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Abstract

For a simple graph G with n vertices and m edges, the inequality M1(G)/n ≤ M2(G)/m,
whereM1(G) andM2(G) are the first and the second Zagreb indices ofG, is known as Zagreb
indices inequality. Generalization of these indices gives first λM1(G) and second λM2(G)
variable Zagreb indices. Vukičević in [13] has given an incomplete proof for the claim: for
all simple graphs and all λ ∈ [0, 1

2 ], holds
λM1(G)/n ≤λ M2(G)/m. Here we present a

complete proof using Karamata’s inequality.

1 Introduction

The concept of the variable molecular descriptors was proposed as an alternative way of

characterizing heteroatoms in molecules, but also to assess the structural differences, such as,

for example, the relative role of carbon atoms of acyclic and cyclic parts in alkylcycloalkanes.

The idea behind the variable molecular descriptors is that the variables are determined

during the regression so that the standard error of estimate for a studied property is as small
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as possible. Several molecular descriptors, have already been generalized in their variable

forms, but here we will only pay attention to Zagreb indices. These indices have been used

to study molecular complexity, chirality, ZE-isomerism and hetero-systems. Overall, Zagreb

indices exhibit a potential applicability for deriving multi-linear regression models.

Let G = (V,E) be a simple graph with n = |V | vertices and m = |E| edges. For v ∈ V ,

d(v) is its degree. The first Zagreb index M1(G) and the second Zagreb M2(G) index are

among the oldest topological indices [1, 3, 5] defined in 1972 by Gutman and Trinajstić [4]

as follows:

M1(G) =
∑
v∈V

d(v)2 and M2(G) =
∑
uv∈E

d(u)d(v).

Similarly, first and second variable Zagreb indices are defined by

λM1(G) =
∑
v∈V

d(v)2λ and λM2(G) =
∑
uv∈E

dλ(u)dλ(v),

where λ is a real number. For the sake of simplicity, we use λM1 and
λM2 instead of λM1(G)

and λM2(G), respectively.

The Zagreb indices are generally related to the inequality M1(G)/n ≤ M2(G)/m and

the question: When does this inequality hold? Similarly to this, many mathematicians

analyzed the inequality

λM1(G)

n
≤

λM2(G)

m
(1)

when λ ∈ [0, 1], and showed that it is true for the following cases: all chemical graphs [13],

all trees [12], all unicyclic graphs [6]. For more results on this topic see [7, 9, 10, 14].

Vukičević [13] also analyzed the inequality (1) and showed that it does not holds for λ ∈

[
√
2
2 , 1]. The case when λ ∈ [12 ,

√
2
2 ] is still an open problem. In the same paper an incomplete

proof of the following theorem is given:

Theorem 1.1. For all graphs G and all λ ∈ [0, 1
2 ], holds

λM1/n ≤λ M2/m.

Since we discuss sufficient conditions for (1) to hold, for the sake of simplicity we denote

by mi,j the number of edges that connect vertices of degrees i and j in the graph G. Then,

as shown in [13]:

λM1/n−λ M2/m =
∑
i≤j
i,j∈N

f(i, j)m2
ij +

∑
i≤j,k≤l

(i,j)�=(k,l)

g(i, j, k, l)mijmkl, (2)
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where the functions f and g are defined in the following way:

f(i, j) = iλ jλ
(
1

i
+

1

j

)
− i2λ−1 − j2λ−1, (3)

and

g(i, j, k, l) = iλ jλ
(
1

k
+

1

l

)
+ kλ lλ

(
1

i
+

1

j

)
− i2λ−1 − j2λ−1 − k2λ−1 − l2λ−1. (4)

In order to examine whether the inequality (1) holds, one can consider whether λM2/m−λ

M1/n is non-negative. If f(i, j) < 0 or g(i, j, k, l) < 0 for some integers i, j, k, l, then there

is a graph G such that the inequality (1) does not hold. The construction of such graph

can be done in the same way as the one for Zagreb indices in [13].

The proof of the Theorem 1.1 is based on the following two lemmas:

Lemma 1.1. Let i and j be different natural numbers and let f(i, j) is defined by (3).

Then, f(i, j) ≥ 0 for λ ∈ [0, 1] and f(i, j) < 0 for λ ∈ R\[0, 1].

Lemma 1.2. Let i, j, k and j be different natural numbers and let λ ∈ [0, 12 ]. Then the

function g(i, j, k, l) defined by (4) in non-negative.

Without loss of generality, we may assume that i = max{j, k, l} and that k ≥ l. Now,

there are three possible orderings:

(a) i ≥ j ≥ k ≥ l, (b) i ≥ k ≥ j ≥ l, (c) i ≥ k ≥ l ≥ j.

The cases (a) and (b) are proven in [13], even more for these orderings holds g(i, j, k, l) ≥

0 for all λ ∈ [0, 1].

The incompleteness in the proof of Lemma 1.2 is for the third ordering. Namely,

∂g(i, j, k, l)

∂i
is not non-negative [13] in the case (c).

2 Proof of Theorem 1.1

By the above discussion, one can easily see that the main problem here is determining the

sign of g for λ ∈ [0, 12 ]. In order to do that, we will use some already known results [8].

Lemma 2.1. [Karamata’s inequality] Let U ⊆ R be an open interval and f : U → U be a

convex function. Let a1 ≥ a2 ≥ . . . ≥ an and b1 ≥ b2 ≥ . . . ≥ bn belong to U are such that

a1+a2+ . . .+ai ≥ b1+ b2+ . . .+ bi for every i ∈ {1, 2, . . . , n} with equality for i = n. Then

f(a1) + f(a2) + . . .+ f(an) ≥ f(b1) + f(b2) + . . .+ f(bn).

-687-



Since monotonicity of the a′s only strengthens the majorizing conditions a1+a2+ . . .+

ai ≥ b1 + b2 + . . . + bi for every i ∈ {1, 2, . . . , n} with equality for i = n, we have that the

same inequality holds without any restrictions on order on the a′s.

If in addition U = R and the function f is non-decreasing on U , then the majorizing

conditions can be further relaxed from ”with equality for i = n”. Namely if a1 + a2 + . . .+

an > b1 + b2 + . . .+ bn, then we take a′n = b1 + b2 + . . .+ bn − a1 − a2 − . . .− an−1. With

a′n instead of an we have that all the needed for Karamata’s is satisfied and f(an) ≥ f(a′n),

which goes on our hand.

These comments explain how the following is derived from Lemma 2.1.

Lemma 2.2. [Majorizing inequality] Let f : R → R be a non-decreasing convex function.

Let a1, a2, . . . , an and b1 ≥ b2 ≥ . . . ≥ bn be reals such that a1+a2+. . .+ai ≥ b1+b2+. . .+bi

for every i ∈ {1, 2, . . . , n}. Then f(a1) + f(a2) + . . .+ f(an) ≥ f(b1) + f(b2) + . . .+ f(bn).

A Lemma 2.2 will be are use to prove the following result.

Theorem 2.1. Let a, b, c, d ∈ R+ and x ∈ [0, 12 ]. Then

axbx(
1

c
+

1

d
) + cxdx(

1

a
+

1

b
) ≥ a2x−1 + b2x−1 + c2x−1 + d2x−1.

Proof. Put A = − logt a, B = − logt b, C = − logt c, D = − logt d, for a fixed real t > 1.

Then this inequality takes on the form

tA−(C+D)x + tB−(C+D)x + tC−(A+B)x + tD−(A+B)x ≥ t(1−2x)A + t(1−2x)B + t(1−2x)C + t(1−2x)D.

Put a1 = A− (C +D)x, a2 = B − (C +D)x, a3 = C − (A+B)x, a4 = D − (A+B)x and

b1 = (1− 2x)A, b2 = (1− 2x)B, b3 = (1− 2x)C, b4 = (1− 2x)D.

Without loss of generality we can take that A ≥ B,C,D and C ≥ D. There are three

cases to be considered regarding how B is positioned to C,D:

(1) If B ≥ C, then A ≥ B ≥ C ≥ D. Since x ∈ [0, 1/2], i.e., x, 1− 2x ≥ 0, it is obvious

that b1 ≥ b2 ≥ b3 ≥ b4 and

j∑
i=1

ai ≥
j∑

i=1

bi, for j = 1, 2, 3, 4. So now the sequences

a1, a2, a3, a4 and b1, b2, b3, b4 satisfy the conditions for the majorizing inequality.

Similarly to case (1) the orderings of a’s and b’s for the other two cases are:

(2) if C ≥ B ≥ D, then A ≥ C ≥ B ≥ D, and a1, a3, a2, a4 and b1, b3, b2, b4;
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(3) if D ≥ B, then A ≥ C ≥ D ≥ B, and a1, a3, a4, a2 and b1, b3, b4, b2;

and they satisfy the conditions for the majorizing inequality.

Proof. (of the Theorem 1.1)

By Theorem 2.1 we have that the function g(i, j, k, l) is non-negative for any positive integers

i, j, k, l and any λ ∈ [0, 12 ]. By Lemma 1.1, the function f(i, j) is also non-negative for

λ ∈ [0, 12 ] ⊂ [0, 1] . Since f and g are non-negative for λ ∈ [0, 12 ] we have
λM2/m−λM1/n ≥ 0

i.e., λM1/n ≤λ M2/m. This completes the proof.

Acknowledgement. We are very grateful to professor R. Škrekovski for his valuable sug-

gestions.
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[13] D. Vukičević, Comparing variable Zagreb indices, MATCH Commun. Math. Comput.

Chem. 57 (2007) 633–641.

[14] M. Zhang, B. Liu, On comparing variable Zagreb indices for unicyclic graphs, MATCH

Commun. Math. Comput. Chem. 63 (2010) 461–468.

-690-


