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Abstract

Algebraic hyperstructures represent a natural extension of classical algebraic
structures. In a classical algebraic structure, the composition of two elements is an
element, while in an algebraic hyperstructure, the composition of two elements is
a set. Algebraic hyperstructure theory has a multiplicity of applications to other
disciplines. The main purpose of this paper is to provide examples of ternary hy-
perstructures associated with chain reactions.

1 Introduction

Algebraic hyperstructures represent a natural extension of classical algebraic structures

and they were introduced in 1934 by the French mathematician F. Marty [10]. In a

classical algebraic structure, the composition of two elements is an element, while in an

algebraic hyperstructure, the composition of two elements is a set. Since then, hundreds

of papers and several books have been written on this topic. One of the first books,

dedicated especially to hypergroups, is “Prolegomena of Hypergroup Theory”, written by

P. Corsini in 1993 [2]. Another book on “Hyperstructures and Their Representations”, by

T. Vougiouklis, was published one year later [15].

On the other hand, algebraic hyperstructure theory has a multiplicity of applications

to other disciplines: geometry, graphs and hypergraphs, binary relations, lattices, groups,

MATCH 
Communications in Mathematical 

and in Computer Chemistry 

MATCH Commun. Math. Comput. Chem. 65 (2011) 491-499 
 

                                          ISSN 0340 - 6253 
 



fuzzy sets and rough sets, automata, cryptography, codes, median algebras, relation al-

gebras, C-algebras, artificial intelligence, probabilities and so on. A recent book on these

topics is “Applications of Hyperstructure Theory”, by P. Corsini and V. Leoreanu, pub-

lished by Kluwer Academic Publishers in 2003 [3]. We mention here another important

book for the applications in Geometry and for the clearness of the exposition, written by

W. Prenowitz and J. Jantosciak [12]. Another monograph is devoted especially to the

study of Hyperring Theory, written by Davvaz and Leoreanu-Fotea [4]. It begins with

some basic results concerning ring theory and algebraic hyperstructures, which represent

the most general algebraic context, in which the reality can be modelled. Several kinds

of hyperrings are introduced and analyzed in this book. The volume ends with an outline

of applications in Chemistry (also see [5]) and Physics, canalizing several special kinds of

hyperstructures: e-hyperstructures and transposition hypergroups. The theory of suitable

modified hyperstructures can serve as a mathematical background in the field of quantum

communication systems.

n-ary generalizations of algebraic structures is the most natural way for further de-

velopment and deeper understanding of their fundamental properties. In [6], Davvaz

and Vougiouklis introduced the concept of n-ary hypergroups as a generalization of hy-

pergroups in the sense of Marty. Also, we can consider n-ary hypergroups as a nice

generalization of n-ary groups. Leoreanu-Fotea and Davvaz in [8] introduced and studied

the notion of a partial n-ary hypergroupoid, associated with a binary relation. Some im-

portant results, concerning Rosenberg partial hypergroupoids, induced by relations, are

generalized to the case of n-ary hypergroupoids, also see [9]. Ternary semihypergroups

are algebraic structures with one associative hyperoperation. A ternary semihypergroup

is a particular case of an n-ary semihypergroup (n-semihypergroup) for n = 3.

The main purpose of this paper is to provide examples of ternary hyperstructures

associated with chain reactions.

2 Algebraic hyperstructures

2.1 Binary algebraic hyperstructures

An algebraic hyperstructure is a non-empty set H together with a function · : H ×H −→
℘∗(H) called hyperoperation, where ℘∗(H) denotes the set of all non-empty subsets of H.
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If A,B are non-empty subsets of H and x ∈ H, then we define

A · B =
⋃

a∈A,b∈B
a · b, x ·B = {x} · B, and A · x = A · {x} .

The hyperoperation (·) is called associative in H if

(x · y) · z = x · (y · z) for all x, y, z in H

which means that ⋃
u∈x·y

u · z =
⋃
v∈y·z

x · v.

We say that a semihypergroup (H,⊗) is a hypergroup if for all x ∈ H, we have

x · H = H · x = H. A hypergroupoid (H, ·) is an Hv-group, if for all x, y, z ∈ H, the

following conditions hold:

(1) x · (y · z) ∩ (x · y) · z �= ∅,

(2) x ·H = H · x = H .

A non-empty subset K of a hypergroup (respectively, Hv-group) H is called a subhy-

pergroup (respectively, Hv-subgroup) of H if a ·K = K · a = K for all a ∈ K.

2.2 Ternary algebraic hyperstructures

Let H be a non-empty set and f : H ×H ×H −→ ℘∗(H), where ℘∗(H) is the set of all

non-empty subsets of H. Then f is called a ternary hyperoperation on H and the pair

(H, f) is called a ternary hypergroupoid. If A,B,C are non-empty subsets of H, then we

define

f(A,B,C) =
⋃

a∈A,b∈B,c∈C
f(a, b, c).

A ternary hypergroupoid (H, f) is called a ternary semihypergroup if for every a1, . . . a5 ∈
H, we have

f(f(a1, a2, a3), a4, a5) = f(a1, f(a2, a3, a4), a5) = f(a1, a2, f(a3, a4, a5)) .

A non-empty set H together with a ternary hyperoperation f is called a ternary Hv-

semigroup if the weak associativity is valid, i.e., for every a1, . . . a5 ∈ H,

f(f(a1, a2, a3), a4, a5) ∩ f(a1, f(a2, a3, a4), a5) ∩ f(a1, a2, f(a3, a4, a5)) �= ∅ .
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Since we can identify the set {x} with the element x, any ternary semigroup is a ternary

semihypergroup. A ternary semigroup does not necessarily reduce to an ordinary semi-

group. This has been shown by the following example. Let S = {−i, 0, i} be a ternary

semigroup under the multiplication over complex numbers whole S is not a binary semi-

group under the multiplication over complex numbers [7].

A ternary semihypergroup (respectively, ternary H − v-semigroup) (H, f) is called a

ternary hypergroup (respectively, ternary H − v-group) if for all a, b, c ∈ H there exist

x, y, z ∈ H such that:

c ∈ f(x, a, b) ∩ f(a, y, b) ∩ f(a, b, z).

Notice that a ternary semigroup (S, f) is said to be a ternary group if it satisfies the

following property that for all a, b, c ∈ S, there exist unique x, y, z ∈ S such that

c = f(x, a, b), c = f(a, y, b), c = f(a, b, z) .

Therefore, a ternary group is a ternary hypergroup, too.

3 Chain reactions

3.1 Radical

An atom or group of atoms possessing an odd (unpaired) electron is called radical. Rad-

ical species can be electrically neutral, in which case they are sometimes referred to as

free radicals. Pairs of electrically neutral ”free” radicals are formed via homolytic bond

breakage. This can be achieved by heating in non-polar solvents or the vapor phase.

At elevated temperature or under the influence ultraviolet light at room tempreture, all

molecular species will dissociate into radicals. Homolsis or homolytic bond fragmentation

occurs when ( in the language of Lewis theory ) a two electron covalent bond breaks and

one electron goes to each of the partner species.

For example, chlorine, Cl2, forms chlorine radicals (Cl•) and peroxides form oxygen rad-

icals.

X—X −→ 2X•

Cl—Cl −→ 2Cl•

R—O—O–R −→ R—O•
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3.2 Radical reactions

Radical bond forming reactions (radical couplings) are rather rare processes. The reason

is because radicals are normally present at low concentrations in a reaction medium, and

it is statistically more likely they will abstract a hydrogen, or undergo another type of a

substitution process, rather than reacting with each other by coupling. And as radicals

are uncharged, there is little long range Coulombic attraction between two radical centres.

Radical substitution reactions tend to proceed as chain reaction processes, often with

many thousands of identical propagation steps. The propensity for chain reactivity gives

radical chemistry a distinct feel compared with polar Lewis acid/base chemistry where

chain reactions are less common.

3.3 Chain radical substitution

Methane can be chlorinated with chlorine to give chloromethane and hydrogen chloride.

The reaction proceeds as a chain, radical, substitution mechanism. The process is a little

more involved, and three steps are involved: initiation, propagation and termination:

(1) Cl2 −→ 2Cl•

(1) is called Chain-initiating step.

(2) Cl• + CH4 −→ HCl + CH•
3

(3) CH•
3 + Cl2 −→ CH3Cl + Cl•

then (2), (3), (2), (3), etc, until finally:

(2) and (3) are called Chain-propagating steps.

(4) Cl• + Cl• −→ Cl2 or

(5) CH•
3 + CH•

3 −→ CH3CH3 or

(6) CH•
3 + Cl• −→ CH3Cl .

(4),(5) and (6) are called Chain-terminating steps.

First in the chain of reactions is a chain-initiating step, in which energy is absorbed

and a reactive particle generated; in the present reaction it is the cleavage of chlorine into

atoms (step 1).

There are one or more chain-propagating steps, each of which consumes a reactive particle
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and generates another; there they are the reaction of chlorine atoms with methane (step

2), and of methyl radicals with chlorine (step 3).

A chlorine radical abstracts a hydrogen from methane to give hydrogen chloride and

a methyl radical. The methyl radical then abstracts a chlorine atom (a chlorine radical)

from Cl2 to give methyl chloride and a chlorine radical... which abstracts a hydrogen from

methane... and the cycle continues... Finally there are chain-terminating steps, in which

reactive particles are consumed but not generated; in the chlorination of methane these

would involve the union of two of the reactive particles, or the capture of one of them by

the walls of the reaction vessel.

3.4 The Halogens F,Cl, Br, and I

The halogens are all typical non-metals. Although their physical forms differ-fluorine and

chlorine are gases, bromine is a liquid and iodine is a solid at room temperature, each

consists of diatomic molecules; F2, Cl2, Br2 and I2. The halogens all react with hydrogen

to form gaseous compounds, with the formulas HF,HCl,HBr, and HI all of which are

very soluble in water. The halogens all react with metals to give halides.

: F̈.. - F̈ :,.. : C̈l.. - C̈l :,.. : B̈r.. - B̈r :,.. : Ï.. - Ï :..

The reader will find in [11] a deep discussion of chain reactions and halogens.

4 Chemical algebraic hyperstructures

In during chain reaction

A2 + B2
Heat or Light←→ 2AB

there exist all molecules A2, B2, AB and whose fragment parts A•, B• in experiment. El-

ements of this collection can by combine with each other. All combinational probabilities

for the set H = {A•, B•, A2, B2, AB} to do without energy can be displayed as follows:

+ A• B• A2 B2 AB
A• A•, A2 A•, B•, AB A•, A2 A•, B2, B

•, AB A•, AB,A2, B
•

B• A•, B•, AB B•, B2 A•, B•, AB,A2 B•, B2 A•, B•, AB,B2

A2 A•, A2 A•, B•, AB,A2 A•, A2 A•, B•, A2, B2, AB A•, B•, A2, AB
B2 A•, B•, B2, AB B•, B2 A•, B•, A2, B2, AB B•, B2 A•, B•, B2, AB
AB A•, AB,A2, B

• A•, B•, AB,B2 A•, B•, A2, AB A•, B•, B2, AB A•, B•, A2, B2, AB
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Theorem. (H,+) is an Hv-group.

X = {A•, A2} and Y = {B•, B2} are only Hv-subgroups of (H,+).

If we consider A = H and B ∈ {F,CL,Br, I} (for example B = I), the complete
reaction table becomes:

+ H• I• H2 I2 HI
Ho H•, H2 H•, I•, HI H•H2 H•, I2, I•, HI H•, HI,H2, I

•

I• H•, I•, HI I•, I2 H•, I•, HI,H2 I•, I2 H•, I•, HI, I2
H2 H•, H2 H•, I•, HI, I2 H•, H2 H•, I•, H2, I2, HI H•, I•, H2, HI
I2 H•, I•, I2, HI H•, I2 H•, I•, H2, I2, HI H•, I2 H•, I•, I2, HI
HI H•, HI,H2, I

• H•, I•, HI, I2 H•, I•, H2, HI H•, I•, H2, HI H•, I•, H2, I2, HI

Now, we consider the ternary combinations:

f(A•,−,−) A• B• A2 B2 AB
A• A•, A2 A•, B•, A2, AB A•, A2 H A•, AB,A2, B

•

B• A•, B•, A2, AB A•, B•, B2, AB A•, B•, AB,A2 A•, B•, B2, AB H
A2 A•, A2 A•, B•, AB,A2 A•, A2 H A•, B•, A2, AB
B2 A•, B•, B2, AB A•, B•, B2, AB H A•, B•, B2, AB H
AB A•, B•, A2, AB H A•, B•, A2, AB H H

f(B•,−,−) A• B• A2 B2 AB
A• A•, A2, B

•, AB A•, B•, B2, AB A•, A2, B
•, AB A•, B2, B

•, AB H
B• A•, B•, B2, AB B•, B2 H B•, B2 A•, B•, AB,B2

A2 A•, A2, B
•, AB H A•, A2, B

•, AB H H
B2 A•, B•, B2, AB B•, B2 H B•, B2 A•, B•, B2, AB
AB H A•, B•, AB,B2 H A•, B•, B2, AB H

f(A2,−,−) A• B• A2 B2 AB
A• A•, A2 A•, B•, A2, AB A•, A2 H A•, AB,A2, B

•

B• A•, B•, A2, AB H A•, B•, AB,A2 H H
A2 A•, A2 A•, B•, AB,A2 A•, A2 H A•, B•, A2, AB
B2 H H H H H
AB A•, A2, B

•, AB H A•, B•, A2, AB H H

f(B2,−,−) A• B• A2 B2 AB
A• H A•, B•, B2, AB H A•, B2, B

•, AB H
B• A•, B•, B2, AB B•, B2 H B•, B2 A•, B•, AB,B2

A2 H H H H H
B2 A•, B•, B2, AB B•, B2 H B•, B2 A•, B•, B2, AB
AB H A•, B•, AB,B2 H A•, B•, B2, AB H

f(AB,−,−) A• B• A2 B2 AB
A• A•, A2, B

•, AB H A•, A2, B
•, AB H H

B• H A•, B2, B
•, AB H A•, B2, B

•, AB H
A2 A•, A2, B

•, AB H A•, A2, B
•, AB H H

B2 H A•, B2, B
•, AB H A•, B2, B

•, AB H
AB H H H H H
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Theorem. (H, f) is a ternary Hv-group.

As a simple of how to calculate the associativity, we illustrate one of the cases:

f(f(A•, A2, AB), A•, A•) = f({A•, B•, A2, AB}, A•, A•)
= f(A•, A•, A•) ∪ f(B•, A•, A•) ∪ f(A2, A

•, A•) ∪ f(AB,A•, A•)
= {A•, A2} ∪ {A•, A2, B

•, AB} ∪ {A•, A2} ∪ {A•, A2, B
•, AB}

= {A•, A2, B
•, AB},

f(A•, f(A2, AB,A•), A•) = f(A•, {A•, A2, B
•, AB}, A•)

= f(A•, A•, A•) ∪ f(A•, A2, A
•) ∪ f(A•, B•, A•) ∪ f(A•, AB,A•)

= {A•, A2} ∪ {A•, A2} ∪ {A•, A2, B
•, AB} ∪ {A•, A2, B

•, AB}
= {A•, A2, B

•, AB}
and

f(A•, A2, f(AB,A•, A•)) = f(A•, A2, {A•, A2, B
•, AB})

= f(A•, A2, A
•) ∪ f(A•, A2, A2) ∪ f(A•, A2, B

•) ∪ f(A•, A2, AB)
= {A•, A2} ∪ {A•, A2} ∪ {A•, A2, B

•, AB} ∪ {A•, A2, B
•, AB}

= {A•, A2, B
•, AB}.

References

[1] A. R. Ashrafi, A. R. Eslami–Harandi, Construction of some hypergroups from com-

binatorial structures, J. Zhejiang Univ. Sci. 4 (2003) 76–79.

[2] P. Corsini, Prolegomena of Hypergroup Theory , Aviani, Udine, 1993.

[3] P. Corsini, V. Leoreanu, Applications of Hyperstructure Theory , Kluwer, Dordrecht,

2003.

[4] B. Davvaz, V. Leoreanu–Fotea, Hyperring Theory and Applications, Internat. Aca-

demic Press, Palm Harber, 2007.

[5] B. Davvaz, A. Dehgan–Nezad, Chemical examples in hypergroups, Ratio Matematica

14 (2003) 71–74.

[6] B. Davvaz, T. Vougiouklis, n-Ary hypergroups, Iran. J. Sci. Technol. A2 30 (2006)

165–174.

[7] V. N. Dixit, S. Dewan, A note on quasi and bi-ideals in ternary semigroups, Int. J.

Math. Math. Sci. 18 (1995) 501–508.

[8] V. Leoreanu–Fotea, B. Davvaz, n-Hypergroups and binary relations, Eur. J. Comb.

29 (2008) 1207–1218.

[9] V. Leoreanu–Fotea, B. Davvaz, Roughness in n-ary hypergroups, Inf. Sci. 178 (2008)

4114–4124.

-498-



[10] F. Marty, Sur une generalization de la notion de group, 8th Congress Math. Scande-

naves , Stockholm, 1934, pp. 45–49.

[11] R. T. Morrison, R. N. Boyd, Organic Chemistry , Prentice–Hall, Englewood Cliffs,

1992.

[12] W. Prenowitz, J. Jantosciak, Join Geometries , Springer–Verlag, Berlin, (1979).

[13] F. M. Sioson, Ideal theory in ternary semigroups, Math. Jpn. 10 (1965) 63–84.

[14] T. Vougiouklis, A new class of hyperstructures, J. Comb. Inf. Syst. Sci. 20 (1995)

229–235.

[15] T. Vougiouklis, Hyperstructures and Their Repesentations, Hadronic Press, Palm

Harber, 1994.

-499-


