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Abstract

The second and third geometric-arithmetic indices GA2(G) and GA3(G) of a graph

G are defined, respectively, as
∑

uv∈E(G)

√
nu(e,G)nv(e,G)

1
2
[nu(e,G)+nv(e,G)]

and
∑

uv∈E(G)

√
mu(e,G)mv(e,G)

1
2
[mu(e,G)+mv(e,G)]

, where

e = uv is one edge in G, nu(e,G) denotes the number of vertices in G lying closer to u than
to v andmu(e,G) denotes the number of edges in G lying closer to u than to v. The Szeged
and edge Szeged indices are defined, respectively, as Sz(G) =

∑
uv∈E(G)

nu(e,G) · nv(e,G)

and Sze(G) =
∑

uv∈E(G)

mu(e,G) · mv(e,G). In this paper, we provide a unified approach

to characterize the tree with the minimum and maximum GA2, GA3, Sz and Sze indices
among the set of trees with given order and pendent vertices, respectively. As applications,
we deduce a result of [2] concerning tree with the maximum GA2 index and a result of [3]
concerning tree with the maximum GA3 index.
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1. Introduction

Let G be a graph with vertex set V (G) and edge set E(G). Recently, a class of

geometric-arithmetic topological indices indices were raised [2]

GA = GAgeneral(G) =
∑

uv∈E(G)

√
QuQv

1
2
(Qu +Qv)

where Qu is some quantity that in a unique manner can be associated with the vertex

u of the graph G.

The reason why this class of topological indices is called ‘geometric-arithmetic index’

is that
√
QuQv and Qu +Qv are the geometric and arithmetic means, respectively, of the

numbers Qu and Qv.

The first member of geometric-arithmetic topological indices was conceived [1] by setting

Qu to be the degree du of the vertex u of the graph G, namely,

GA = GA(G) =
∑

uv∈E(G)

√
dudv

1
2
(du + dv)

.

The second member of geometric-arithmetic topological indices, called GA2 index, was

recently studied [2–6] and defined by setting Qu to be nu(e,G), the number of vertices in

G lying closer to u than to v in the graph G, namely,

GA2 = GA2(G) =
∑

uv∈E(G)

√
nu(e,G)nv(e,G)

1
2
[nu(e,G) + nv(e,G)]

(1)

where e = uv is an edge of G.

The third member of geometric-arithmetic topological indices, called GA3 index, was

recently studied [3] and defined by setting Qu to be mu(e,G), the number of edges in G

lying closer to u than to v in the graph G, namely,

GA3 = GA3(G) =
∑

uv∈E(G)

√
mu(e,G)mv(e,G)

1
2
[mu(e,G) +mv(e,G)]

(2)

where e = uv is an edge of G.

The other two previously established molecular structure descriptors are, respectively,

the Szeged index [7–12]), defined as

Sz(G) =
∑

uv∈E(G)

nu(e,G) · nv(e,G) (3)
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and the edge Szeged index [13–17], defined as

Sze(G) =
∑

uv∈E(G)

mu(e,G) ·mv(e,G) . (4)

More recently, Fath-Tabar et al. [2] obtained various lower and upper bounds of GA2

index for a connected graph in terms of Sz(G) and Zhou et al. [3] obtained various lower

and upper bounds of GA3 index for a connected graph in terms of Sze(G). In particular,

they proved [2, 3] that the n−vertex path is the unique tree with the maximum GA2 and

GA3 indices and the n−vertex star is the unique tree with the minimum GA2 and GA3

indices, respectively. Other papers concerning GA indices can be found in [4–6].

In this paper, we shall provide a unified approach to characterize the tree with the

minimum and maximum GA2, GA3, Sz and Sze indices among the set of trees with

given order and pendent vertices, respectively. As applications, we obtain a result of [2]

concerning tree with the maximum GA2 index and a result of [3] concerning tree with the

maximum GA3 index.

For any edge e = uv in a tree T of n vertices, we always have nu(e, T ) + nv(e, T ) = n,

mu(e, T ) + mv(e, T ) = n − 2, mu(e, T ) = nu(e, T ) − 1 and mv(e, T ) = nv(e, T ) − 1. In

particular, if e = uv is a pendent edge with pendent vertex u, then mu(e, T ) = 0. So, for

a n−vertex tree T , Eqs. (1) and (2) are simplified as

GA2 = GA2(T ) =
∑

uv∈E(T )

2

n

√
nu(e, T )nv(e, T ) (5)

GA3 = GA3(T ) =
∑

uv∈E(T )

2

n− 2

√
mu(e, T )mv(e, T ) (6)

respectively.

Thus, the above Eq. s (3)–(6) provide us a unified way of comparing the GA2, GA3,

Sz and Sze indices of two trees of the same order.

Given two trees T1, T2 of n vertices. Let f be a one to one map from E(T1) to E(T2)

such that for any ei = uivi in T1, there exists a unique edge e
′
i = u

′
iv

′
i in T2 corresponding

to it. Under the map f , ei and its image e
′
i constitute an edge pair {ei, e′

i}. Then

{{e1, e′
1}, {e2, e

′
2}, · · · , {en−1, e

′
n−1}} is called to be an edge partition ofE(T1) and E(T2).

By the definition of edge partition, there exists (n−1)! edge partition of E(T1) and E(T2).

If there exists an edge partition of E(T1) and E(T2) such that nui
(ei, T1) · nvi(ei, T1) ≥

nu
′
i
(e

′
i, T2) · nv

′
i
(e

′
i, T2)(i = 1, · · · , n− 1), and there exists an edge pair {ej, e′

j} such that

-693-



nuj
(ej, T1) · nvj(ej, T1) > nu

′
j
(e

′
j, T2) · nv

′
j
(e

′
j, T2), then GA2(T1) > GA2(T2). Similarly, we

have GA3(T1) > GA3(T2), Sz(T1) > Sz(T2), Sze(T1) > Sze(T2).

2. Main results

Let du(T ), or simply du, denote the degree of the vertex u in a tree T . If du(T ) ≥ 3,

then u is said to be a branch vertex, and if du(T ) = 1, then u is said to be a pendent vertex.

An internal path P = v1v2 · · · vt(t ≥ 2) in a tree T is said to be a pendent path starting

with v1, or simply, pendent path, if dv1(T ) ≥ 3, dvt(T ) = 1 and dvi(T ) = 2(1 < i < t). In

particular, if t = 2, then P is said to be a pendent edge.

If a tree T has exactly one branch vertex, say u, with du(T ) = k, then we call T a

star-like tree. A double star tree Sa, b is defined to be the tree obtained from the path P2

by attaching to its two end-vertices a and b pendent edges, respectively. If we insert new

vertices into pendent edges of a double star Sa, b, we obtain the so-called double star-like

tree, and if we insert new vertices into edges of a double star Sa, b, we obtain the so-called

generalized double star-like tree.

Denote by GDSL(n; a, b) a special generalized double star-like tree obtained from the

path Pn−a−b by attaching to its two end-vertices a and b pendent edges, respectively.

Let B(T ) and P(T ) denote the number of branch vertices and pendent vertices in a tree

T , respectively. Denote by Tn, k the set of trees of with n vertices and k pendent vertices.

In the following, we will always use n(Tx) to denote the number of vertices in a subtree

Tx rooted at x of T .

Our starting point is a simple, but useful elementary result.

Lemma 1. Let xi, yi be positive integers satisfying xi + yi = n. If |xk − yk| > |xj − yj|,
then xkyk < xjyj.

Next, we shall give some graph transformations that decrease or increase the GA2, GA3,

Sz and Sze indices of graphs under consideration.

Lemma 2. Let T 1, T 2 and T 3 be trees shown as in Fig. 1. Then

(a) GA2(T
1) > GA2(T

2) or GA2(T
1) > GA2(T

3)

(b) GA3(T
1) > GA3(T

2) or GA3(T
1) > GA3(T

3)

(c) Sz(T 1) > Sz(T 2) or Sz(T 1) > Sz(T 3)

(d) Sze(T
1) > Sze(T

2) or Sze(T
1) > Sze(T

3)
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where n(Ti) ≥ 2(i = 1, 2), Tl(resp., Tr) may be a single vertex x(resp., y).

Proof. Here, we only check the validity of (a). It is not difficult to see from Fig. 1 that

P(T 1) = P(T 2) = P(T 3).

First, we assume that n(T1) + n(Tl) ≥ n(T2) + n(Tr). We consider the graph transfor-

mation I: T 1 −→ T 3. For one edge e = zw in E(T1) ∪ E(T2) ∪ E(Tl) ∪ E(Tr) ∪ {ux, vy},
we clearly have nz(e, T

1) · nw(e, T
1) = nz(e, T

3) · nw(e, T
3). For the edge e = uv, we

have nu(e, T
1) · nv(e, T

1) = [n(T1) + n(Tl)] · [n(T2) + n(Tr)] and nu(e, T
3) · nv(e, T

3) =

[n(T1)+n(Tl)+n(T2)−1]·[1+n(Tr)]. By Lemma 1 and the assumption that n(T1)+n(Tl) ≥
n(T2) + n(Tr), we have GA2(T

1) > GA2(T
3).

Similarly, if n(T1) + n(Tl) < n(T2) + n(Tr), we consider the graph transformation I:

T 1 −→ T 2, and we obtain GA2(T
1) > GA2(T

2).

This completes the proof. �

𝑇𝑙

𝑇𝑙

𝑇𝑙

𝑇𝑟

𝑇𝑟

𝑇𝑟

𝑇1

𝑇1

𝑇1

𝑇2

𝑇2

𝑇2

𝑥

𝑥

𝑥

𝑢

𝑦

𝑦

𝑦

𝑢

T1

𝑣

𝑣

𝑣

𝑢

T2

T3

Fig. 1. Graph transformation I: T 1 −→ T 2 or T 1 −→ T 3 that decreases the value of GA2(T
1).
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Fig. 2. Graph transformation II: T 4 −→ T 5 or T 4 −→ T 6 that decreases the value of GA2(T
4).
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Lemma 3. Let T 4, T 5 and T 6 be trees shown as in Fig. 2. Then

(a) GA2(T
4) > GA2(T

5) or GA2(T
4) > GA2(T

6)

(b) GA3(T
4) > GA3(T

5) or GA3(T
4) > GA3(T

6)

(c) Sz(T 4) > Sz(T 5) or Sz(T 4) > Sz(T 6)

(d) Sze(T
4) > Sze(T

5) or Sze(T
4) > Sze(T

6)

where p ≥ 1, n(Tj) ≥ 2(j = 1, 2), and Tl(resp., Tr) may be a single vertex x (resp., y).

Proof. We only consider the GA2 index here. It can be seen from Fig. 2 that P(T 4) =

P(T 5) = P(T 6).

If n(Tl)+n(T1) < p+n(T2)+n(Tr), we consider the graph transformation II: T 4 −→ T 5.

Obviously, for any edge e = x1x2 in E(T1)∪E(T2)∪E(Tl)∪E(Tr)∪{xu, w1w2, . . . , wp−1wp,

wpv, vy}, we have nx1(e, T
4) · nx2(e, T

4) = nx1(e, T
5) · nx2(e, T

5). For the edge uw1,

nu(e, T
4) · nw1(e, T

4) = [n(Tl) + n(T1)] · [p+ n(T2) + n(Tr)] > [n(Tl) + 1] · [p− 1 + n(T1) +

n(T2) + n(Tr)] = nu(e, T
5) · nw1(e, T

5) by Lemma 1. So we have GA2(T
4) > GA2(T

5).

If n(Tl) + n(T1) ≥ p + n(T2) + n(Tr), then n(Tl) + n(T1) + p > n(T2) + n(Tr). We

consider the graph transformation II: T 4 −→ T 6. By the same reasoning as above, we

obtain GA2(T
4) > GA2(T

6).

This completes the proof. �

The following theorem shall determine the unique tree with the minimum GA2, GA3,

Sz and Sze indices within all trees in Tn, k.

Theorem 1. Among all trees in Tn, k, 2 ≤ k ≤ n−1, the unique tree with the minimum

GA2, GA3, Sz and Sze indices is a star-like tree, in which the length of all pendent paths

are almost equal.

Proof. We only consider the GA2 index here.

If k = n− 1 or k = 2, then T ∼= Sn or Pn, the theorem is obvious. So we may suppose

that 3 ≤ k ≤ n− 2. Thus T has at least one branch vertex.

Let T be a tree chosen in Tn, k such that GA2(T ) attains the minimum value. By

Lemmas 2 and 3, we claim that T has exactly one branch vertex, that is, T is a star-like

tree with k pendent vertices. Suppose, to the contrary that, T has t(≥ 2) branch vertices.

Let P be a path in T with two pendent vertices of T being its two ends such that there

exist two branch vertices u and v along P. Obviously, such a path P does exist.
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If u is adjacent to v, then we can view T the graph T 1 shown as in Fig. 1. Then we can

employ the graph transformation I on T , and we shall obtain a new tree T ∈ Tn,k with

GA2(T ) > GA2(T ), a contradiction to our choice of T .

Suppose now that u is not adjacent to v, and that no other branch vertices lying along

the u− v path. If it is not so, then we can choose new branch vertices u and v satisfying

the above requirement. Denote the u − v path as uw1 · · ·wpv(p ≥ 1). Now, T can be

viewed the graph T 4 shown as in Fig. 2. So, we can employ the graph transformation II

on T , and we shall obtain a new tree T̂ ∈ Tn, k with GA2(T ) > GA2(T̂ ), a contradiction

once again.

From above arguments, we know that T has exactly one branch vertex, namely, T is

a star-like tree. We further claim that the length of all pendent paths in T are almost

equal.

Suppose, to the contrary, that there are two pendent paths in T of length x and y

such that x − y ≥ 2. Now, let x = a + 1 and y = b − 1. Then T can be viewed the

graph Ta+1, b−1 shown as in Fig. 3. Now, we employ the reverse graph transformation III:

Ta+1,b−1 −→ Ta,b on T , and we obtain a new graph T̃ ∈ Tn, k with GA2(T ) > GA2(T̃ ), a

contradiction.

This contradiction leads to our desired result. �

........... ...........︸ ︷︷ ︸ ︸ ︷︷ ︸
𝑎 𝑏

𝑇0

........... ...........
𝑇0︸ ︷︷ ︸ ︸ ︷︷ ︸

𝑎+ 1 𝑏− 1

Ta,b

Ta+1,b−1

Fig. 3. Graph transformation III: Ta,b −→ Ta+1,b−1 that increases the value of GA2(Ta,b) for

a ≥ b ≥ 1.

Fath-Tabar et al. [2] prove that (a) in Lemma 4 holds. In fact, we can deduce (b)− (d)

by the same way.

Lemma 4. Let Ta,b and Ta+1,b−1 be trees shown as in Fig. 3. If a ≥ b ≥ 1, then

(a) ([2]) GA2(Ta+1,b−1) > GA2(Ta,b)

(b) GA3(Ta+1,b−1) > GA3(Ta,b)
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(c) Sz(Ta+1,b−1) > Sz(Ta,b)

(d) Sze(Ta+1,b−1) > Sze(Ta,b)

where n(T0) ≥ 2.

Now, we generalize the above graph transformation III to a more general form, that is,

the following transformation III
′
, shown as in Fig. 4.

𝑢 𝑥𝑤
𝑤

𝑣

𝑇0 𝑇0
𝑇𝑢

𝑇𝑢

𝑣
𝑇𝑣 𝑇𝑣

Tn(Tu),n(Tv) Tn(Tu)−1,n(Tv)+1

Fig. 4. Graph transformation III
′
: Tn(Tu), n(Tv) −→ Tn(Tu)−1, n(Tv)+1 that increases the value of

GA2(Tn(Tu), n(Tv)) for n(Tv) ≥ n(Tu) ≥ 1.

Lemma 5. Let Tn(Tu), n(Tv) and Tn(Tu)−1, n(Tv)+1 be trees shown as in Fig. 4. If n(Tv) ≥
n(Tu) ≥ 1, then

(a) GA2(Tn(Tu)−1, n(Tv)+1) > GA2(Tn(Tu), n(Tv))

(b) GA3(Tn(Tu)−1, n(Tv)+1) > GA3(Tn(Tu), n(Tv))

(c) Sz(Tn(Tu)−1, n(Tv)+1) > Sz(Tn(Tu), n(Tv))

(d) Sze(Tn(Tu)−1, n(Tv)+1) > Sze(Tn(Tu), n(Tv))

where n(T0) ≥ 2.

Proof. We only prove that the statement (a) is true. Obviously, for any edge e = x1x2

in E(T0) ∪ E(Tu) ∪ E(Tv) ∪ {xv}, we have

nx1(e, Tn(Tu)−1, n(Tv)+1) · nx2(e, Tn(Tu)−1, n(Tv)+1) = nx1(e, Tn(Tu), n(Tv)) · nx2(e, Tn(Tu), n(Tv)).

For the edge e1 = xw in Tn(Tu)−1, n(Tv)+1 and e2 = uw in Tn(Tu), n(Tv), we have

nx(e, Tn(Tu)−1, n(Tv)+1) ·nw(e, Tn(Tu)−1, n(Tv)+1) = [n(Tv)+1)] · [n(T0)+n(Tu)−1] > n(Tu) ·
[n(Tv) + n(T0)](by Lemma 1) = nu(e2, Tn(Tu), n(Tv)) · nw(e2, Tn(Tu), n(Tv)).

So we have GA2(Tn(Tu)−1, n(Tv)+1) > GA2(Tn(Tu), n(Tv)), completing the proof. �

Remark 1. In order to keep the statement of Lemmas 4 and 5 valid, we need only

to set a ≥ b ≥ 1 and n(Tv) ≥ n(Tu) ≥ 1. But, we should note that all trees under
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consideration must be members of Tn,k according to the study goal of this paper. So, in

order to keep the number of pendent vertices unchanged through graph transformation

III or III
′
, we actually require that a ≥ b ≥ 2 and n(Tv) ≥ n(Tu) ≥ 2 in the following

proof of Theorem 2.

Lemma 6. Let a and b be positive integers with a ≥ b+ 2. Then

(a) GA2(GDSL(n; a− 1, b+ 1)) > GA2(GDSL(n; a, b))

(b) GA3(GDSL(n; a− 1, b+ 1)) > GA3(GDSL(n; a, b))

(c) Sz(GDSL(n; a− 1, b+ 1)) > Sz(GDSL(n; a, b))

(d) Sze(GDSL(n; a− 1, b+ 1)) > Sze(GDSL(n; a, b))

Proof. We only prove that the statement (a) is true.

Since a ≥ b + 2, then GDSL(n; a − 1, b + 1) � GDSL(n; a, b). Suppose that u and v

are two branch vertices in GA2(GDSL(n; a, b)) with du(T ) = a, dv(T ) = b. Let pendent

vertices adjacent to u be u1, · · · , ua, and the internal vertex adjacent to u be w. Let

pendent vertices adjacent to v be v1, · · · , vb, and the internal vertex adjacent to v be z.

Firstly, we delete the edge uu1 and insert u1 to the edge uw, we obtain a new tree,

denoted by T̃ . Secondly, we contract the edge vz in T̃ and add one additional pendent

edge vz, then we obtain the tree GA2(GDSL(n; a− 1, b+ 1)).

During the first step: GDSL(n; a, b) −→ T̃ , the value of nx(e)·ny(e) remains unchanged

except for the edge e = uu1.

Thus,

GA2(T̃ )−GA2(GDSL(n; a, b)) = nu(uu1, T̃ ) · nu1(uu1, T̃ )

− nu(uu1, GDSL(n; a, b)) · nu1(uu1, GDSL(n; a, b))

= a · (n− a)− 1 · (n− 1)

During the second step: T̃ −→ GDSL(n; a− 1, b+1), the value of nx(e) ·ny(e) remains

unchanged except for the edge e = vz.

Thus, GA2(GDSL(n; a− 1, b+ 1))−GA2(T̃ ) = nv(vz,GDSL(n; a− 1, b+ 1)) ·
nz(vz,GDSL(n; a− 1, b+ 1))− nv(vz, T̃ ) · nz(vz, T̃ ) = 1 · (n− 1)− (b+ 1) · (n− b− 1).

So, GA2(GDSL(n; a−1, b+1))−GA2(GDSL(n; a, b)) = a · (n−a)− (b+1) ·(n−b−1).

Obviously, n− b− 1 > b+ 1, since n ≥ a+ b+ 2 and a− b ≥ 2.

If a ≥ n−a, then a−(n−a) = 2a−n < n−2b−2 = (n−b−1)−(b+1). Thus, by Lemma

1, GA2(GDSL(n; a−1, b+1))−GA2(GDSL(n; a, b)) = a ·(n−a)−(b+1) ·(n−b−1) > 0.
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Suppose now that a < n−a. Then (n−a)−a = n−2a < n−2b−2 = (n−b−1)−(b+1),

since a ≥ b + 2. So, GA2(GDSL(n; a − 1, b + 1)) − GA2(GDSL(n; a, b)) = a · (n − a) −
(b+ 1) · (n− b− 1) > 0.

This completes the proof. �

𝑇 ∗ 𝑇 ∗

........

..................

...........

............. .........

𝑥1

𝑥𝑠
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Ť2Ť1

𝑛1

𝑤1 𝑤2 𝑤𝑟

Fig. 5. The graphs occurred in the proof of Theorem 2, where s ≥ 2, dwr(Ťi) ≥ 3(i = 1, 2), n1

is equal to the total number of vertices in all w1 − xj(j = 1, · · · , s) paths, not including

pendent vertices x1, · · · , xs, and there exists at least two pendent paths of length ≥ 2 starting

with w1.

........... .................

.......

.........

........... ..................

......... .......

𝑥1 𝑦1 𝑧1

𝑥2 𝑦2 𝑧2

Fig. 6. The graphs occurred in the proof of Theorem 2.
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........... ...........

........
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......

𝑢 𝑢1

𝑢𝑗
𝑇𝑢𝑗

(𝑗 ≥ 2)

𝑇𝑢1

Fig. 7. The graph occurred in the proof of Theorem 2, where u is the branch vertex, dui ≥ 3,

j ≥ 2, and ui(i = 1, · · · , j) is the branch vertex nearest to u among branch vertices in

component containing ui of T − {u}.

...
...

...
.

.............

........ .........

......................

.......... ........ ...
...

...
...

.

.............
𝑢

𝑢1

𝑢11 𝑢1𝑗

𝑇𝑢11

𝑇𝑢1𝑗 (𝑗 ≥ 1)

......

Fig. 8. The graph occurred in the proof of Theorem 2, where u and u1 are branch vertices,

u1i(i = 1, · · · , j) is the branch vertex nearest to u1 among branch vertices in component

containing u1i of T − {u1}.

The following theorem shall determine the unique tree with the maximum GA2, GA3,

Sz and Sze indices within all trees in Tn, k.

Theorem 2. Among all trees in Tn, k, 2 ≤ k ≤ n− 1, the tree with the maximum GA2,

GA3, Sz and Sze indices is GDSL(n; �k/2�, �k/2�) or Sn, the star graph of n vertices.

Proof. We need only to check the validity of theorem for the GA2 index.

If k = 2 or n− 1, the result is obvious. Suppose now that 3 ≤ k ≤ n− 2. So, T has at

least one branch vertex, that is, B(T ) ≥ 1.

Let T be a tree chosen in Tn, k such that it has the maximum GA2 index. Next, we

shall prove that T ∼= GDSL(n; �k/2�, �k/2�).
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If B(T ) = 1, then T is a star-like tree. If T � GDSL(n; 1, k − 1), then we can

apply graph transformation III on T many times to obtain GDSL(n; 1, k − 1). But

then, GA2(T ) < GA2(GDSL(n; 1, k − 1)) by Lemma 4, a contradiction to the choice

of T . So T ∼= GDSL(n; 1, k − 1). If k ≥ 4, then by Lemma 6, we have GA2(T ) =

GA2(GDSL(n; 1, k − 1)) < GA2(GDSL(n; 2, k − 2)), a contradiction to the choice of T .

So, we have k = 3, and the result holds readily.

Now, suppose that B(T ) ≥ 2, and we shall prove the theorem by induction on B(T ).
First, we check the validity of the statement of theorem for B(T ) = 2. In this case, T

is a generalized double star-like tree.

If T has two pendent paths of length ≥ 2 pasting to the same branch vertex, then

it can be viewed the tree Ť1, shown as in Fig. 5. Now, we can repeatedly use graph

transformation III on it, and in the end, we obtain Ť2, shown as in Fig. 5. By Lemma 5,

we have GA2(Ť2) > GA2(Ť1) = GA2(T ), contradicting the choice of T .

So, T has at most one pendent path of length ≥ 2 pasting to each of two branch

vertices. Now, T must be isomorphic to one of the two graphs shown as in Fig. 6 and

GDSL(n; a, b)(a+ b = k), since B(T ) = 2.

If T is isomorphic to the first graph in Fig. 6, then we can repeatedly use graph

transformation III
′
on it until we get x1 = y1 or z1 = y1. If T is isomorphic to the second

graph in Fig. 6, then we can repeatedly use graph transformation III
′
on it until we get

x2 = y2 or z2 = y2. In either case, by Lemma 5, we shall get a new tree with greater GA2

index than that of T , a contradiction. So we have T ∼= GDSL(n; a, b)(a+ b = k).

If T � GDSL(n; �k/2�, �k/2�), then |a − b| ≥ 2. Suppose, without loss of generality,

that a − b ≥ 2. It then follows from Lemma 6 that GA2(GDSL(n; a − 1, b + 1)) >

GA2(GDSL(n; a, b)) = GA2(T ), a contradiction once again.

So, we have T ∼= GDSL(n; �k/2�, �k/2�) for the case of B(T ) = 2.

Suppose now that B(T ) ≥ 3 and the theorem is true for smaller values of B(T ).
Now, T must be a tree shown as in Fig. 7 or Fig. 8. If T is a tree shown as in Fig. 7,

then we can repeatedly use graph transformation III
′
on it until u1 = u or uj = u. If T

is a tree shown as in Fig. 8, then we may assume that du11 ≥ 3 and repeatedly use graph

transformation III
′
on it until u = u1 or u11 = u1.

In either case, we finally get a new tree 
T ∈ Tn,k with B(
T ) = B(T ) − 1, GA2(T ) <
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GA2(
T ) by Lemma 5. By induction assumption, we have

GA2(
T ) < GA2 (GDSL (n; �k/2� , �k/2�)) .

So,

GA2(T ) < GA2(GDSL(n; �k/2�, �k/2�))

a contradiction.

Thus, the desired result follows as expected. �

By the same reasoning as that used in the proof of Lemma 6, we can obtain

Lemma 7. For 3 ≤ k ≤ n− 2, we have

(a) GA2(GDSL(n; �(k − 1)/2�, �(k − 1)/2�)) > GA2(GDSL(n; �k/2�, �k/2�))
(b) GA3(GDSL(n; �(k − 1)/2�, �(k − 1)/2�)) > GA3(GDSL(n; �k/2�, �k/2�))
(c) Sz(GDSL(n; �(k − 1)/2�, �(k − 1)/2�)) > Sz(GDSL(n; �k/2�, �k/2�))
(d) Sze(GDSL(n; �(k − 1)/2�, �(k − 1)/2�)) > Sze(GDSL(n; �k/2�, �k/2�)) .

For any tree T in Tn, k with 3 ≤ k ≤ n − 2, if T � GDSL(n; �k/2�, �k/2�), then

GA2(T ) < GA2(GDSL(n; �k/2�, �k/2�) by Theorem 2. Also, by Lemma 7, we have

GA2(GDSL(n; �k/2�, �k/2�)) < GA2(GDSL(n; �(k − 1)/2�, �(k − 1)/2�)) .

Thus,

GA2(T ) < GA2(GDSL(n; �k/2�, �k/2�)) < GA2(GDSL(n; �(k − 1)/2�, �(k − 1)/2�))

< · · · < GA2(GDSL(n; �(3− 1)/2�, �(3− 1)/2�)) .

Note that GDSL(n; �(3− 1)/2�, �(3− 1)/2�) is just the n−vertex path Pn. So, we have

the following consequence.

Corollary 2([2, 3]). Among all trees with n vertices, the path Pn has the maximum

GA2, GA3, Sz and Sze indices.

Remark 2. In [2], Fath-Tabar et al. obtained that the path Pn is the unique tree with

maximum GA2 index and in [3], Zhou et al. proved that the path Pn has the maximum

GA3 index within all trees of n vertices.
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