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Abstract

We give a survey of different methods for obtaining knots and links in the form of different

geometrical polyhedra, that have applications in chemistry. After introducing new graphical

notation for decorated polyhedral graphs we derive general formulae for Tutte polynomials of

3- and 4-pyramid decorated graphs. Moreover, we compute different invariants of their corre-

sponding source and generating links.

1. INTRODUCTION

The initial interest in knot theory was stimulated by Kelvin’s theory of atomic struc-

ture (1867). By the turn of the century, after scientific confirmation of Mendeleev’s

periodic tables, it was clear that Kelvin’s theory was incorrect. Chemists were no longer

interested in classifying knots, but topologists continued to study them.

In 1960-ties the focus of chemists turned towards attempts to synthesize molecular

knots and links (abbr. KLs). The first pair of linked rings in a form of the Hopf link, a

catenane, was synthesized by H. Frisch and E. Wasserman in 1961. The first molecular

knot, a trefoil made out of 124 atoms was produced by C. Dietrich-Bushecker and J.-

P. Sauvage in 1989. They refer to stereochemical topology, synthesis, characterization,

and analysis of topologically interesting molecular structures [1].
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Construction of numerous KLs become possible after the synthesis of first molecular

Möbius ladder with three rungs by D. Walba, R. Richards and R.C. Haltiwanger in 1982,

and addition of twists to the Möbius ladders managed by Q.Y. Zheng in 1990. In fact,

after breaking the rungs, Möbius multi-strand twisted ladders became a molecular closed

braid representation of a KL.

In the 1950s F.H.C. Crick and J.D. Watson unraveled the double helix structure of

DNA. A molecule of DNA can also take the form of a ring and become knotted. In

the process of recombination, a DNA knot is temporarily broken, physically changed,

and then reconnected. In the 1970s it was discovered that an enzyme, topoisomerase, is

responsible for this process. The first electron microscope pictures of knotted DNA were

produced in 1985 by S. Wasserman, J. Dungan and N. Cozzarelli [2]. The linking number

and its splitting into average writhe Wr and twist Tw is used as a basic tool to analyze

the geometry of supercoiled DNA. C. Ernst and D.W. Sumners [3, 4] reconstructed the

actions of enzyme (TN3 Resolvase) by solving tangle equations. Distances of rational

knots and links were calculated by I.K. Darcy and D.W. Sumners [5, 6].

From the point of view of organic chemistry and molecular biology, the most interesting

are complex knotted and linked chemical structures with a high degree of symmetry.

However, tabulation of KLs as well as computing of KL invariants is restricted to KLs

with relatively small number of crossings.

In some sources the end of the 19th century is called the ”dark age of the knot theory”,

because KLs are recognized ”by hand” or some other ”non-exact methods”. However,

first knot tables were created during that period by P.G. Tait, T.P. Kirkman and C.N.

Little, after more than five years of a hard work. In knot tabulation, almost nothing

important happened for almost a century, until the computer derivation of KL tables

by M. Thistlethwaite and his collaborators. Now computations have reached the limit

even with the use of supercomputers. The existing knot tables contain alternating knots

up to 24 crossings, non-alternating knots up to 16 crossings1 [7], alternating links up to

18 crossings, and non-alternating up to 12 crossings. For applications in chemistry, KL

tables are insufficient, because KLs (mostly links) used in chemistry have higher number

of crossings. Also, the majority of tabulated KLs have a low degree of symmetry, unlike

knotted natural structures, because nature prefers symmetry and complexity.

1Very recently, M. Thistlethwaite tabulated non-alternating knots up to 19 crossings. There are about
250 million non-alternating knots with 19 crossings [8].
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The things have changed in the last decade, when chemical scientists and mathe-

maticians started constructing new classes of KLs, derived by different geometrical con-

structions from regular and Archimedean polyhedra [9], fullerenes and nanotubes [10,11],

Goldberg polyhedra (a kind of multi-symmetric fullerene polyhedra) [12], extended Gold-

berg polyhedra and their corresponding links with even and odd tangles [13–15], dual

polyhedral links [16] etc. In addition to new methods for producing KLs, together with

mathematicians, chemists developed new methodology for the computation of polynomial

and other KL invariants. These invariants include: Jones polynomial [17, 18], Kauffman

bracket polynomial [17–19] and HOMFLYPT polynomial [20, 22], and polynomials com-

ing from graph theory: Tutte polynomials, Bolobás-Riordan polynomials, chromatic and

dichromatic polynomials, chain and sheaf polynomials [19] that can be applied on KLs

with a very large number of crossings and their (signed) graphs. For the first time, chirality

of KLs with a high number of crossings obtained as polyhedral links was analyzed [23,24].

In the series of papers chemists tried to solve a fundamental question in chemistry: to

determine whether KLs are new forms of molecular structures [9,12,25–27]. Geometrical

characteristics and the polyhedral shapes of biological molecules have attracted much

attention, and remarkable discoveries were made in the control and syntheses of polyhedral

links or catenanes, such as the DNA tetrahedron, DNA cube, DNA truncated octahedron,

DNA octahedron, and more recently DNA bipyramids and DNA prisms. Topologically

linked protein catenane – a 72-hedral link, is discovered in the context of virology in

the mature empty capsid of the double-stranded DNA bacteriophage. This and similar

discoveries extended the domain of forms that are possible in the biochemical world. Many

questions about chemical structures can be formulated in the language of knot theory and

answered by using mathematical-topological and geometrical methods.

One of well known constructions in knot theory, middle edge construction, was ex-

tended by F. Jaeger, by replacing single crossings in edge mid-points by bigons collinear

with the edge. F. Jaeger proposed this construction in order to compute HOMFLYPT

polynomials of these links (called after him Jaeger links) from their Tutte polynomials by

substitution of variables [28].

In the paper [27] new methodology for understanding the construction of polyhedral

links has been developed on the basis of the Platonic and Archimedean solids by the

”three-cross-curve and double-twist-line covering” method introduced by the authors.
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The authors analyzed regular and truncated regular knotted polyhedra, providing further

insight into the molecular design, and theoretical characterization of the DNA and protein

catenanes.

The study of polyhedral links was initiated and defined by Qiu’s group in 2005, with

several consecutive journal papers published subsequently. Following the same avenue

of research, X.-S. Cheng, W.-Y. Qiu and H.-P. Zhang [23] proposed a novel method by

replacing three cross curves with branched alternating closed braids to construct a new

type of polyhedral links on arbitrary convex polyhedra. They described conditions to

determine the chirality of the polyhedral links in terms of generalized Tutte polynomials

and Kauffman bracket polynomials.

This paper is based on the results by F. Jaeger, W.-Y. Qiu and his colleagues [9]- [28].

In Section 2 we introduce knot theory basics: Conway notation and families of KLs,

flypes, Tait flyping theorem, and the Tutte polynomial. After giving a short overview

of basic polyhedra in knot theory in Section 3, in Section 4 we distinguish some classes

of basic polyhedra that are real geometrical polyhedra, i.e., 4-valent geometric polyhe-

dra graphs. In order to extend basic polyhedra to twisted polyhedral links, in Section

5 we derive decorated pyramid graphs by using generalized Jaeger construction. We

unify methods for the construction of polyhedral links: middle graph construction, Jaeger

construction, generalized Jaeger standard and dual construction, cross-curve and double-

(twist)-line covering and its dual construction, an introduce new graphical notation for

all mentioned constructions and their combinations. From n-pyramid graphs and their

corresponding antiprismatic basic polyhedra considered in Section 6, in Section 7 we de-

rive general formulae for the Tutte polynomials of 3- and 4-pyramid decorated graphs.

Section 8 is dedicated to the recognition of polyhedral KLs. Section 9 contains the com-

plete survey of knot and link invariants computed for KLs and their families derived from

3- and 4-pyramid decorated graphs, with a concise interpretation of the obtained results,

including data about chirality and remarks about the completely open field of problems

related to non-alternating polyhedral KLs. At the end of Section 9 we provide ”portraits

of families”, plots of zeros of the Jones polynomials of KL families from which we are

able to visually identify KL families and recognize some of their properties.
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2. KNOT THEORY BASICS

Knots and links are given in Conway notation [10, 29–31].

A 1-dimensional manifold composed of two arcs and any number of circles, properly

embedded in a 3-dimensional ball, is called a tangle (or 2-tangle). The same term is used

to denote a projection of a tangle into 2-dimensional disk. From the intersections, four

arcs emerge pointing in the compass directions NW, NE, SW, SE (Fig. 1a).

Tangle can be closed in two ways (without introducing additional crossings): by joining

in pairs NE and NW, and SE and SW ends of a tangle to obtain a numerator closure; or

by joining in pairs NE and SE, and NW and SW ends we obtain a denominator closure

(Fig. 1c,d).

Figure 1: (a) A tangle; (b) the elementary tangles; (c) numerator closure; (d) denominator
closure.

The main building blocks in the Conway notation are elementary tangles. We dis-

tinguish three elementary tangles, shown in Fig. 1b, denoted by 0, 1 and −1. All other

tangles can be obtained by combining elementary tangles, while 0 and 1 are sufficient

to obtain alternating KLs. Elementary tangles can be combined by the following oper-

ations: sum, product, and ramification (Figs. 2-3). Given tangles a and b, image of a

under reflection with mirror line NW-SE is denoted by −a, and sum is denoted by a+ b.

Product a b is defined as a b = −a+ b, and ramification by (a, b) = −a− b.

Figure 2: A sum and product of tangles.

A rational tangle is any finite product of elementary tangles, and a rational KL is a

numerator closure of a rational tangle. A tangle is algebraic if it can be obtained from
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Figure 3: Ramification of tangles.

elementary tangles using the operations of sum and product2. KL is algebraic if it is a

numerator closure of an algebraic tangle.

Basic polyhedron is a 4-regular, 4-edge-connected, at least 2-vertex connected plane

graph without bigons [10,29–31]. The basic polyhedron 1∗ is the closure of the elementary

tangle 1. Basic polyhedron of a given KL can be identified by recursively collapsing all

bigons in a KL diagram, until none of them remains (Fig. 4a). Hence, a link L is algebraic

if there exists at least one diagram of L which can be reduced to the basic polyhedron 1∗

by a finite sequence of bigon collapses. Otherwise, it is a non-algebraic or polyhedral link.

Conway notation for polyhedral KLs contains additional symbol of a basic polyhedron

we are working with. The symbol n∗m = n∗m1.1. . . . .1, where ∗m is a sequence of m stars,

denotes the m-th basic polyhedron in the list of basic polyhedra with n vertices. A KL

obtained from a basic polyhedron n∗m by substituting tangles t1, . . ., tk, k � n instead

of vertices, is denoted by n∗mt1 . . . tk, where the number of dots between two successive

tangles shows the number of omitted substituents of value 1. For example, 6∗2 : 2 : 2 0

means 6∗2.1.2.1.2 0.1, and 6∗2 1.2.3 2 : −2 2 0 means 6∗2 1.2.3 2.1.− 2 2 0.1 (Fig. 4b).

Definition 0.1. For a link or knot L given in an unreduced 1 Conway notation C(L)

denote by S a set of numbers in the Conway symbol excluding numbers denoting basic

polyhedron and zeros (determining the position of tangles in the vertices of polyhedron)

and let S̃ = {a1, a2, . . . , ak} be a non-empty subset of S. Family FS̃(L) of knots or links

derived from L consists of all knots or links L′ whose Conway symbol is obtained by

substituting all ai �= ±1, by sgn(ai)|ai + kai |, |ai + kai | > 1, kai ∈ Z. [10]

If all kai are even integers, the number of components is preserved within the corre-

sponding subfamilies, i.e., adding full-twists preserves the number of components inside

the subfamilies.

2These two operations are sufficient, since a ramification (a, b) = −a − b can be represented as the
product a(−b).

1The Conway notation is called unreduced if in symbols of polyhedral links elementary tangles 1 in
single vertices are not omitted.

-546-



2

1

1

1

2

2 0

L

a
L

b

L c

Lf

L

d

L

e

6*
6 2:2:2 0 =

6 2.1.2.1.2 0.1

*

*
6 2 1.2.3 2:-2 2 0 =

6 2 1.2.3 2.1.-2 2 0.1

*

*

2 1

1

2

1

3 2

- 2 2 0

(a)

(b)

Figure 4: (a) A link shadow collapsing into the basic polyhedron 6∗ – an octahedron; (b)
basic polyhedron 6∗ and the knots 6∗2.1.2.1.2 0.1 and 6∗2 1.2.3 2 : −2 2 0.

A link given by Conway symbol containing only tangles ±1 and ±2 is called a source

link, and link given by Conway symbol containing only tangles ±1, ±2 and ±3 is called

generating link.

Suppose an alternating KL diagram contains a tangle T . Let us fix four ends a, b, c,

d of T and then rotate it by a 2-fold rotation (half-turn). The twist on the left in Fig. 5

is moved to the right. Such an operation is called a flype.

Figure 5: A flype.

The famous Tait’s Flyping Conjecture was proved by Menasco and Thistlethwaite in

1993, a century after P.G.Tait formulated it:

Theorem 0.1. (Tait’s Flyping Theorem) Suppose that L′ and L′′ are two reduced alter-

nating diagrams of an alternating link L on the sphere S3. Then we can change L′ into
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L′′ by performing a finite number of flypes [32,33].

There is a nice bijective correspondence between KLs and graphs: to obtain a graph

from a projection of KL, first color regions of the KL diagram black or white in a

checker-board manner, so that the infinite outermost region is black. In the checker-board

coloring (or Tait coloring) of the plane obtained, put a vertex at the center of each white

region. Two vertices of a graph are connected by an edge if there was a crossing between

corresponding regions in a KL diagram3. Graph corresponding to a link diagram DL will

be denoted by G(DL).

For a graph of KL we can compute its Tutte polynomial, which is a kind of magician

hat – many different polynomial invariants of graphs and KLs: chromatic polynomial,

dichromatic polynomial, Jones polynomial (Kauffman bracket polynomial), and HOM-

FLYPT polynomial4 can be obtained from Tutte polynomial by replacements of variables.

Two operations are essential for understanding the Tutte polynomial definition: edge

deletion denoted by G− e, and edge contraction G/e. The latter involves first deleting e,

and then merging its endpoints.

Definition 0.2. The Tutte polynomial of a graph G(V,E) is a two-variable polynomial

T (G) = T (x, y) defined as follows:

T (G) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 E(∅)
xT (G/e) e ∈ E and e is a bridge

yT (G− e) e ∈ E and e is a loop

T (G− e) + T (G/e) e ∈ E and e is not a loop or a bridge

The definition of the Tutte polynomial outlines a simple recursive way for computing

it, but the order in which rules are applied is not unique.

The Tutte polynomial of the graph G, dual graph of G, can be obtained from T (G)

by replacements x → y, y → x, i.e., T (G)(x, y) = T (G)(y, x).

According to Thistlethwaite’s Theorem, Jones polynomial of an alternating link, up

to a factor, can be obtained from Tutte polynomial of its corresponding graph by re-

placements: x → −x and y → − 1
x
[34–37]. Moreover, from general formulae for Tutte

polynomials with negative values of parameters we obtain Tutte polynomials expressed

as Laurent polynomials. By the same replacements we obtain, up to a factor, Jones

polynomials of non-alternating links.

3In addition, to each edge of a graph we can assign the sign of its corresponding vertex of the KL
diagram.

4For Jaeger links.
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Every KL diagram is an embedding of a 4-valent planar graph on a sphere S2 with

denoted overcrosings and undercrossings. In this paper we consider only planar graphs

and restrict our attention to alternating KLs obtained from them.

3. BASIC POLYHEDRA IN KNOT THEORY

The first class of graphs we consider are basic polyhedra which are already 4-valent, so

need no additional constructions in order to be turned into 4-valent graphs and alternating

KLs.

The smallest basic polyhedron is the regular octahedron (i.e., 3-antiprism) correspond-

ing to Borromean rings 6∗. The number of the basic polyhedra with n � 20 crossings is

given in the following table

n 6 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1 3 3 12 19 64 155 510 1514 5146 16966 58782

The complete data-base is available in the program LinKnot [10].

The list of basic polyhedra includes 2-vertex connected basic polyhedra5 which are not

actual geometrical polyhedra.

If we have any polyhedral graph G, we can obtain its corresponding middle graph

M(G) determined by mid-edge points of G by connecting mid-edge points belonging to

adjacent edges of G. Clearly, the result M(G) is always a 4-valent graph. Every at least

3-vertex connected basic polyhedron can be obtained as the middle graph from some

geometrical polyhedron. After turning M(G) into an alternating link diagram DL, by

introducing overcrossings and undercrossings in an alternating manner, the graph G is

the graph of the link diagram DL, i.e., G(DL) = G, so the constructions of a graph of a

link diagram G = G(DL) and a middle graph DL = M(G) are mutually dual.

4. BASIC POLYHEDRA DERIVED FROM GEOMETRICAL

POLYHEDRA

For chemists the most interesting basic polyhedra are the most symmetrical ones,

which can be ordered in recognizable recursively defined families of graphs, i.e., basic

polyhedra that originate from families of geometrical polyhedra.

5The first example of that kind is the basic polyhedron 12E.
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Typical examples are 2n-antiprisms, representing the basic polyhedra (2n)∗ (n � 3),

which have two n-gonal, and 2n triangular faces. Antiprismatic basic polyhedra (2n)∗ are

3-component links for n = 0 (mod 3) and knots otherwise. They are closures of 3-braids

(Ab)n (n � 3) [38]. The graph of a knot or link (2n)∗ is the wheel graph Wh(n+1). The

general formula for the Tutte polynomials of wheel graphs is

T (G((2n)∗) = T (Wh(n+ 1)) =

[
1

2

[
(1 + x+ y) + [(1 + x+ y)2 − 4xy]1/2

]]n
+

[
1

2

[
(1 + x+ y)− [(1 + x+ y)2 − 4xy]1/2

]]n
+ xy − x− y − 1.

Since graphs Wh(n+ 1) are self-dual, all their corresponding knots or links (2n)∗ are

amphicheiral.

Because wheel graphs Wh(n+1) are n-pyramids (n � 3), all knots and links (2n)∗ can

be obtained as the middle graphs of n-pyramids. This example illustrates the recursive

derivation of basic polyhedra by using middle graphs of a family of polyhedra (e.g., n-

pyramids, n-prisms, n-bipyramids, etc.)

According to Thistlethwaite’s Theorem, the Jones polynomial of an alternating link,

up to a factor, can be obtained from the Tutte polynomial by substitutions: x → −x and

y → − 1
x
[34–37]. Hence, the Jones polynomials of wheels (2n)∗ can be directly obtained

from their Tutte polynomials. Moreover, we can plot zeros of the Jones polynomials, i.e.,

the ”portrait of family” of KLs (2n)∗ [39].

Signature of all knots and links (2n)∗ is 0. BJ-unknotting (unlinking) numbers, which

can be used as the measure of the complexity of links are computed in LinKnot according

to the Bernhard-Jablan conjecture [10]. They are equal to n for n = 0 (mod 3), and

n− 1 otherwise.6. All the links of the family (2n)∗ (n = 0 (mod 3)) have the Borromean

property: their cutting number is 1 and by cutting any component the link brakes in

unlinks.

Basic polyhedra 6∗ and 8∗ belong to the family (2n)∗. The next basic polyhedron 9∗

is the first member of the family of basic polyhedra 9∗, 12C, . . ., with 3n crossings, two

n-gonal faces, 2n triangular, and n 4-gonal faces, derived from n-prisms (n � 3) as middle

graphs. For n = 1 (mod 2) we obtain knots, for n = 2 (mod 4) 2-component links, and

6Unlinking numbers are computed for n � 10.
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for n = 0 (mod 4) 4-component links, defined by braid words AbA(CbA)n−2CbC [38].

The signature of obtained KLs is 2 for n = 3, 1 for n = 4, and n − 1 for n � 5. All 4-

component links from this family have cutting number 2, and all obtained KLs are chiral.

Since n-prisms and n-bipyramids are mutually dual, the same basic polyhedra (i.e., their

mirror image KLs) can be obtained as middle graphs corresponding to n-bipyramids.

All polyhedral alternating KLs can be can be obtained from basic polyhedra by vertex

substitutions: we substitute every vertex of a basic polyhedron by an algebraic tangle [29]7.

Unlike algebraic KLs, in order to denote polyhedral KLs we need to use a database of

basic polyhedra determined by their 4-valent graphs, ordering of vertices and positions of

tangles in each of them. Hence, for the use in chemistry and other natural sciences, more

natural is the geometrical approach to knot theory, based on usual geometrical objects:

geometrical polyhedra and KLs derived from them by ”polyhedral knotting” [9]- [27].

5. DECORATED GRAPHS

For any plane graph G we can construct a 4-valent graph G, representing a KL

shadow, i.e., KL diagram without information about overcrossings and undercrossings.

After introducing overcrossings or undercrossing in each vertex of G′ we obtain a KL

diagram. All constructions we describe can be applied to any plane graph, but in order

to obtain KLs that could be structurally interesting from the chemistry point of view, we

usually start from a polyhedral graph G, desirably with a high degree of symmetry, e.g.,

from graphs (Schlegel diagrams) of polyhedra forming infinite families (pyramids, prisms,

antiprisms, etc.), regular polyhedra, uniform (Archimedean) polyhedra, Johnson solids,

etc. Usually, we work with alternatingKLs derived from such graphs, guaranteeing in this

way the minimality of the KL diagrams obtained, knowing that every reduced alternating

KL diagram, according to Tait theorem on alternating KLs proved by M. Thislethwaite,

L. Kauffman, and K. Murasugi in 1987, has the minimal number or crossings and cannot

be reduced to a KL with a smaller number of crossings.

We use two kinds of constructions: the first based on the generalized construction of

middle graphs, well known in knot theory, the other based on the truncation and doubling

of (twisted) edges [27], called cross-curve and (twisted) double line construction, and the

combinations of the mentioned constructions.

7This is the method proposed by J. Conway, which results in the Conway notation of polyhedral KLs.
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In the classical middle graph construction we introduce crossings (tangles 1 or −1)

in the mid-points of a graph G and join the adjacent loose ends so that no additional

crossings are created. Instead, we can place place in certain points of an edge of G chains

of bigons (positive or negative k-twists) collinear with the edge or perpendicular to it,

join adjacent loose ends, and from graph G we again obtain a KL diagram8 [20, 21].

Another construction resulting in new knotted polyhedra derived from some polyhedron

is the ”cross-curves and double lines” construction [27]. After introducing bigons, from

this construction we obtain ”cross-curves and twisted double lines” and ”dual cross-curves

and twisted double lines” constructions.

In order to simplify the graphical notation of decorated graphs, every k-twist collinear

with an edge of G will be denoted by a black circle with the index k, a k-twist perpendic-

ular to an edge by a white circle with the index k (where the indexes 1 can be omitted)

belonging to the edge, and every vertex of G of the valence k which is replaced by a

k-cross-curve will be surrounded by a circle, while the other vertices of G will be denoted

by small black circles. In order to obtain alternating KLs from such decorated graphs

we substitute the decorations by appropriate 2-tangles or k-tangles (chains of bigons or

k-cross-curves) and join the adjacent loose ends.

Fig. 6a illustrates the meaning of the graphical symbols, and Fig. 6b illustrates the

transformation rules: addition and flype, Fig 6c shows the transition from a decorated

graph to the corresponding alternating KL, and Fig. 6d the transformation of the dec-

orated graph from Fig. 6c followed by the corresponding ambient isotopy of the links

obtained.

In particular, if all edges of G are decorated by black circles of index 2 and there are no

other decorations, we obtain Jaeger links [28], and if all vertices of G are surrounded by

circles, and there are no other decorations, we obtain polyhedral graphs with cross-curves

and double lines without twists [27].

According to Tait flyping theorem, every minimal diagram of a KL can be obtained

from some other minimal diagram by a series of flypes. Nice property of our graphical

notation is that flypes are represented by a simple graphical transformations: place ex-

changes of black and white circles belonging to an edge. For black circles holds the simple

addition rule: two adjacent black circles of the multiplicity k and l can be replaced by a

8After F. Jaeger we can call these two constructions ”generalized Jaeger construction” and ”generalized
dual Jaeger construction”.
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Figure 6: (a) Graphical notation; (b) transformation rules; (c) transition from a decorated
graph to the corresponding link; (d) graphical transformations and ambient isotopy.

black circle of the multiplicity k + l (Fig. 6b). Moreover, 2-valent vertices of G have no

role and could be deleted. Black or white circles belonging to edges of G, cannot pass over

any vertex of G (surrounded by a circle or not). Hence, we can omit 2-valent vertices,

and all transformations of KLs can be reduced to the moves of black and white circles

belonging to a same edge, i.e., to flypes and additivity of the chains of bigons collinear

with the edge.

In order to distinguish the left and right form of an alternatingKL we need to consider

signs of crossings. For alternating KLs the sign of one crossing determines the rest.

6. ANTIPRISMATIC BASIC POLYHEDRA (2n)∗

First we consider the class of antiprismatic basic polyhedra (2n)∗ (n � 3), which

consists of the basic polyhedra 6∗, 8∗, 10∗, . . . Their corresponding graphs are wheel

graphs Wh(n+ 1), i.e., n-pyramids (Fig. 7), so their Tutte polynomials are given by the

general formula [37]:

T (G((2n)∗) = T (Wh(n+ 1)) =

[
1

2

[
(1 + x+ y) +

[
(1 + x+ y)2 − 4xy

]1/2]]n
+

[
1

2

[
(1 + x+ y)−

[
(1 + x+ y)2 − 4xy

]1/2]]n
+ xy − x− y − 1.
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Figure 7: (a) Wheel graph Wh(n + 1) (n = 10); (b) the same graph in our graphical
notation; (c) its corresponding link.

In order to obtain polyhedral KLs we can use two mutually equivalent constructions:

substitutions of vertices by tangles or derivation from decorated graphs.

We can substitute vertices of the basic polyhedron 6∗ with arbitrary tangles ti (i =

1, . . . 6) or ti 0, where t 0 is the mirror image of ti in the diagonal line (see Fig. 2), and

obtain KLs given in the Conway notation. For example, by substituting vertices of the

basic polyhedron 6∗ with integer tangles 2 and 2 0 we obtain the link 6∗2 0.2.2 0.2.2 0.2,

or in general 6∗a1 0.a2.a3 0.a4.a5 0.a6, where ai (i = 1, . . . , 6) are integers (Fig. 9).

For further computations of the Tutte polynomials of decorated graphs we use general

formulae for the Tutte polynomials of pretzel links [39].

The graph family on Fig. 8 corresponds to the family of pretzel links p, q, r. The

general formula for the Tutte polynomial of the graphs G(p, q, r), obtained from Theorem

0.2 [40] is:

T (G(p, q, r)) =
xp+q+r + (xp+1 + xq+1 + xr+1)(y − 1)− (xp + xq + xr)y

(x− 1)2
+

(xy − x− y)(xy − x− y − 1)

(x− 1)2
.

An ear in a graph is a path v1 ∼ v2 ∼ . . . ∼ vn ∼ vn+1 where d(v1) > 2, d(vn+1) > 2

and d(v2) = d(v3) = . . . = d(vn) = 2. A cycle is viewed as a ”special” ear where v1 = vn+1

and the restriction on the degree of this vertex is lifted. If a graph contains an ear or a

multi-edge, then all the edges involved can be removed in a single operation. We denote

an ear with s edges by Es and an edge of multiplicity s by es. Deletion of an ear G−Es

is defined naturally as meaning the deletion of all the edges of Es from G. Contraction

of a multi-edge G/Es means to delete all the edges and identify the endvertices, while

contraction of an ear means to delete all the edges and identify v1 and vn+1 [40].
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Theorem 0.2. Suppose that G is a biconnected graph that properly contains an ear Es.

Then

T (G) =
xs − 1

x− 1
T (G− Es) + T (G/Es).

Since multiple edges are dual to ears, for multiple edges we immediately obtain the

Tutte polynomial of a dual graph.

Notice that n-pretzel links p1, p2, . . . , pn (n � 3) are obtained from decorated multi-

edge graphs en with black circles with indexes p1, . . ., pn on the edges.

Figure 8: (a) Graph G(p, q, r) (p = 4, q = 4, r = 6); (b) the same graph in our graphical
notation; (c) its corresponding alternating pretzel link.

7. TUTTE POLYNOMIALS OF n-PYRAMID DECORATED GRAPHS

We consider generalized Jaeger and generalized dual Jaeger construction applied to

n-pyramids (i.e., wheel graphs Wh(n+ 1)).

Generalized Jaeger links (Fig. 9b) are obtained by introducing chains of bigons a1,

. . ., a6 collinear with the edges of 3-pyramid (tetrahedron) graph, i.e., from the decorated

3-pyramid graph G(a1, a2, a3, a4, a5, a6) .

Figure 9: (a) Decorated graph G3 = G(a1, a2, a3, a4, a5, a6); (b) its corresponding link for
a1 = 7, a2 = 6, a3 = 5, a4 = 4, a5 = 3, a6 = 2.
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Theorem 0.3. The Tutte polynomial of a decorated 3-pyramid graph G3 = G3(a1, a2, a3,

a4, a5, a6) is given by the general formula:

T (G3) = C1(x)T (G(a2 + a6, a4, a5)) + C2(x)T (G(a3 + a4, a5, a6 + 1))+

C3(x)T (G(a4 + 1, a5 + 1, a6)) + C4(x)T (G(a5 + a6, 2, 1))+

C5(x)T (G(a6 + 1, 2, 1)) + C6(x)T (G(2, 2, 1)) + T (Wh(4)),

where

Ci(x) =
xai − x

x− 1
,

G(p, q, r) is the pretzel link graph, and Wh(4) is the 3-pyramid graph (4-wheel) with the

Tutte polynomial

T (Wh(4)) = 2x+ 3x2 + x3 + 2y + 4xy + 3y2 + y3.

The proof of this theorem follows from a series of recursive contractions/deletitions

and applications of Theorem 0.2 in the process of the reduction of multiple edges which

can be followed on Fig. 10.

Let us notice that the link L(G3(a1, a2, a3, a4, a5, a6)) is the same as the link 6∗a1 0.a2.a3

0.a4.a5 0.a6 obtained by vertex substitutions. Because wheel graphs are self-dual, gener-

alized dual Jaeger construction produces the same links.

The Jaeger links L(G3(2, 2, 2, 2, 2, 2)) and their HOMFLYPT polynomials [28] are a

special case obtained from the Tutte polynomials of graphs G3(a1, a2, a3, a4, a5, a6) for

a1 = . . . = a6 = 2. According to Thistlethwaite’s Theorem, we obtain the general formula

for the Jones polynomials of all the corresponding links L(G3) for arbitrary integer values

of the parameters ai, including negative values of parameters giving Tutte polynomials of

signed graphs and Jones polynomials of the corresponding non-alternating KLs.

The same method can be applied to links 8∗a8 0.a1.a5 0.a4.a6 0.a3.a7 0.a2 (Fig. 11a)

derived from an edge-decorated 4-pyramid graph (i.e., wheel graph Wh(5))) (Fig. 11b).

General formulae for the Tutte polynomials of the decorated graphs G(a1, a2, a3, a4, a5, a6,

a7, a8) are obtained by using the preceding theorem, and general formulae for the Tutte
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Figure 10: (a) Resolving graph G3 = G(a1, a2, a3, a4, a5, a6).

polynomials of pretzel link graphs G(p, q, r) and graphs G((p, q) r (s, t)) (Fig. 11c) corre-

sponding to the links (p, q) r (s, t)) [39]. The general formula for the Tutte polynomial of

the graphs G((p, q) r (s, t)) is:

T (G((p, q) r (s, t))) =
xt − 1

x− 1
T (G(p, q, (r + s))) + T (G(p, q, r)))T (G(s))

where G(s) is the graph of the s-cycle Es with the Tutte polynomial

T (G(s)) =
xs − 1

x− 1
+ y − 1.

Theorem 0.4. Tutte polynomial of the decorated 4-pyramid graph G4 = G4(a1, a2, a3, a4,

a5, a6, a7, a8) is given by the general formula:

G4 = G4(a1, a2, a3, a4, a5, a6, a7, a8) =

C1(x)T (G((a2 + a8,+a7) a3 (a6, a4 + a5)) + C2(x)T (G((a3 + a7, a6) a4 (a5, a8 + 1))+
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Figure 11: (a) Decorated graph G(a1, a2, a3, a4, a5, a6, a7, a8); (b) its corresponding link
for a1 = 9, a2 = 8, a3 = 7, a4 = 6, a5 = 5, a6 = 4, a7 = 3, a8 = 2; (c) graph (p, q) r (s, t).

C3(x)T (G((a4 + a6, a5) 1 (a8, a7 + 1)) + C4(x)T (G((a5 + 1, a8) 1 (a7, a6 + 1))+

C5(x)T (G3(2, 1, 1, a7, a6, a8)) + C6(x)T (G3(2, 1, 1, a8, a7, 1))+

C7(x)T (G3(2, 1, 1, 1, a8, 1)) + C8(x)T (G3(2, 1, 1, 1, 1, 1)) + T (Wh(5)),

where

Ci(x) =
xai − x

x− 1
,

G3 is the decorated 3-pyramid graph from Theorem 0.3, G(p, q, r) is the 3-pretzel link

graph, G((p, q) r (s, t)) is the graph of the link (p, q) r (s, t), and Wh(5) is the 4-pyramid

graph (5-wheel) with the Tutte polynomial

T (Wh(5)) = 3x+ 6x2 + 4x3 + x4 + 3y + 9xy + 4x2y + 6y2 + 4xy2 + 4y3 + y4.

The Tutte polynomials of dual graphs are obtained by substitutions x → y, y → x,

and the duality is apparent on the level of decorated graphs (Fig. 12a,b).

8. RECOGNITION OF KLs DERIVED FROM POLYHEDRAL GRAPHS

The most important question is to describe the equivalence relation on decorated

graphs and recognize graphs resulting in the same alternating KLs. For all source and

generating KLs derived from decorated graphs we compute their minimal Dowker codes
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Figure 12: (a) Decorated graphsG3(a1, a2, a3, a4, a5, a6) andG4(a1, a2, a3, a4, a5, a6, a7, a8);
(b) their dual graphs.

and select a representative KL (i.e., the decorated graph) for each of different codes.

Unlike distinction based on polynomial KL invariants, distinction of different KLs based

on minimal Dowker codes is complete, including distinction of mutant KLs that cannot

be recognized as different by polynomial invariants. Morover, for large KLs, computation

of minimal Dowker codes is much faster then the computation of polynomial invariants.

If all parameters ai (i = 1, . . . , 6) are different, using minimal Dowker codes we con-

clude that among 6!=720 decorated graphs obtained in the class G3 = G3(a1, a2, a3,

a4, a5, a6) by permutations of parameters, only 30 of them represent different alternating

KLs given by the permutations of values of parameters ai = i + 1 (i = 6, . . . 1), in the

following table:

Table 8.1

7,6,5,4,3,2 7,6,4,5,3,2 7,6,3,5,4,2 7,5,6,4,3,2 7,5,4,6,3,2 7,5,3,6,4,2
7,4,6,5,3,2 7,4,5,6,3,2 6,7,5,4,3,2 6,7,4,5,3,2 6,7,3,5,4,2 6,5,7,4,3,2
6,5,4,7,3,2 6,5,3,7,4,2 6,4,7,5,3,2 6,4,5,7,3,2 5,7,6,4,3,2 5,7,4,6,3,2
5,7,3,6,4,2 5,6,7,4,3,2 5,6,4,7,3,2 5,6,3,7,4,2 5,4,7,6,3,2 5,4,6,7,3,2
4,7,6,5,3,2 4,7,5,6,3,2 4,6,7,5,3,2 4,6,5,7,3,2 4,5,7,6,3,2 4,5,6,7,3,2

There are 11 different alternating source links or generating links derived from G3 (Fig.

13). Their list is given in Table 8.2. The corresponding generating links are obtained by

the substitution 1 → 3. Hence, from the decorated pyramid graphs G3 we obtain 11

different link families that we can analyze by computing their various invariants.
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Table 8.2

1 2,2,1,1,1,1 2 2,2,1,1,1,2 3 2,2,1,2,1,1 4 2,1,1,1,1,1
5 2,1,1,2,1,1 6 2,2,2,1,1,1 7 2,2,2,2,1,1 8 2,2,1,2,2,1
9 1,1,1,1,1,1 10 2,2,2,2,2,1 11 2,2,2,2,2,2

Figure 13: Generating links from Table 8.2.

If all parameters ai are mutually different, among 8! = 40320 decorated graphs from

the class G4(a1, a2, a3, a4, a5, a6, a7, a8) there are 5040 different alternating KLs. This

computational result, obtained from minimal Dowker codes, can be confirmed by Polya

theorem. The advantage our approach is that we construct links, while Polya’s theorem

is just a count.

There are 51 different alternating source links or generating links derived from G4,

given in Table 8.3. The corresponding generating links are obtained by the substitution

1 → 3. The invariants of the obtained KL families are given in the next section, in Table

9.2.

Table 8.3

1 1,1,1,1,1,1,1,1 2 1,1,1,1,2,1,1,1 3 2,1,1,1,1,2,1,1 4 1,1,1,1,2,1,2,1
5 2,2,1,1,1,1,1,1 6 1,1,1,1,2,2,2,1 7 2,1,1,1,2,2,1,1 8 2,2,1,1,2,1,1,1
9 2,1,1,1,2,1,2,1 10 2,2,1,1,1,1,1,2 11 2,2,1,1,1,2,1,1 12 2,1,1,1,2,2,2,1
13 2,2,1,1,2,2,1,1 14 1,1,1,1,2,2,2,2 15 2,1,2,1,2,1,2,1 16 2,2,2,1,1,1,2,1
17 2,2,2,1,2,1,1,1 18 2,2,1,1,1,2,1,2 19 2,1,2,1,2,2,1,1 20 2,1,1,1,1,1,1,1
21 2,1,1,1,2,1,1,1 22 2,1,2,1,2,1,1,1 23 2,1,1,1,2,2,1,2 24 2,2,1,1,2,1,1,2
25 2,1,1,1,2,2,2,2 26 2,2,1,1,2,2,1,2 27 2,1,2,1,2,2,2,1 28 2,2,2,1,2,1,1,2
29 2,2,2,1,1,1,2,2 30 2,2,2,1,1,1,1,1 31 2,2,2,2,2,1,1,1 32 1,1,1,1,2,2,1,1
33 2,1,1,1,1,2,2,1 34 2,2,1,1,2,1,2,1 35 2,2,1,1,2,2,2,1 36 2,2,2,1,2,1,2,1
37 2,2,2,1,2,2,1,1 38 2,1,2,1,1,1,1,1 39 2,1,1,1,2,1,1,2 40 2,1,2,1,2,1,1,2
41 2,2,1,1,2,1,2,2 42 2,2,1,1,2,2,2,2 43 2,2,2,1,2,1,2,2 44 2,1,2,1,2,2,2,2
45 2,2,2,2,2,2,1,1 46 2,2,2,1,2,2,2,1 47 2,2,2,2,1,1,1,1 48 2,2,2,2,2,1,2,1
49 2,2,2,1,2,2,2,2 50 2,2,2,2,2,2,2,1 51 2,2,2,2,2,2,2,2
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Because in chemistry we are dealing with KLs with very large number of crossings

and with polynomial invariants that hardly can be computed by the standard knot theory

programs9, general formulae for the Tutte polynomials, the Jones polynomials obtained

from them, and HOMFLYPT polynomials10 that can be obtained from Tutte polynomials

can be very useful, especially in the case of non-alternating KLs11. In order to find the

number of different 3- and 4-pyramid KLs with a high number of crossings, we can

compute the mentioned polynomial invariants from the general formulae.

All source and generating links from Tables 8.1 and 8.2 are completely recognized

as different by the Alexander, Conway12, Jones, Khovanov, HOMFLYPT, and Kauffman

(bracket and 2-variable) polynomials.

9. INVARIANTS OF ANTIPRISMATIC KLs DERIVED FROM 3- AND

4-PYRAMID DECORATED GRAPHS

In this section we compute different invariants of obtained KL families, believing that

used together they provide more complete insight into the complexity of the obtained

polyhedral KLs.

9.1. NUMBER OF COMPONENTS

The first and simplest invariant of a KL is the number of components. For KLs

obtained from the graphs G3 = G3(a1, a2, a3, a4, a5, a6) we obtain 4-component links iff

all ai are even, 3-component links if one ai is even and all others are odd or if all of them are

odd, and 2-component links if two or five of them are odd, and the others are even. If tree

of parameters are odd and three even, we obtain 2-component links iff a1 = a2 = a3 = 0

(mod 2), a1 = a5 = a6 = 0 (mod 2), a2 = a4 = a6 = 0 (mod 2), or a3 = a4 = a5 = 0

(mod 2), and knots otherwise. If two parameters are even, and the remaining four even,

2-component links will be obtained iff a1 = a4 = 0 (mod 2), a2 = a5 = 0 (mod 2) or

a3 = a6 = 0 (mod 2), and knots otherwise.

From graphs G4(a1, a2, a3, a4, a5, a6, a7, a8) we obtain 5-component links iff all param-

eters are even, and 4-component links iff one of them is odd, and the others are even.

9The existing computer programs can work with KLs with at most n = 50 crossings.
10HOMFLYPT polynomials can be obtained from Tutte polynomials only for Jeager links.
11Alternating KLs can be distinguished by using the program LinKnot [10] and computing minimal

Dowker codes, without fixed limit on the number of crossings.
12Alexander and Conway polynomials cannot distinguish the left and right form of the same KL.
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If two parameters are odd, and the others even, we obtain 3-component links, and if

all parameters are odd we obtain knots. If three parameters are odd, and the others

even we obtain 3-component links if a3 = a4 = a6 = 0 (mod 1), a2 = a3 = a7 = 0

(mod 1), a1 = a4 = a5 = 0 (mod 1), or a1 = a2 = a8 = 0 (mod 1), and 2-component

links otherwise. If four parameters are odd, and four even we obtain 3-component links if

a1 = a2 = a3 = a4 = 0 (mod 2), a1 = a3 = a5 = a8 = 0 (mod 2), a1 = a3 = a6 = a7 = 0

(mod 2), a2 = a4 = a5 = a6 = 0 (mod 2), or a2 = a4 = a7 = a8 = 0 (mod 2), 2-

component links for the following sets of even parameters:

1,2,5,7 1,2,5,8 1,2,7,8 1,4,5,6 1,4,5,8 1,4,6,8 1,5,6,8 1,5,7,8 2,3,6,7 2,3,6,8
2,3,7,8 2,5,7,8 2,6,7,8 3,4,5,6 3,4,5,7 3,4,6,7 3,5,6,7 3,6,7,8 4,5,6,7 4,5,6,8

and knots otherwise. If three parameters are even, we obtain 3-component links for the

following triples of even parameters:

1,5,8 2,7,8 3,6,7 4,5,6

2-component links for

1,2,3 1,2,4 1,3,4 1,3,5 1,3,6 1,3,7 1,3,8 1,6,7
2,3,4 2,4,5 2,4,6 2,4,7 2,4,8 2,5,6 3,5,8 4,7,8

and knots otherwise. If two parameters are even, we obtain 3-component links for a1 = a3

(mod 2) or a2 = a4 (mod 0), 2-component links for the following pairs:

1,5 1,8 2,7 2,8 3,6 3,7 4,5 4,6 5,6 5,8 6,7 7,8

and knots otherwise. Finally, if only one parameter is even, we obtain 2-component links

if it occupies one of the first four positions, and knots otherwise.

The links obtained from decorated graphs G3 can be divided into 11 families in Table

8.2. The fist three families 1-3 are knots, 4-8 are 2-component links, 9-10 are 3-component

links, and 11 is the family of 4-component links.

The source links obtained from decorated graphs G4 define 51 families from Table 8.3.

The fist 19 families 1-19 are knots, 20-37 are 2-component links, 38-48 are 3-component

links, 49-50 are 4-component links, and 51 is the family of 5-component links.
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9.2. CUTTING NUMBER

Next invariant we look at is the cutting number: the number of components of a link

L that need to be cut in order to obtain split link. It is an invariant of link families: all

members of a KL family have the same cutting number. Certainly, for every 2-component

link the cutting number is 1. However, cutting number is not necessarily equal to c− 1,

where c is number of components. For example, for Borromean rings the cutting number

is 1. All 4-component links obtained from the graph G3(a1, a2, a3, a4, a5, a6) have cutting

number 3, and all 3-component links with one odd parameter have cutting number 2.

For 3-component links with all odd parameters we obtain more interesting results. If

all parameters are equal to 1, we have Borromean rings with the cutting number 1, but

this is not the only link obtained from G3(a1, a2, a3, a4, a5, a6) with this property: among

3-component links there are 36 possible sets of parameters giving families of links with

cutting number 1, and one single link – the Borromean rings. The symbols corresponding

to the links with cutting number 1 must have at least two parameters equal to 1, a3 = a6 =

1, a2 = a5 = 1 or a1 = a4 = 1, and the other parameters can be arbitrary odd numbers.

Borromean rings are only link among them with the Borromean property: cutting of any

component results in a trivial link.

Among links derived from graphs G4(a1, a2, a3, a4, a5, a6, a7, a8) the following sets of

parameters yield families of links which have cutting number c−2, where c is the number

of components:

• 4-component links which have all parameters even;

• 3-component links that have an odd parameter at any of the first four positions,

and all the other parameters even;

• 3-component links a2 = a4 = 1 (mod 2) or a1 = a3 = 1 (mod 2), and with other

parameters even.

There are also some other 3-component links with cutting number 1, but some of their

parameters must be equal 1. Such links are:

• links with a1 = a3 = 0 (mod 2), the remaining parameters are odd, and a6 = a7 = 1

or a5 = a8 = 1;
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• links with a1 = a3 = 0 (mod 2), the remaining parameters are odd, and a6 = a7 = 1

or a5 = a8 = 1;

• links with a1 = a3 = 0 (mod 2), the remaining parameters are odd, and a6 = a7 = 1

or a5 = a8 = 1;

• links with a2 = a4 = 0 (mod 2), the remaining parameters are odd, and a3 = 1;

• links with a1 = a3 = 0 (mod 2), the remaining parameters are odd, and a5 = a6 = 1

or a7 = a8 = 1;

• links with a2 = a7 = a8 = 0 (mod 2), the remaining parameters are odd, and a4 = 1;

• links with a3 = a6 = a7 = 0 (mod 2), the remaining parameters are odd, and a1 = 1;

• links with a4 = a5 = a6 = 0 (mod 2), the remaining parameters are odd, and a2 = 1.

The above sets of parameters can result in equal (ambient isotopic) links.

Since cutting numbers are invariants of families, cutting numbers of all 3- and 4-

pyramidal links we obtain from their source and generating links given in Tables 8.2 and

8.3.

9.3. UNKNOTTING NUMBER

Next we compute BJ-unknotting (unlinking) numbers for the mentioned families of

KLs by using BJ-unknotting numbers of the corresponding source links and distances of

KLs.

Definition 0.3. For a given crossing v of a diagram D representing link L, let Dv denote

the link diagram obtained from D by the crossing change in v (Fig. 14).

Figure 14: (a) crossing change; (b) ∞-operation.

a) The unlinking number u(D) of a link diagram D is the minimal number of crossing

changes on the diagram required to obtain an unlink.
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b) The classical unlinking number of a link L, denoted by u(L) can be defined by u(L) =

min
D

u(D) where the minimum is taken over all minimal diagrams D representing L.

c) The BJ-unlinking number uBJ(D) of a diagram D is defined recursively in the

following manner:

1. uBJ(D) = 0 iff D represents an unlink.

2. uBJ(D) = 1 + min
Dv

uBJ(Dv) where the minimum is taken over all minimal

diagrams of a link represented by Dv for which the value is already defined.

d) uM(L) = min
D

u(D) where the minimum is taken over all minimal diagrams D

representing L.

e) The BJ-unlinking number uBJ(L) of a link L uBJ(L) = min
D

uBJ(D) where the

minimum is taken over all minimal diagrams D representing L.

J.A. Bernhard in 1994 and independently S. Jablan in 1995 conjectured:

Conjecture 0.1. (Bernhard-Jablan Conjecture) For every link L we have that u(L) =

uBJ(L).

In other words, we consider all minimal projections of a KL13, make a crossing change

in every crossing, and then minimize all the projections obtained. The same algorithm is

applied to the first, second, . . . kth generation of the KLs obtained. The BJ-unlinking

number is the minimal number of steps k in this recursive unlinking process. If the

BJ-conjecture does not hold, BJ-unlinking numbers are still the best upper bound for

unlinking numbers.

Definition 0.4. A distance of a link projection L′
1 from a link projection L′

2 is the minimal

number of crossing changes in L′
1 required to obtain L′

2.

A distance of links L1 and L2 (or Gordian distance), denoted by d(L1, L2), is the

minimal number of crossing changes in L1 required to obtain L2, the minimum taken over

all projections of L1 and L2.

BJ-unlinking number of a pyramidal knot or link L is obtained from BJ-unlinking

number of its source link L0 as uBJ(L0) + d(L,L0)
14.

13For alternating KLs, one minimal diagram is sufficient.
14For computation of KL distances of pyramidal links we used only one minimal diagram for each link.
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Example: let us compute BJ-unknotting number of the 3-pyramidal knotK given by the

parameters (a1, a2, a3, a4, a5, a6) = (4, 4, 3, 4, 3, 3) belonging to the family 3. Its distance

from the source link K ′=3 given by parameters (a′1, a
′
2, a

′
3, a

′
4, a

′
5, a

′
6) = (2, 2, 1, 2, 1, 1)

is
∑6

i=1
a1−a′1

2
= 4, and because the unknotting number of the source link K ′ is 2, BJ-

unknotting number of the knot K is 6.

We restrict our computations to KL families from Tables 8.2 and 8.3, and summarize

results in Tables 9.1 and 9.2.

9.4. ∞-UNKNOTTING NUMBER

The ∞-unknotting operation is defined by S. Jablan in 1998. Every crossing of an

oriented knot can be resolved by smoothing that preserves number of components, intro-

ducing a ”two-sided mirror” as in Fig. 14. Similar to Definition 0.3 of BJ-unknotting

number, we define the ∞-unknotting number u∞(K) restricted to minimal projections.

Every ∞-change (i.e., smoothing) transforms an alternating knot to an alternating

knot, so the set of all alternating knots is closed with regard to ∞-changes. According

to Tait’s Flyping Theorem (Theorem 0.1), all minimal projections of an alternating knot

have the same ∞-unknotting number, so for every alternating knot it is sufficient to

use only one minimal projection. We compute u∞ numbers of knots, using their minimal

diagrams. For links, u∞ is the minimal number of steps necessary to obtain a link without

self crossings, i.e., without crossings that belong to a single component. The u∞ number

is an invariant of a family, so the lists of ∞-unknotting numbers u∞(L) computed for

source and generating links L are sufficient.

The following table contains ∞-unlinking numbers for all families of KLs obtained

from the graphs G3(a1, a2, a3, a4, a5, a6), with families given by the lists of parameters

corresponding to their source and generating links. In certain cases the u∞(L) numbers for

a subfamily derived from some source link and for a family derived from the corresponding

generating link could be different. In such cases we list both results for a subfamily

(derived from a source link) and complete family (obtained from the generating link).

2,2,2,2,2,2 0 2,2,2,2,2,3 1 2,2,2,2,3,2 1 2,2,2,2,3,3 2 2,2,2,3,2,2 1 2,2,2,3,2,3 2
2,2,2,3,3,2 2 2,2,2,3,3,3 3 2,2,3,2,2,2 1 2,2,1,2,2,1 1 2,2,3,2,2,3 2 2,2,3,2,3,2 2
2,2,3,2,3,3 3 2,2,3,3,2,2 2 2,2,3,3,2,3 3 2,2,3,3,3,2 3 2,2,3,3,3,3 3 2,3,2,2,2,2 1
2,3,2,2,2,3 2 2,1,2,2,1,2 1 2,3,2,2,3,2 2 2,3,2,2,3,3 3 2,3,2,3,2,2 2 2,3,2,3,2,3 3
2,3,2,3,3,2 3 2,1,2,1,1,1 3 2,3,2,3,3,3 4 2,3,3,2,2,2 2 2,3,3,2,2,3 4 2,1,1,2,1,2 2
2,3,3,2,3,2 3 2,3,3,2,3,3 3 2,3,3,3,2,2 3 2,3,3,3,2,3 3 2,1,1,1,1,2 3 2,3,3,3,3,2 4
2,3,3,3,3,3 2 3,2,2,2,2,2 1 3,2,2,2,2,3 2 3,2,2,2,3,2 2 3,2,2,2,3,3 3 1,2,2,1,2,2 1
3,2,2,3,2,2 2 3,2,2,3,2,3 3 3,2,2,3,3,2 3 3,2,2,3,3,3 3 3,2,3,2,2,2 2 1,2,1,2,2,1 4
3,2,3,2,2,3 3 3,2,3,2,3,2 3 1,2,1,2,1,1 1 3,2,3,2,3,3 3 3,2,3,3,2,2 4 3,2,3,3,2,3 3
1,2,1,1,1,2 2 3,2,3,3,3,2 4 3,2,3,3,3,3 2 3,3,2,2,2,2 2 3,3,2,2,2,3 3 1,1,2,2,1,2 4
3,3,2,2,3,2 3 1,1,2,2,1,1 1 3,3,2,2,3,3 4 3,3,2,3,2,2 4 3,3,2,3,2,3 3 3,3,2,3,3,2 3
3,3,2,3,3,3 2 3,3,3,2,2,2 3 1,1,1,2,2,1 2 3,3,3,2,2,3 3 1,1,1,2,1,2 1 3,3,3,2,3,2 3
1,1,1,2,1,1 1 3,3,3,2,3,3 2 3,3,3,3,2,2 3 3,3,3,3,2,3 2 3,3,3,3,3,2 2 3,3,3,3,3,3 0
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The computations of u∞ numbers for the families of different source and generating

links from Tables 8.2 and 8.3 are given in the Tables 9.1 and 9.2 at the end of this section.

9.5. ADEQUACY NUMBER

Let D be a diagram of an unoriented, framed link L ∈ R3. A Kauffman state of

a diagram D is a function from the set of crossings of D to the set of signs {+1,−1}.
Graphical interpretation is given by smoothing each crossing of D by introducing markers

according to the convention illustrated in Fig. 15. A state diagram Ds of a diagram D

and Kauffman state s, is a system of circles obtained by smoothing all crossings of D [41].

The set of circles in Ds, called state circles, is denoted by C(D). Points of state circles

which belonged to the same crossing before smoothing are called self-touch points. The

number of self-touch points belonging to a state circle c ∈ C(D) is called the length of c.

Figure 15: (a) −marker; (b) +marker. The broken lines represent the edges of the
associated graph Gs connecting state circles (represented by dots).

Kauffman states s+ and s− with all + or all − signs are called special states, and

their corresponding state diagrams Ds+ and Ds− are called special diagrams. All other

Kauffman states with both + or − signs are called mixed states, and their diagrams are

called mixed state diagrams.

Definition 0.5. A diagram D is s-adequate if two arcs at every touch-point of Ds belong

to different state circles. In particular, a diagram D is +adequate or −adequate if it is

s+ or s− adequate, respectively. If a diagram is neither +adequate nor −adequate it is

called inadequate. If a diagram is both +adequate and −adequate, it is called adequate,

and if it is only +adequate or −adequate, it is called semi-adequate [42, 43].

The definition of adequacy can be extended to an arbitrary mixed state of a link

diagram D containing both positive and negative markers.
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According to Definition 0.5, a state s of the diagramD is adequate state if two segments

of Ds obtained by smoothing the same crossing belong to different state circles.

The minimal number of adequate states taken over all diagrams of a link L is called the

adequacy number of link L and denoted by a(L). All minimal diagrams of an alternating

link have the same number of adequate states. The number of adequate states a(L) is the

invariant of a family of alternating links L and it is realized on every minimal diagram

belonging to a link family [44].

The adequacy numbers of different KL families from Tables 8.2 and 8.3 are given in

Tables 9.1 and 9.2. It is interesting to notice that all alternating pyramidal KLs obtained

from graphs G3 and G4 with all parameters different from 1 have the same adequacy

numbers: 15 for all KLs derived from G3 = G3(a1, a2, a3, a4, a5, a6) and 43 for all KLs

derived from G4 = G4(a1, a2, a3, a4, a5, a6, a7, a8).

9.6. SPLITTING NUMBER

The next invariant defined for links, is the splitting number:

Definition 0.6. A splitting number sp(L) is the minimum number of crossing changes

over all projections of a link L required to obtain a split link, i.e., a link with split

components, not necessarily unknotted [45].

Comparing splitting number and unlinking number, C. Adams [45] gave the example

of 2-component link 112∗.2 0 :: −1.−1.−1.−1.−1 with splitting number 1, and unlinking

number 2. A single crossing change turns it into a split link, changing at the same time

one of its unknotted components into a trefoil, so its unlinking number is greater then

splitting number. In the book [10] we proposed a simpler example of the link with the

splitting number 1, and unlinking number 2: the link .2 (or 726 in the classical notation),

that splits by one crossing change which turns one of its unknotted components into a

trefoil knot.

From the results given in Tables 9.1 and 9.2 we conclude that for several source links

obtained from 3- and 4-pyramid decorated graphs their splitting number is smaller than

BJ-unlinking number.
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9.7. AMPHICHEIRALITY

Chirality is a geometrical-topological property of many physical systems, and a funda-

mentally important aspect of chemistry. A KL is amphicheiral (or achiral) if it is ambient

isotopic to its mirror image. Otherwise, it is chiral. There are different knot theory tech-

niques for checking amphicheirality, mostly based on the properties of polynomial KL

invariants. One of the most powerful criteria for detection of chirality of alternating links

given by their minimal diagrams is based on the Tutte polynomials: a link L is chiral if

the Tutte polynomial of its graph is not self-dual, i.e, T (GL) �= T (GL). In other words,

the Tutte polynomial of its graph does not remain the same after the exchange of variables

x → y, y → x.

From general formulae of the Tutte polynomials for n-pyramid graphs (n = 3, 4) from

Theorems 0.3 and 0.4 it follows that only alternating amphicheiral KLs derived from

n-pyramid graphs are the basic polyhedra (2n)∗. In general case, amphicheirality of the

alternating KLs corresponding to basic polyhedra follows from their minimal braid words

(aB)n and their ambient isotopy with the closed braids (Ab)n corresponding to the mirror

images of KLs in question [10, 38]. Chirality of all remaining alternating KLs derived

from n-pyramid graphs can be proved by using methods developed by X.-S. Cheng, W.-Y.

Qiu and H.-P. Zhang [23].

9.8. NON-ALTERNATING KLs DERIVED FROM n-PYRAMID GRAPHS

Recognition of non-alternating links is one of the most difficult problems in knot theory.

For every polynomial invariant P there exists an infinite number of different KLs that

cannot be recognized as different by P . For example, the amount of all KLs with n � 12

crossings that cannot be recognized as different by polynomial invariants (Alexander,

Jones, Khovanov, HOMFLYPT, and 2-variable Kauffman polynomial) is between 69%

(for the Alexander polynomial) and 9% (for the Kauffman 2-variable polynomial)15.

Non-alternating knots up to 16 crossings are completely tabulated, and thanks to the

recent results of M. Thistlethwaite [8] very soon we expect to have complete tables of

non-alternating knots up to 19 crossings. Moreover, the heuristic program Knotfind, the

part of Knotscape [7], successfully recognizes knots up to 50 crossings. From the source

15In this amount are included mutantKLs, which cannot be distinguished by any mentioned polynomial
invariant.
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and generating links from Tables 8.1 and 8.2, by changing signs of positive parameters ai,

ai �= 1, (i.e., chains of bigons in the correspondingKLs), after making all possible changes,

we obtained all non-alternating source and generating links. For the final selection of

different KLs from that list we used the program Knotfind.

An algebraic tangle t (t �= 1), given in Conway notation, is called positive if it contains

only positive numbers, and negative if it contains only negative numbers.

Conjecture 0.2. Replacing a tangle t (t �= ±1) in Conway symbol of a minimal diagram

of link L by an arbitrary algebraic tangle t′ (t′ �= ±1) of the same sign as t preserves the

minimality of the diagram.

In particular, every replacement of a positive parameter ai (ai �= 1) in G3 = G3(a1, a2,

a3, a4, a5, a6) and G4 = G4(a1, a2, a3, a4, a5, a6, a7, a8) by −ai preserves the minimality of

the corresponding KL diagram. Computations for all non-alternating knots obtained

from Tables 8.1 and 8.2 support the conjecture.

From knot families 1-3 in Table 8.1, by crossing changes, we obtain 157 non-alternating

source knots giving 10 different families, and from generating knots we obtain 186 non-

alternating generating knots giving 47 different families. They are given in Tables 9.8.1

and 9.8.2, respectively.

Table 9.8.1

1 −2,−2, 1, 1, 1, 1 2 −2, 2, 1, 1, 1, 1 3 −2,−2, 1, 1, 1, 2 4 −2,−2, 1, 1, 1,−2

5 −2, 2, 1, 1, 1, 2 6 −2,−2, 1,−2, 1, 1 7 −2,−2, 1, 2, 1, 1 8 −2, 2, 1,−2, 1, 1

9 −2, 2, 1, 2, 1, 1 10 2,−2, 1, 2, 1, 1

Table 9.8.2

1 −2,−2,−3, 2, 3,−3 2 −2,−2, 3, 2,−3,−3 3 −2,−2,−3,−2, 3, 3 4 −2,−2,−3, 3, 3,−2
5 −2,−2, 3,−2,−3, 3 6 −2,−2, 3, 2, 3, 3 7 −2, 2,−3,−2,−3, 3 8 −2,−2, 3,−2, 3, 3
9 −2, 2, 3,−2,−3, 3 10 −2,−2, 3, 3, 3, 2 11 −2, 2, 3,−2, 3, 3 12 −2, 2,−3,−2, 3, 3
13 −2,−2, 3,−3,−3, 2 14 −2,−2, 3,−3, 3, 2 15 −2,−2,−3, 2,−3, 3 16 −2,−2, 3, 2,−3, 3
17 −2, 2,−3,−2, 3,−3 18 −2,−2,−3,−3, 3, 2 19 −2,−2, 3, 2, 3,−3 20 −2,−2,−3,−2,−3, 3
21 −2,−2,−3,−2, 3,−3 22 −2,−2,−3,−3, 3,−2 23 −2,−2,−3, 2,−3,−3 24 −2,−2,−3, 3, 3, 2
25 −2, 2,−3,−2,−3,−3 26 −2,−2,−3, 2, 3, 3 27 −2,−2,−3,−3,−3, 2 28 −2,−2, 3, 3, 3,−2
29 −2,−2,−3, 3, 3,−3 30 −2,−2, 3,−3, 3,−3 31 −2,−2, 3, 3, 3, 3 32 −2,−2, 3,−3, 3, 3
33 −2,−2, 3,−3,−3, 3 34 −2, 2,−3,−3, 3,−3 35 −2, 2,−3,−3, 3, 3 36 −2, 2,−3, 3, 3, 3
37 −2, 2,−3, 3, 3,−3 38 −2,−2,−3,−3, 3, 3 39 −2, 2,−3,−3,−3, 3 40 −2, 2,−3, 3,−3,−3
41 −2,−2, 3,−3,−3,−3 42 −2, 2,−3,−3,−3,−3 43 −2,−2,−3, 3, 3, 3 44 −2,−2,−3,−3, 3,−3
45 −2, 2,−3, 3,−3, 3 46 −2,−2,−3,−3,−3, 3 47 −2,−2, 3, 3, 3,−3

From knot families 1-19 in Table 8.2, by crossing changes, we obtain 3950 non-

alternating source knots giving 81 different families, and from generating knots we obtain

4826 non-alternating generating knots giving 1679 different families.

The Jones polynomial distinguishes all knots in Table 8.1 and source knots in Table

8.2, but fails to distinguish all different generating knots in Table 8.2, distinguishing
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only 1621 from 1679 different families of generating knots, while two-variable Kauffman

polynomial distinguishes all of them.

The non-alternating knots we completely distinguish by using Knotscape, but for non-

alternating links there is no similar tool. For distinguishing non-alternating links we can

use only polynomial invariants, giving just the lower bound of the number of different

families.

We used for distinction the Kauffman two-variable polynomial that gives much better

lower bound than the Jones polynomial. For 2-component links derived from Table 8.1

this lower bound is 45 for source links and 68 for generating links, for 3-component links

it is 19 for source and 28 for generating links, and for 4-component links it is 9 for source

and 9 for generating links.

For 2-component links derived from Table 8.2 the lower bound obtained using 2-

variable Kauffman polynomial is 221 for source links and 1828 for generating links, for

3-component links it is 264 for source and 888 for generating links, for 4-component links

it is 158 for source and 170 for generating links, and for 5-component links it is 42 for

source and 42 for generating links.

Another problem important for chemistry is the recognition of amphicheiral KLs. A

chiral link L is called chiral undetectable by the polynomial invariant P if P (L) = P (L),

where L is the mirror image of L. As the first filter we can use the Jones polynomial that is

easily computable from the general formulae for the Tutte polynomials (Theorems 0.3 and

0.4), and then make final check by hardly computable colored Jones polynomials, which

are probably able to completely recognize chiral KLs undetectable by the other polyno-

mials [10]. Programs SnapPea [46] and SnapPy [47] provide the complete recognition of

chiral KLs.

We provide a few examples of source and generating KLs and their chirality. By

using the Jones polynomial as the first filter, the first candidate for an aphicheiral source

knot is G3(a1, a2, a3, a4, a5, a6) = (−2, 2, 1, 1, 1, 2), i.e., 6∗ − 2 0.2 : .2, but it turns out

to be a chiral knot which is chiral-undetectable by all polynomial invariants except the

colored Jones polynomial. The first amphicheiral family of non-alternating 2-component

links is obtained from G3. Links (−2,−3, 3, 2,−3, 3) give the family of non-alternating

3-pyramidal 2-component links. From G4 we obtain 18 amphicheiral generating knots and

each of them gives the family of amphicheiral non-alternating knots. For, example, the
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first of them, knot 8∗− 2 0.− 3.− 2 0.3.2 0.3.2 0.− 3, gives the family of amphicheiral non-

alternating 4-pyramid knots 8∗−(2p) 0.−(2q+1).−(2r) 0.(2s+1).(2p) 0.(2q+1).(2r) 0.−
(2s+ 1) (p, q, r, s ∈ N).

More detailed discussion of non-alternating pyramidal links will be given in forthcom-

ing paper.

9.9. DIFFERENT INVARIANTS AND PROPERTIES OF

ALTERNATING LINKS DERIVED FROM 3- AND 4-PYRAMID

DECORATED GRAPHS

For links corresponding to the pyramidal decorated graphs G3 = G3(a1, a2, a3, a4,

a5, a6) and G4 = G4(a1, a2, a3, a4, a5, a6, a7, a8) we compute all invariants previously men-

tioned, that can be used as the criteria for valuating KL complexity: cutting number,

u∞-number, adequacy number, splitting number (only for links), and BJ-unknotting (un-

linking) number. Except BJ-unlinking number, all of them are invariants of KL families.

In order to present the results for decorated graphs in concise form, we restrict com-

putations to the representatives of different families, and compute invariants of KLs and

their families only for generating links. For source and generating links from Tables 8.2

and 8.3 we also compute few well known KL invariants: linking number, signature, hyper-

bolic volume, genus (only for knots), and data about someKL properties: amphicheirality,

period and the order of the symmetry group of the corresponding polyhedron.

Results for KLs derived from 3- and 4-pyramid decorated graphs G3 and G4 are given

in Tables 9.1. and 9.2. For every invariant or property we provide comparative data for

source links SL and generating links GL. If the results for source links and generating

links coincide (e.g., for the number of components), or if the results for generating links are

not relevant for the future computations (in the case of BJ-unlinking numbers), results

are given in one column only. Number of components is denoted by c, BJ-unlinking

number by uBJ , ∞-unlinking number by u∞, adequacy number by a, splitting number by

sp, signature by s, hyperbolic volume by hv, linking number by l, cutting number by cu,

genus by g, periods by p, amphicheirality by A (1 for amphicheiral KLs and 0 for chiral),

order of the symmetry group of the corresponding polyhedron by sym, genus (computed

only for knots) by g, linking number by l, and cutting number by cn.
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Table 9.1
SL SL GLSLGLSLGLSLGL SL GL SL GL SLGL SL GL SLGLSLGLSLGL

c uBJu∞u∞ a a sp sp s s hv hv p p A A symsym g g l l cn cn
1 1 2 3 3 8 15 2 4 10.579 19.8959 2 2 0 0 2 2 3 4
2 1 2 3 3 9 15 0 6 12.0989 19.0457 3 3 0 0 6 6 2 5
3 1 2 3 3 10 15 2 8 12.2059 19.0525 2 2 0 0 2 2 3 6
4 2 2 2 2 7 15 1 5 1 5 8.99735 20.7477 2 0 0 0 4 4 0 0 1 1
5 2 3 3 3 9 15 2 6 1 9 10.667 19.899 2,4 2,4 0 0 8 8 2 6 1 1
6 2 4 3 3 9 15 3 3 3 3 12.0461 19.065 2,3 3 0 0 6 6 3 3 1 1
7 2 2 2 2 11 15 2 3 3 7 13.6313 18.2222 2 2 0 0 2 2 1 1 1 1
8 2 3 1 2 12 15 3 4 3 7 13.844 18.2154 2 2 0 0 8 8 0 0 1 1
9 3 2 0 0 6 15 2 8 0 6 7.32772 21.6051 2,3 3 1 0 48 24 0 0 1 2
10 3 4 1 1 13 15 4 5 4 6 15.1567 17.3998 2 2 0 0 4 4 1 1 2 2
11 4 6 0 0 15 15 6 6 5 5 16.5913 16.5913 2,4 2,4 0 0 48 24 6 6 3 3

Here is a brief comment of the results in Table 9.1:

• links from the family 11 belong to the class of so-called hard links [10], i.e., links

with the uBJ = n
2
, where n is the number of crossings. This is also the only family

of 3-pyramid links with 4 components;

• after families are stabilized, i.e., for all 3-pyramid KLs with all parameters greater

than 1 adequacy number is 15;

• the lower bound of hyperbolic volume hv(L) of all 3-pyramid KLs is the hyper-

bolic volume of Borromean rings (source link 9) Vm = hv(6∗) = 7.32772, and

the upper bound is the hyperbolic volume of completely augmented link L =

6∗(2,−2) 0.(2,−2).(2,−2) 0.(2,−2)(2,−2) 0.(2,−2) with VM = hv(L) = 5Vm [48].

All source and generating links from our list can be distinguished by hyperbolic

volume;

• Borromean rings have the highest symmetry among 3-pyramid KLs, and it is the

only amphicheiral KL among all 3-pyramid KLs. In general, the same holds for

all n-pyramid KLs, where the antiprismatic basic polyhedra (2n)∗ are the only am-

phicheiral links in their classes and possess the highest symmetry. Since 3-antiprism

is the regular octahedron with the symmetry group Oh of order 48, Borromean rings

obtained from it have the pyritohedral symmetry group Th of order 24, and all the

other alternating KLs obtained from antiprysms (2n)∗ with the symmetry group

Dnd of order 4n have dihedral symmetry group Dn of order 2n;

• the source and generating links from the families 4, 8, and 9 with the linking number

0 can be easily extended to the infinite families of links with the linking number 0

of the form (2p, 2q−1, 2r−1, 2s−1, 2q−1, 2r−1), (2p, 2p, 2q−1, 2r, 2r, 2s−1), and

(2p− 1, 2p− 1, 2p− 1, 2p− 1, 2p− 1, 2p− 1) (p, q, r ∈ N), and the linking number of
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4-component links from the family 11 is d =
∑6

i=1
ai
2
for arbitrary even parameters

ai;

• as we already mentioned, Borromean rings, the only 3-pyramid source link with

the cutting number 1, can be extended into subfamilies of 3-pyramid links with the

cutting number 1.

Table 9.2

SL GLSLGLSLGLSLGL SL GL SL GL SL GL SLGLSLGLSLGL
c uBJu∞u∞ a a sp sp s s hv hv p A A symsym g g l l cn cn

1 1 2 1 4 11 43 0 8 12.3509 33.0332 2,4 1 0 16 8 3 7
2 1 1 3 5 13 43 0 8 14.3446 31.9412 2 0 0 2 2 3 7
3 1 1 2 5 15 43 0 4 15.9387 31.1777 0 0 0 1 1 3 5
4 1 3 4 5 16 43 4 4 16.2714 30.856 2 0 0 4 4 2 2
5 1 2 3 4 13 43 2 6 15.4239 31.4851 2 0 0 2 2 4 6
6 1 2 4 5 20 43 2 6 18.3111 29.8134 2 0 0 2 2 4 6
7 1 2 4 4 18 43 2 6 17.8936 30.1129 0 0 0 1 1 4 6
8 1 1 4 4 16 43 0 4 17.3442 30.4002 0 0 0 1 1 3 5
9 1 2 4 4 18 43 0 4 17.779 30.0954 0 0 0 1 1 3 5
10 1 2 4 4 15 43 2 6 17.2512 30.3955 2 0 0 2 2 4 6
11 1 3 5 5 17 43 4 4 17.4305 30.3928 2 0 0 2 2 2 2
12 1 2 4 4 24 43 2 10 19.8553 29.0561 0 0 0 1 1 4 8
13 1 2 4 4 22 43 2 10 19.4053 29.3371 0 0 0 1 1 4 8
14 1 2 4 4 25 43 0 8 20.3233 28.7694 2,4 0 0 8 8 3 7
15 1 2 4 4 21 43 4 12 19.3062 29.3465 2 0 0 2 2 4 8
16 1 2 4 5 18 43 4 12 18.7481 29.6339 0 0 0 1 1 4 8
17 1 3 4 4 19 43 4 12 18.8383 29.633 0 0 0 1 1 4 8
18 1 2 4 4 20 43 0 8 19.192 29.312 2 0 0 2 2 3 7
19 1 2 4 4 21 43 4 12 19.4687 29.3615 2 0 0 2 2 4 8
20 2 2 1 3 12 43 2 7 1 7 13.9484 32.2681 2 0 0 2 2 1 1 1 1
21 2 1 3 3 14 43 1 6 1 7 15.8513 31.1782 0 0 0 1 1 1 1 1 1
22 2 2 3 3 17 43 2 7 1 3 17.4607 30.4274 0 0 0 1 1 1 5 1 1
23 2 3 3 4 22 43 2 3 3 5 19.7214 29.0666 0 0 0 1 1 1 1 1 1
24 2 2 3 4 19 43 2 3 1 3 19.1768 29.3481 0 0 0 1 1 1 1 1 1
25 2 2 3 3 29 43 2 3 3 9 21.7589 28.0261 2 0 0 2 2 1 1 1 1
26 2 2 3 3 26 43 2 3 3 9 21.1751 28.2886 0 0 0 1 1 1 1 1 1
27 2 3 3 3 27 43 3 3 5 11 21.3007 28.3202 0 0 0 1 1 1 1 1 1
28 2 3 3 3 24 43 3 3 5 11 20.6932 28.5882 0 0 0 1 1 1 1 1 1
29 2 4 3 3 22 43 3 3 5 11 20.6332 28.5823 2 0 0 2 2 3 3 1 1
30 2 3 2 3 15 43 2 7 3 13 16.8987 30.7205 2 0 0 2 2 0 4 1 1
31 2 3 3 3 21 43 3 4 5 11 20.1267 28.8618 2 0 0 2 2 0 0 1 1
32 2 2 1 2 16 43 2 6 1 7 16.3527 30.8763 2 0 0 2 2 0 0 1 1
33 2 2 2 2 20 43 2 6 1 11 17.9481 30.1188 2 0 0 2 2 0 4 1 1
34 2 3 1 2 20 43 3 4 1 3 19.2102 29.3243 2 0 0 2 2 0 0 1 1
35 2 3 1 2 28 43 3 4 3 9 21.3418 28.2848 2 0 0 2 2 0 0 1 1
36 2 3 1 2 23 43 3 4 1 7 20.6254 28.5567 0 0 0 1 1 2 2 1 1
37 2 3 2 2 25 43 3 5 3 9 20.8747 28.573 2 0 0 2 2 1 1 1 1
38 3 3 0 0 14 43 3 9 0 4 15.5509 31.5166 2 0 0 4 4 1 7 1 2
39 3 3 1 3 17 43 3 7 2 6 17.7365 30.1292 2 0 0 2 2 1 1 1 2
40 3 5 2 2 22 43 5 9 2 2 19.3535 29.3832 2 0 0 2 2 5 9 2 2
41 3 6 3 3 24 43 5 5 2 2 21.0441 28.305 2 0 0 2 2 5 5 2 2
42 3 4 2 2 33 43 4 5 4 8 23.1191 27.2653 2 0 0 2 2 1 1 2 2
43 3 4 2 2 29 43 4 5 2 6 22.5113 27.5415 0 0 0 1 1 3 3 2 2
44 3 4 2 2 34 43 4 6 6 10 23.2408 27.2931 2 0 0 4 4 2 2 1 1
45 3 5 2 2 27 43 5 6 4 8 22.0399 27.8145 2 0 0 2 2 4 4 2 2
46 3 4 1 2 31 43 4 6 4 8 22.6715 27.5328 0 0 0 1 1 2 2 2 2
47 3 6 0 0 17 43 6 10 4 12 18.2467 29.9481 2 0 0 8 8 6 10 2 2
48 3 4 1 2 26 43 4 6 2 6 21.9428 27.7875 0 0 0 4 4 2 2 2 2
49 4 6 1 1 38 43 6 7 5 7 24.4976 26.5184 2 0 0 2 2 3 3 2 2
50 4 6 1 1 34 43 6 7 5 7 23.886 26.7736 2 0 0 2 2 5 5 3 3
51 5 8 0 0 43 43 8 8 6 6 25.7619 25.7619 2 0 0 8 8 8 8 3 3

From the results given in Table 9.2 we conclude:

• links from the family 51 belong to the class of hard links [10], i.e., links with the

uBJ = n
2
, where n is the number of crossings. This is the only family of 4-pyramid

links with 5 components;

• for all 4-pyramid KLs with all parameters greater than 1 adequacy number is 43;
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• the lower bound for the hyperbolic volume hv(L) of all 4-pyramid KLs is the

hyperbolic volume of the knot 8∗ (source link 1) Vm = hv(8∗) = 12.3509, and

the upper bound is the hyperbolic volume of completely augmented link L =

8∗(2,−2) 0.(2,−2).(2,−2) 0.(2,−2).(2,−2) 0.(2,−2). (2,−2) 0.(2, −2) with VM =

hv(L) = 53.4031 [48]. All source and generating links from our list can be dis-

tinguished by hyperbolic volume;

• the knot 8∗ (source link 1 corresponding to the basic polyhedron with dihedral

symmetry group D4 of order 8), derived by alternating from the 4-antiprism with

the symmetry group D4d of order 16, has the highest symmetry among 4-pyramid

KLs, and it is the only amphicheiral KL among all 4-pyramid KLs;

• the source and generating links from the families 31, 32, 34, and 35 with the linking

number 0 extend to the infinite families of links with the linking number 0, and the

linking number of 5-component links from the family 51 is d =
∑6

i=1
ai
2
for arbitrary

even parameters ai;

• all links from the family 44 have the cutting number 1. Source links from the family

38 give the family of links (2p, 1, 2, 1, 1, 1, 1, 1), and source links from the family 39

give the family of links (2p, 1, 1, 1, 2, 1, 1, 2) (p ∈ N) with the cutting number 1. All

5-component links from the family 51 have the cutting number 3.

Values of invariants given in Tables 9.1 and 9.2 are initial conditions for computing

invariants for other members of the corresponding families. General formulae for complete

families, expressed by parameters ai, can be obtained as linear recursions, in the same

way as we obtained general formula for uBJ of the family 3.

For example, for the same family derived from the generating link 2, 2, 3, 2, 3, 3 with

signature s = 8 and genus g = 6, the general formula for signature is s(a1, a2, a3, a4,

a5, a6) = 8 + a2 + a3 + a5 + a6, and for the genus is g(a1, a2, a3, a4, a5, a6) = 6 + a2−2
2

+

a3−3
2

+ a5−3
2

+ a6−3
2

.

9.10. ZEROES OF JONES POLYNOMIAL AND PORTRAITS OF KL-

FAMILIES

Plots of all zeroes of the Jones polynomial [37, 49, 53] for KL family, referred to as

the characteristic ”portrait of family”. We interpret these plots in the light of results
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Figure 16: Portraits of the families (a) 6∗(2a1) 0.(2a2).(2a3+1) 0.(2a4+1).(2a5+1) 0.(2a6+
1) (b) 6∗− (2a1) 0.(2a2).(2a3+1) 0.(2a4+1).(2a5+1) 0.(2a6+1) (c) 6∗(2a1) 0.(2a2).(2a3+
1) 0.(2a4 +1).(2a5 +1) 0.(2a6) (d) 6

∗(2a1) 0.(2a2).− (2a3 +1) 0.(2a4 +1).(2a5 +1) 0.(2a6).

in [37, 49–53].

Portraits of the alternating 3-pyramid knot family 6∗(2a1) 0.(2a2).(2a3 + 1) 0. (2a4 +

1).(2a5+1) 0.(2a6+1) and non-alternating knot family 6∗−(2a1) 0.(2a2).(2a3 +1) 0.(2a4+

1).(2a5+1) 0.(2a6+1) are shown in Fig. 16a,b, and portraits of the alternating 3-pyramid

knot family 6∗(2a1) 0.(2a2).(2a3+1) 0.(2a4+1).(2a5+1) 0.(2a6) and non-alternating knot

family 6∗(2a1) 0.(2a2). − (2a3 + 1) 0.(2a4 + 1).(2a5 + 1) 0.(2a6) are shown in Fig. 16c,d

(1 � ai � 5, i = 1, . . . , 6).

Figure 16 suggests that almost all of the roots of the Jones polynomials approach

the unit circle under twisting16, they are dense in the unit circle [53], and critical points

are the third [37, 49] and sixth roots of unity. The plots on Fig. 16b,d correspond to

non-alternating KL families, because some of the zeros are real and negative [54].

10. CONCLUSION

In this paper we proposed the universal model for analyzing different knotted poly-

hedral structures relevant for chemistry. It is illustrated on KLs obtained from 3- and

16Adding a twist changes the corresponding parameter in a Conway symbol by ±1.
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4-pyramid decorated graphs, based on construction of polyhedral decorated graphs, their

graphical notation, and derivation of general formulae for their Tutte polynomials. More-

over, the Jones polynomials of their corresponding alternating and non-alternating KLs

are obtained by change of variables in the Tutte polynomials. Invariants for families of

polyhedral KLs are obtained recursively from the computations for source and generating

links. ”Portraits of families”, visualized distributions of zeros of the Jones polynomials

enable visual recognition of KL families and some of their important properties.

Some constructions discussed in this paper (in particular, constructions based on three-

cross curves) are already effectively used for producing examples of three-dimensional

DNA structures that include cubes, truncated octahedra and tetrahedra [55]. Hence, we

expect that general construction and knot-theory based analysis methods proposed in this

paper will find their practical applications in the design of basic DNA building blocks in

such a way that basic units will assemble into larger three-dimensional knotted and linked

DNA structures.

In the series of the forthcoming papers we will use this model to analyze more compli-

cated decorated polyhedral graphs and their correspondingKLs, beginning from prismatic

and bipyramid decorated graphs.
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