

2

√
nm (7)

with equality holding if and only if G is regular.

Proof. For each edge uv of G , we have

1

du + dv
≤ 1

4

(
1

du
+

1

dv

)
. (8)

As before, let n0 be the number of isolated vertices of G . Taking the sum of both

sides of (8) over all uv ∈ E(G) and using (3), we get∑
uv∈E(G)

1

du + dv
≤ 1

4

∑
uv∈E(G)

(
1

du
+

1

dv

)
=

n− n0

4
≤ n

4
(9)
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which by the Cauchy–Schwarz inequality yields

χ(G) ≤
√
m

⎛⎝ ∑
uv∈E(G)

1

du + dv

⎞⎠1/2

. (10)

Combining (9) and (10) we arrive at the inequality in (7).

Suppose now that equality holds in (7). Then all inequalities in the above argu-

ment must be equalities. Then n0 = 0 and du = dv for all uv ∈ E(G) . Hence G is

without isolated vertices and every component of G is regular. From (10), du + dv is

a constant for each uv ∈ E(G) . Hence G is regular.

Lemma 4.1. Let G be a triangle– and quadrangle–free connected graph with n ver-

tices, m edges, and radius r . Then

2m ≤ n
√
n+ 1− r (11)

with equality if and only if G is isomorphic to a Moore graph of diameter two or is

the cycle of length six.

Proof. It is easy to see that by the Cauchy–Schwarz inequality, nM1(G) ≥ 4m2 , with

equality if and only if G is a regular graph. Hence by Lemma 2.3, we get (11). The

Moore graphs and C6 are regular, and thus the proof is completed.

Using Theorem 4.1 and Lemma 4.1 we deduce the following upper bound for the

sum–connectivity index:

Theorem 4.2. Let G be a triangle– and quadrangle–free connected graph with n

vertices and radius r . Then

χ(G) ≤ n

2

√
1

2

√
n+ 1− r

with equality if and only if G is isomorphic to a Moore graph of diameter two or is

the cycle of length six.
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