MATCH Communications in Mathematical and in Computer Chemistry

A Unified Approach to Extremal Trees with Respect to Geometric–Arithmetic, Szeged and Edge Szeged Indices *

Hongbo Hua ^{*a,b,†*}, Shenggui Zhang^{*a*}

^aDepartment of Applied Mathematics, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, People's Republic of China

^bFaculty of Mathematics and Physics, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, People's Republic of China

(Received March 24, 2010)

Abstract

The second and third geometric-arithmetic indices $GA_2(G)$ and $GA_3(G)$ of a graph G are defined, respectively, as $\sum_{uv \in E(G)} \frac{\sqrt{n_u(e,G)n_v(e,G)}}{\frac{1}{2}[n_u(e,G)+n_v(e,G)]}$ and $\sum_{uv \in E(G)} \frac{\sqrt{m_u(e,G)m_v(e,G)}}{\frac{1}{2}[m_u(e,G)+m_v(e,G)]}$, where e = uv is one edge in G, $n_u(e, G)$ denotes the number of vertices in G lying closer to u than to v and $m_u(e, G)$ denotes the number of edges in G lying closer to u than to v. The Szeged and edge Szeged indices are defined, respectively, as $Sz(G) = \sum_{uv \in E(G)} n_u(e, G) \cdot n_v(e, G)$ and $Sz_e(G) = \sum_{uv \in E(G)} m_u(e, G) \cdot m_v(e, G)$. In this paper, we provide a unified approach to characterize the tree with the minimum and maximum GA_2 , GA_3 , Sz and Sz_e indices among the set of trees with given order and pendent vertices, respectively. As applications, we deduce a result of [2] concerning tree with the maximum GA_3 index.

^{*}Supported by NSFC (No. 10871158) and Qing Lan Project of Jiangsu Province, P.R. China.

[†]E-mail: hongbo.hua@gmail.com (H. Hua), sgzhang@nwpu.edu.cn (S. Zhang)

1. Introduction

Let G be a graph with vertex set V(G) and edge set E(G). Recently, a class of geometric-arithmetic topological indices indices were raised [2]

$$GA = GA_{general}(G) = \sum_{uv \in E(G)} \frac{\sqrt{\mathcal{Q}_u \mathcal{Q}_v}}{\frac{1}{2}(\mathcal{Q}_u + \mathcal{Q}_v)}$$

where Q_u is some quantity that in a unique manner can be associated with the vertex u of the graph G.

The reason why this class of topological indices is called 'geometric-arithmetic index' is that $\sqrt{\mathcal{Q}_u \mathcal{Q}_v}$ and $\mathcal{Q}_u + \mathcal{Q}_v$ are the geometric and arithmetic means, respectively, of the numbers \mathcal{Q}_u and \mathcal{Q}_v .

The first member of geometric-arithmetic topological indices was conceived [1] by setting Q_u to be the degree d_u of the vertex u of the graph G, namely,

$$GA = GA(G) = \sum_{uv \in E(G)} \frac{\sqrt{d_u d_v}}{\frac{1}{2}(d_u + d_v)} .$$

The second member of geometric-arithmetic topological indices, called GA_2 index, was recently studied [2–6] and defined by setting Q_u to be $n_u(e, G)$, the number of vertices in G lying closer to u than to v in the graph G, namely,

$$GA_2 = GA_2(G) = \sum_{uv \in E(G)} \frac{\sqrt{n_u(e,G)n_v(e,G)}}{\frac{1}{2}[n_u(e,G) + n_v(e,G)]}$$
(1)

where e = uv is an edge of G.

The third member of geometric-arithmetic topological indices, called GA_3 index, was recently studied [3] and defined by setting Q_u to be $m_u(e, G)$, the number of edges in Glying closer to u than to v in the graph G, namely,

$$GA_3 = GA_3(G) = \sum_{uv \in E(G)} \frac{\sqrt{m_u(e, G)m_v(e, G)}}{\frac{1}{2}[m_u(e, G) + m_v(e, G)]}$$
(2)

where e = uv is an edge of G.

The other two previously established molecular structure descriptors are, respectively, the *Szeged index* [7–12]), defined as

$$Sz(G) = \sum_{uv \in E(G)} n_u(e, G) \cdot n_v(e, G)$$
(3)

and the edge Szeged index [13–17], defined as

$$Sz_e(G) = \sum_{uv \in E(G)} m_u(e, G) \cdot m_v(e, G) .$$

$$\tag{4}$$

More recently, Fath-Tabar et al. [2] obtained various lower and upper bounds of GA_2 index for a connected graph in terms of Sz(G) and Zhou et al. [3] obtained various lower and upper bounds of GA_3 index for a connected graph in terms of $Sz_e(G)$. In particular, they proved [2, 3] that the *n*-vertex path is the unique tree with the maximum GA_2 and GA_3 indices and the *n*-vertex star is the unique tree with the minimum GA_2 and GA_3 indices, respectively. Other papers concerning GA indices can be found in [4–6].

In this paper, we shall provide a unified approach to characterize the tree with the minimum and maximum GA_2 , GA_3 , Sz and Sz_e indices among the set of trees with given order and pendent vertices, respectively. As applications, we obtain a result of [2] concerning tree with the maximum GA_2 index and a result of [3] concerning tree with the maximum GA_3 index.

For any edge e = uv in a tree T of n vertices, we always have $n_u(e,T) + n_v(e,T) = n$, $m_u(e,T) + m_v(e,T) = n - 2$, $m_u(e,T) = n_u(e,T) - 1$ and $m_v(e,T) = n_v(e,T) - 1$. In particular, if e = uv is a pendent edge with pendent vertex u, then $m_u(e,T) = 0$. So, for a n-vertex tree T, Eqs. (1) and (2) are simplified as

$$GA_2 = GA_2(T) = \sum_{uv \in E(T)} \frac{2}{n} \sqrt{n_u(e, T)n_v(e, T)}$$
(5)

$$GA_3 = GA_3(T) = \sum_{uv \in E(T)} \frac{2}{n-2} \sqrt{m_u(e,T) m_v(e,T)}$$
(6)

respectively.

Thus, the above Eq. s (3)–(6) provide us a unified way of comparing the GA_2 , GA_3 , Sz and Sz_e indices of two trees of the same order.

Given two trees T_1, T_2 of n vertices. Let f be a one to one map from $E(T_1)$ to $E(T_2)$ such that for any $e_i = u_i v_i$ in T_1 , there exists a unique edge $e'_i = u'_i v'_i$ in T_2 corresponding to it. Under the map f, e_i and its image e'_i constitute an edge pair $\{e_i, e'_i\}$. Then $\{\{e_1, e'_1\}, \{e_2, e'_2\}, \cdots, \{e_{n-1}, e'_{n-1}\}\}$ is called to be an edge partition of $E(T_1)$ and $E(T_2)$. By the definition of edge partition, there exists (n-1)! edge partition of $E(T_1)$ and $E(T_2)$. If there exists an edge partition of $E(T_1)$ and $E(T_2)$ such that $n_{u_i}(e_i, T_1) \cdot n_{v_i}(e_i, T_1) \ge$ $n_{u'_i}(e'_i, T_2) \cdot n_{v'_i}(e'_i, T_2)(i = 1, \cdots, n-1)$, and there exists an edge pair $\{e_j, e'_j\}$ such that
$$\begin{split} n_{u_j}(e_j,T_1) \cdot n_{v_j}(e_j,T_1) &> n_{u_j'}(e_j',T_2) \cdot n_{v_j'}(e_j',T_2), \text{ then } GA_2(T_1) &> GA_2(T_2). \text{ Similarly, we} \\ \text{have } GA_3(T_1) &> GA_3(T_2), \ Sz(T_1) &> Sz(T_2), \ Sz_e(T_1) &> Sz_e(T_2). \end{split}$$

2. Main results

Let $d_u(T)$, or simply d_u , denote the degree of the vertex u in a tree T. If $d_u(T) \ge 3$, then u is said to be a branch vertex, and if $d_u(T) = 1$, then u is said to be a pendent vertex. An internal path $P = v_1 v_2 \cdots v_t (t \ge 2)$ in a tree T is said to be a pendent path starting with v_1 , or simply, pendent path, if $d_{v_1}(T) \ge 3$, $d_{v_t}(T) = 1$ and $d_{v_i}(T) = 2(1 < i < t)$. In particular, if t = 2, then P is said to be a pendent edge.

If a tree T has exactly one branch vertex, say u, with $d_u(T) = k$, then we call T a star-like tree. A double star tree $S_{a,b}$ is defined to be the tree obtained from the path P_2 by attaching to its two end-vertices a and b pendent edges, respectively. If we insert new vertices into pendent edges of a double star $S_{a,b}$, we obtain the so-called *double star-like* tree, and if we insert new vertices into edges of a double star $S_{a,b}$, we obtain the so-called *generalized double star-like tree*.

Denote by GDSL(n; a, b) a special generalized double star-like tree obtained from the path P_{n-a-b} by attaching to its two end-vertices a and b pendent edges, respectively.

Let $\mathcal{B}(T)$ and $\mathcal{P}(T)$ denote the number of branch vertices and pendent vertices in a tree T, respectively. Denote by $\mathcal{T}_{n,k}$ the set of trees of with n vertices and k pendent vertices.

In the following, we will always use $n(T_x)$ to denote the number of vertices in a subtree T_x rooted at x of T.

Our starting point is a simple, but useful elementary result.

Lemma 1. Let x_i , y_i be positive integers satisfying $x_i + y_i = n$. If $|x_k - y_k| > |x_j - y_j|$, then $x_k y_k < x_j y_j$.

Next, we shall give some graph transformations that decrease or increase the GA_2 , GA_3 , Sz and Sz_e indices of graphs under consideration.

Lemma 2. Let T^1 , T^2 and T^3 be trees shown as in Fig. 1. Then

(a)
$$GA_2(T^1) > GA_2(T^2)$$
 or $GA_2(T^1) > GA_2(T^3)$

- (b) $GA_3(T^1) > GA_3(T^2)$ or $GA_3(T^1) > GA_3(T^3)$
- (c) $Sz(T^1) > Sz(T^2)$ or $Sz(T^1) > Sz(T^3)$
- (d) $Sz_e(T^1) > Sz_e(T^2)$ or $Sz_e(T^1) > Sz_e(T^3)$

where $n(T_i) \ge 2(i = 1, 2), T_l(resp., T_r)$ may be a single vertex x(resp., y).

Proof. Here, we only check the validity of (a). It is not difficult to see from Fig. 1 that $\mathcal{P}(T^1) = \mathcal{P}(T^2) = \mathcal{P}(T^3).$

First, we assume that $n(T_1) + n(T_l) \ge n(T_2) + n(T_r)$. We consider the graph transformation I: $T^1 \longrightarrow T^3$. For one edge e = zw in $E(T_1) \cup E(T_2) \cup E(T_l) \cup E(T_r) \cup \{ux, vy\}$, we clearly have $n_z(e, T^1) \cdot n_w(e, T^1) = n_z(e, T^3) \cdot n_w(e, T^3)$. For the edge e = uv, we have $n_u(e, T^1) \cdot n_v(e, T^1) = [n(T_1) + n(T_l)] \cdot [n(T_2) + n(T_r)]$ and $n_u(e, T^3) \cdot n_v(e, T^3) =$ $[n(T_1) + n(T_l) + n(T_2) - 1] \cdot [1 + n(T_r)]$. By Lemma 1 and the assumption that $n(T_1) + n(T_l) \ge$ $n(T_2) + n(T_r)$, we have $GA_2(T^1) > GA_2(T^3)$.

Similarly, if $n(T_1) + n(T_l) < n(T_2) + n(T_r)$, we consider the graph transformation I: $T^1 \longrightarrow T^2$, and we obtain $GA_2(T^1) > GA_2(T^2)$.

This completes the proof. \Box

Fig. 1. Graph transformation I: $T^1 \longrightarrow T^2$ or $T^1 \longrightarrow T^3$ that decreases the value of $GA_2(T^1)$.

Fig. 2. Graph transformation II: $T^4 \longrightarrow T^5$ or $T^4 \longrightarrow T^6$ that decreases the value of $GA_2(T^4)$.

Lemma 3. Let T^4 , T^5 and T^6 be trees shown as in Fig. 2. Then

(a)
$$GA_2(T^4) > GA_2(T^5)$$
 or $GA_2(T^4) > GA_2(T^6)$

(b) $GA_3(T^4) > GA_3(T^5)$ or $GA_3(T^4) > GA_3(T^6)$

(c) $Sz(T^4) > Sz(T^5)$ or $Sz(T^4) > Sz(T^6)$

(d) $Sz_e(T^4) > Sz_e(T^5)$ or $Sz_e(T^4) > Sz_e(T^6)$

where $p \ge 1$, $n(T_j) \ge 2(j = 1, 2)$, and $T_l(resp., T_r)$ may be a single vertex x (resp., y). **Proof.** We only consider the GA_2 index here. It can be seen from Fig. 2 that $\mathcal{P}(T^4) = \mathcal{P}(T^5) = \mathcal{P}(T^6)$.

If $n(T_l) + n(T_1) , we consider the graph transformation II: <math>T^4 \longrightarrow T^5$. Obviously, for any edge $e = x_1 x_2$ in $E(T_1) \cup E(T_2) \cup E(T_l) \cup E(T_r) \cup \{xu, w_1 w_2, \dots, w_{p-1} w_p, w_p v, vy\}$, we have $n_{x_1}(e, T^4) \cdot n_{x_2}(e, T^4) = n_{x_1}(e, T^5) \cdot n_{x_2}(e, T^5)$. For the edge uw_1 , $n_u(e, T^4) \cdot n_{w_1}(e, T^4) = [n(T_l) + n(T_1)] \cdot [p + n(T_2) + n(T_r)] > [n(T_l) + 1] \cdot [p - 1 + n(T_1) + n(T_2) + n(T_r)] = n_u(e, T^5) \cdot n_{w_1}(e, T^5)$ by Lemma 1. So we have $GA_2(T^4) > GA_2(T^5)$.

If $n(T_l) + n(T_1) \ge p + n(T_2) + n(T_r)$, then $n(T_l) + n(T_1) + p > n(T_2) + n(T_r)$. We consider the graph transformation II: $T^4 \longrightarrow T^6$. By the same reasoning as above, we obtain $GA_2(T^4) > GA_2(T^6)$.

This completes the proof. \Box

The following theorem shall determine the unique tree with the minimum GA_2 , GA_3 , Sz and Sz_e indices within all trees in $\mathcal{T}_{n,k}$.

Theorem 1. Among all trees in $\mathcal{T}_{n,k}$, $2 \leq k \leq n-1$, the unique tree with the minimum GA_2 , GA_3 , Sz and Sz_e indices is a star-like tree, in which the length of all pendent paths are almost equal.

Proof. We only consider the GA_2 index here.

If k = n - 1 or k = 2, then $T \cong S_n$ or P_n , the theorem is obvious. So we may suppose that $3 \le k \le n - 2$. Thus T has at least one branch vertex.

Let T be a tree chosen in $\mathcal{T}_{n,k}$ such that $GA_2(T)$ attains the minimum value. By Lemmas 2 and 3, we claim that T has exactly one branch vertex, that is, T is a star-like tree with k pendent vertices. Suppose, to the contrary that, T has $t(\geq 2)$ branch vertices.

Let \mathbb{P} be a path in T with two pendent vertices of T being its two ends such that there exist two branch vertices u and v along \mathbb{P} . Obviously, such a path \mathbb{P} does exist.

If u is adjacent to v, then we can view T the graph T^1 shown as in Fig. 1. Then we can employ the graph transformation I on T, and we shall obtain a new tree $\overline{T} \in \mathcal{T}_{n,k}$ with $GA_2(T) > GA_2(\overline{T})$, a contradiction to our choice of T.

Suppose now that u is not adjacent to v, and that no other branch vertices lying along the u - v path. If it is not so, then we can choose new branch vertices u and v satisfying the above requirement. Denote the u - v path as $uw_1 \cdots w_p v(p \ge 1)$. Now, T can be viewed the graph T^4 shown as in Fig. 2. So, we can employ the graph transformation II on T, and we shall obtain a new tree $\hat{T} \in \mathcal{T}_{n,k}$ with $GA_2(T) > GA_2(\hat{T})$, a contradiction once again.

From above arguments, we know that T has exactly one branch vertex, namely, T is a star-like tree. We further claim that the length of all pendent paths in T are almost equal.

Suppose, to the contrary, that there are two pendent paths in T of length x and y such that $x - y \ge 2$. Now, let x = a + 1 and y = b - 1. Then T can be viewed the graph $T_{a+1,b-1}$ shown as in Fig. 3. Now, we employ the reverse graph transformation III: $T_{a+1,b-1} \longrightarrow T_{a,b}$ on T, and we obtain a new graph $\widetilde{T} \in \mathcal{T}_{n,k}$ with $GA_2(T) > GA_2(\widetilde{T})$, a contradiction.

This contradiction leads to our desired result. \Box

Fig. 3. Graph transformation III: $T_{a,b} \longrightarrow T_{a+1,b-1}$ that increases the value of $GA_2(T_{a,b})$ for $a \ge b \ge 1$.

Fath-Tabar et al. [2] prove that (a) in Lemma 4 holds. In fact, we can deduce (b) - (d) by the same way.

Lemma 4. Let $T_{a,b}$ and $T_{a+1,b-1}$ be trees shown as in Fig. 3. If $a \ge b \ge 1$, then (a) ([2]) $GA_2(T_{a+1,b-1}) > GA_2(T_{a,b})$ (b) $GA_3(T_{a+1,b-1}) > GA_3(T_{a,b})$ (c) $Sz(T_{a+1,b-1}) > Sz(T_{a,b})$ (d) $Sz_e(T_{a+1,b-1}) > Sz_e(T_{a,b})$ where $n(T_0) > 2$.

Now, we generalize the above graph transformation III to a more general form, that is, the following transformation III', shown as in Fig. 4.

Fig. 4. Graph transformation III': $T_{n(T_u), n(T_v)} \longrightarrow T_{n(T_u)-1, n(T_v)+1}$ that increases the value of $GA_2(T_{n(T_u), n(T_v)})$ for $n(T_v) \ge n(T_u) \ge 1$.

Lemma 5. Let $T_{n(T_u), n(T_v)}$ and $T_{n(T_u)-1, n(T_v)+1}$ be trees shown as in Fig. 4. If $n(T_v) \ge n(T_u) \ge 1$, then

$$\begin{aligned} &(a) \ GA_2(T_{n(T_u)-1, n(T_v)+1}) > GA_2(T_{n(T_u), n(T_v)}) \\ &(b) \ GA_3(T_{n(T_u)-1, n(T_v)+1}) > GA_3(T_{n(T_u), n(T_v)}) \\ &(c) \ Sz(T_{n(T_u)-1, n(T_v)+1}) > Sz(T_{n(T_u), n(T_v)}) \\ &(d) \ Sz_e(T_{n(T_u)-1, n(T_v)+1}) > Sz_e(T_{n(T_u), n(T_v)}) \\ &\text{where } n(T_0) > 2. \end{aligned}$$

u

Proof. We only prove that the statement (a) is true. Obviously, for any edge $e = x_1x_2$ in $E(T_0) \cup E(T_u) \cup E(T_v) \cup \{xv\}$, we have

$$n_{x_1}(e, T_{n(T_u)-1, n(T_v)+1}) \cdot n_{x_2}(e, T_{n(T_u)-1, n(T_v)+1}) = n_{x_1}(e, T_{n(T_u), n(T_v)}) \cdot n_{x_2}(e, T_{n(T_u), n(T_v)}).$$

For the edge $e_1 = xw$ in $T_{n(T_u)-1, n(T_v)+1}$ and $e_2 = uw$ in $T_{n(T_u), n(T_v)}$, we have

$$\begin{split} n_x(e, T_{n(T_u)-1, n(T_v)+1}) \cdot n_w(e, T_{n(T_u)-1, n(T_v)+1}) &= [n(T_v)+1)] \cdot [n(T_0)+n(T_u)-1] > n(T_u) \cdot \\ [n(T_v)+n(T_0)] (\text{by Lemma 1}) &= n_u(e_2, T_{n(T_u), n(T_v)}) \cdot n_w(e_2, T_{n(T_u), n(T_v)}). \end{split}$$

So we have $GA_2(T_{n(T_u)-1, n(T_v)+1}) > GA_2(T_{n(T_u), n(T_v)})$, completing the proof. \Box

Remark 1. In order to keep the statement of Lemmas 4 and 5 valid, we need only to set $a \ge b \ge 1$ and $n(T_v) \ge n(T_u) \ge 1$. But, we should note that all trees under

-699-

consideration must be members of $\mathcal{T}_{n,k}$ according to the study goal of this paper. So, in order to keep the number of pendent vertices unchanged through graph transformation III or III', we actually require that $a \ge b \ge 2$ and $n(T_v) \ge n(T_u) \ge 2$ in the following proof of Theorem 2.

Lemma 6. Let a and b be positive integers with $a \ge b + 2$. Then

- (a) $GA_2(GDSL(n; a 1, b + 1)) > GA_2(GDSL(n; a, b))$
- (b) $GA_3(GDSL(n; a 1, b + 1)) > GA_3(GDSL(n; a, b))$
- (c) Sz(GDSL(n; a 1, b + 1)) > Sz(GDSL(n; a, b))
- (d) $Sz_e(GDSL(n; a-1, b+1)) > Sz_e(GDSL(n; a, b))$

Proof. We only prove that the statement (a) is true.

Since $a \ge b+2$, then $GDSL(n; a-1, b+1) \ncong GDSL(n; a, b)$. Suppose that u and v are two branch vertices in $GA_2(GDSL(n; a, b))$ with $d_u(T) = a, d_v(T) = b$. Let pendent vertices adjacent to u be u_1, \dots, u_a , and the internal vertex adjacent to u be w. Let pendent vertices adjacent to v be v_1, \dots, v_b , and the internal vertex adjacent to v be z.

Firstly, we delete the edge uu_1 and insert u_1 to the edge uw, we obtain a new tree, denoted by \tilde{T} . Secondly, we contract the edge vz in \tilde{T} and add one additional pendent edge vz, then we obtain the tree $GA_2(GDSL(n; a - 1, b + 1))$.

During the first step: $GDSL(n; a, b) \longrightarrow \tilde{T}$, the value of $n_x(e) \cdot n_y(e)$ remains unchanged except for the edge $e = uu_1$.

Thus,

$$\begin{array}{lll} GA_{2}(\tilde{T}) - GA_{2}(GDSL(n;a,b)) &=& n_{u}(uu_{1},\tilde{T}) \cdot n_{u_{1}}(uu_{1},\tilde{T}) \\ \\ &-& n_{u}(uu_{1},GDSL(n;a,b)) \cdot n_{u_{1}}(uu_{1},GDSL(n;a,b)) \\ \\ &=& a \cdot (n-a) - 1 \cdot (n-1) \end{array}$$

During the second step: $\tilde{T} \longrightarrow GDSL(n; a-1, b+1)$, the value of $n_x(e) \cdot n_y(e)$ remains unchanged except for the edge e = vz.

$$\begin{split} & \text{Thus, } GA_2(GDSL(n;a-1,b+1)) - GA_2(\tilde{T}) = n_v(vz,GDSL(n;a-1,b+1)) \cdot \\ & n_z(vz,GDSL(n;a-1,b+1)) - n_v(vz,\tilde{T}) \cdot n_z(vz,\tilde{T}) = 1 \cdot (n-1) - (b+1) \cdot (n-b-1). \\ & \text{So, } GA_2(GDSL(n;a-1,b+1)) - GA_2(GDSL(n;a,b)) = a \cdot (n-a) - (b+1) \cdot (n-b-1). \\ & \text{Obviously, } n-b-1 > b+1, \text{ since } n \geq a+b+2 \text{ and } a-b \geq 2. \end{split}$$

$$\begin{split} &\text{If } a \geq n-a, \text{ then } a-(n-a) = 2a-n < n-2b-2 = (n-b-1)-(b+1). \text{ Thus, by Lemma } 1, \\ &GA_2(GDSL(n;a-1,b+1)) - GA_2(GDSL(n;a,b)) = a \cdot (n-a) - (b+1) \cdot (n-b-1) > 0. \end{split}$$

-700-

Suppose now that a < n-a. Then (n-a)-a = n-2a < n-2b-2 = (n-b-1)-(b+1), since $a \ge b+2$. So, $GA_2(GDSL(n; a-1, b+1)) - GA_2(GDSL(n; a, b)) = a \cdot (n-a) - (b+1) \cdot (n-b-1) > 0$.

This completes the proof. \Box

Fig. 5. The graphs occurred in the proof of Theorem 2, where $s \ge 2$, $d_{w_r}(\tilde{T}_i) \ge 3(i = 1, 2)$, n_1 is equal to the total number of vertices in all $w_1 - x_j (j = 1, \dots, s)$ paths, not including pendent vertices x_1, \dots, x_s , and there exists at least two pendent paths of length ≥ 2 starting with w_1 .

Fig. 6. The graphs occurred in the proof of Theorem 2.

Fig. 7. The graph occurred in the proof of Theorem 2, where u is the branch vertex, $d_{u_i} \ge 3$, $j \ge 2$, and $u_i (i = 1, \dots, j)$ is the branch vertex nearest to u among branch vertices in component containing u_i of $T - \{u\}$.

Fig. 8. The graph occurred in the proof of Theorem 2, where u and u_1 are branch vertices, $u_{1i}(i = 1, \dots, j)$ is the branch vertex nearest to u_1 among branch vertices in component containing u_{1i} of $T - \{u_1\}$.

The following theorem shall determine the unique tree with the maximum GA_2 , GA_3 , Sz and Sz_e indices within all trees in $\mathcal{T}_{n,k}$.

Theorem 2. Among all trees in $\mathcal{T}_{n,k}$, $2 \le k \le n-1$, the tree with the maximum GA_2 , GA_3 , Sz and Sz_e indices is $GDSL(n; \lceil k/2 \rceil, \lfloor k/2 \rfloor)$ or S_n , the star graph of n vertices.

Proof. We need only to check the validity of theorem for the GA_2 index.

If k = 2 or n - 1, the result is obvious. Suppose now that $3 \le k \le n - 2$. So, T has at least one branch vertex, that is, $\mathcal{B}(T) \ge 1$.

Let T be a tree chosen in $\mathcal{T}_{n,k}$ such that it has the maximum GA_2 index. Next, we shall prove that $T \cong GDSL(n; \lceil k/2 \rceil, \lfloor k/2 \rfloor)$.

-702-

If $\mathcal{B}(T) = 1$, then T is a star-like tree. If $T \ncong GDSL(n; 1, k - 1)$, then we can apply graph transformation III on T many times to obtain GDSL(n; 1, k - 1). But then, $GA_2(T) < GA_2(GDSL(n; 1, k - 1))$ by Lemma 4, a contradiction to the choice of T. So $T \cong GDSL(n; 1, k - 1)$. If $k \ge 4$, then by Lemma 6, we have $GA_2(T) =$ $GA_2(GDSL(n; 1, k - 1)) < GA_2(GDSL(n; 2, k - 2))$, a contradiction to the choice of T. So, we have k = 3, and the result holds readily.

Now, suppose that $\mathcal{B}(T) \geq 2$, and we shall prove the theorem by induction on $\mathcal{B}(T)$.

First, we check the validity of the statement of theorem for $\mathcal{B}(T) = 2$. In this case, T is a generalized double star-like tree.

If T has two pendent paths of length ≥ 2 pasting to the same branch vertex, then it can be viewed the tree \check{T}_1 , shown as in Fig. 5. Now, we can repeatedly use graph transformation III on it, and in the end, we obtain \check{T}_2 , shown as in Fig. 5. By Lemma 5, we have $GA_2(\check{T}_2) > GA_2(\check{T}_1) = GA_2(T)$, contradicting the choice of T.

So, T has at most one pendent path of length ≥ 2 pasting to each of two branch vertices. Now, T must be isomorphic to one of the two graphs shown as in Fig. 6 and GDSL(n; a, b)(a + b = k), since $\mathcal{B}(T) = 2$.

If T is isomorphic to the first graph in Fig. 6, then we can repeatedly use graph transformation III' on it until we get $x_1 = y_1$ or $z_1 = y_1$. If T is isomorphic to the second graph in Fig. 6, then we can repeatedly use graph transformation III' on it until we get $x_2 = y_2$ or $z_2 = y_2$. In either case, by Lemma 5, we shall get a new tree with greater GA_2 index than that of T, a contradiction. So we have $T \cong GDSL(n; a, b)(a + b = k)$.

If $T \not\cong GDSL(n; \lceil k/2 \rceil, \lfloor k/2 \rfloor)$, then $|a - b| \ge 2$. Suppose, without loss of generality, that $a - b \ge 2$. It then follows from Lemma 6 that $GA_2(GDSL(n; a - 1, b + 1)) > GA_2(GDSL(n; a, b)) = GA_2(T)$, a contradiction once again.

So, we have $T \cong GDSL(n; \lfloor k/2 \rfloor, \lfloor k/2 \rfloor)$ for the case of $\mathcal{B}(T) = 2$.

Suppose now that $\mathcal{B}(T) \geq 3$ and the theorem is true for smaller values of $\mathcal{B}(T)$.

Now, T must be a tree shown as in Fig. 7 or Fig. 8. If T is a tree shown as in Fig. 7, then we can repeatedly use graph transformation III' on it until $u_1 = u$ or $u_j = u$. If T is a tree shown as in Fig. 8, then we may assume that $d_{u_{11}} \ge 3$ and repeatedly use graph transformation III' on it until $u = u_1$ or $u_{11} = u_1$.

In either case, we finally get a new tree $\vec{T} \in \mathcal{T}_{n,k}$ with $\mathcal{B}(\vec{T}) = \mathcal{B}(T) - 1$, $GA_2(T) < 0$

-703-

 $GA_2(\vec{T})$ by Lemma 5. By induction assumption, we have

$$GA_2(\vec{T}) < GA_2\left(GDSL\left(n; \lfloor k/2 \rfloor, \lfloor k/2 \rfloor\right)\right)$$
.

So,

$$GA_2(T) < GA_2(GDSL(n; \lfloor k/2 \rfloor, \lfloor k/2 \rfloor))$$

a contradiction.

Thus, the desired result follows as expected. \Box

By the same reasoning as that used in the proof of Lemma 6, we can obtain

Lemma 7. For $3 \le k \le n-2$, we have

(a)
$$GA_2(GDSL(n; \lceil (k-1)/2 \rceil, \lfloor (k-1)/2 \rfloor)) > GA_2(GDSL(n; \lceil k/2 \rceil, \lfloor k/2 \rfloor))$$

- (b) $GA_3(GDSL(n; \lceil (k-1)/2 \rceil, \lfloor (k-1)/2 \rfloor)) > GA_3(GDSL(n; \lceil k/2 \rceil, \lfloor k/2 \rfloor))$
- (c) $Sz(GDSL(n; \lceil (k-1)/2 \rceil, \lfloor (k-1)/2 \rfloor)) > Sz(GDSL(n; \lceil k/2 \rceil, \lfloor k/2 \rfloor))$
- (d) $Sz_e(GDSL(n; \lceil (k-1)/2 \rceil, \lfloor (k-1)/2 \rfloor)) > Sz_e(GDSL(n; \lceil k/2 \rceil, \lfloor k/2 \rfloor))$.

For any tree T in $\mathcal{T}_{n,k}$ with $3 \leq k \leq n-2$, if $T \ncong GDSL(n; \lceil k/2 \rceil, \lfloor k/2 \rfloor)$, then $GA_2(T) < GA_2(GDSL(n; \lceil k/2 \rceil, \lfloor k/2 \rfloor))$ by Theorem 2. Also, by Lemma 7, we have

$$GA_2(GDSL(n; \lceil k/2 \rceil, \lfloor k/2 \rfloor)) < GA_2(GDSL(n; \lceil (k-1)/2 \rceil, \lfloor (k-1)/2 \rfloor)).$$

Thus,

$$GA_{2}(T) < GA_{2}(GDSL(n; \lceil k/2 \rceil, \lfloor k/2 \rfloor)) < GA_{2}(GDSL(n; \lceil (k-1)/2 \rceil, \lfloor (k-1)/2 \rfloor))$$

$$< \cdots < GA_{2}(GDSL(n; \lceil (3-1)/2 \rceil, \lfloor (3-1)/2 \rfloor)) .$$

Note that $GDSL(n; \lceil (3-1)/2 \rceil, \lfloor (3-1)/2 \rfloor)$ is just the *n*-vertex path P_n . So, we have the following consequence.

Corollary 2([2, 3]). Among all trees with n vertices, the path P_n has the maximum GA_2 , GA_3 , Sz and Sz_e indices.

Remark 2. In [2], Fath-Tabar et al. obtained that the path P_n is the unique tree with maximum GA_2 index and in [3], Zhou et al. proved that the path P_n has the maximum GA_3 index within all trees of n vertices.

References

- D. Vukičević, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem. 46 (2009) 1369– 1376.
- [2] G. Fath-Tabar, B. Furtula, I. Gutman, A new geometric-arithmetic index, J. Math. Chem. 47 (2010) 477–486.
- [3] B. Zhou, I. Gutman, B. Furtula, Z. Du, On two types of geometric-arithmetic index, *Chem. Phys. Lett.* 482 (2009) 153–155.
- [4] B. Furtula, I. Gutman, Geometric-arithmetic indices, in: I. Gutman, B. Furtula (Eds.), Novel Molecular Structure Descriptors – Theory and Applications, Univ. Kragujevac, Kragujevac, 2010, pp. 137–172.
- [5] H. Hua, Trees with given diameter and minimum second geometric-arithmetic index, MATCH Commun. Math. Comput. Chem. 64 (2010) 000-000.
- [6] K. C. Das, On geometric-arithmetic index of graphs, MATCH Commun. Math. Comput. Chem. 64 (2010) 000–000.
- [7] M. V. Diudea, M. S. Florescu, P. V. Khadikar, Molecular Topology and Its Applications, EfiCon Press, Bucharest, 2006.
- [8] I. Gutman, A formula for the Wiener number of trees and its extension to graphs containing cycles, *Graph Theory Notes New York* 27 (1994) 9–15.
- [9] I. Gutman, A. A. Dobrynin, The Szeged index a success story, Graph Theory Notes New York 34 (1998) 37–44.
- [10] B. Zhou, X. Cai, Z. Du, On Szeged indices of unicyclic graphs, MATCH Commun. Math. Comput. Chem. 63 (2010) 113–132.
- [11] G. H. Fath-Tabar, M. J. Nadjafi-Arani, M. Mogharrab, A. R. Ashrafi, Some inequalities for Szeged-like topological indices of graphs, *MATCH Commun. Math. Comput. Chem.* 63 (2010) 145–150.
- [12] M. Arezoomand, B. Taeri, Applications of generalized hierarchical product of graphs in computing the Szeged index of chemical graphs, MATCH Commun. Math. Comput. Chem. 64 (2010) 000–000.
- [13] I. Gutman, A. R. Ashrafi, The edge version of the Szeged index, Croat. Chem. Acta, 81 (2008) 263–266.
- [14] D. Vukičević, Note on the graphs with the greatest edge–Szeged index, MATCH Commun. Math. Comput. Chem. 61 (2009) 673–681.
- [15] A. Mahmiani, A. Iranmanesh, Edge–Szeged index of HAC₅C₇[r, p] nanotube, MATCH Commun. Math. Comput. Chem. 62 (2009) 397–417.
- [16] X. Cai, B. Zhou, Edge Szeged index of unicyclic graphs, MATCH Commun. Math. Comput. Chem. 63 (2010) 133–144.
- [17] D. Stevanović, Counterexamples to conjectures on graphs with the greatest edge– Szeged index, MATCH Commun. Math. Comput. Chem. 64 (2010) 000–000.