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ABSTRACT
       The full combinatorial search methodology has been used with a set of molecular 
connectivity indices plus five experimental parameters and the molar mass to extract the best 
descriptors for twelve properties of a set of organic solvents. The performance of the full 
combinatorial methodology is compared with the performance of the greedy search 
methodology obtained in a previous paper. The molecular connectivity indices used with both 
methodologies belong to different configurations as they can encode different hydrogen and 
core electron contributions and can give rise to configuration-dependent descriptors. The indices 
of the best configuration-dependent descriptors for the twelve properties, either molecular 
connectivity indices and/or experimental indices have then been pooled together and used to 
derive super-descriptors. These super-descriptors achieve, a better description for four 
properties, among which, an impressive description for the melting points. A thorough 
investigation has also been performed on the model quality of random indices, which have been 
used to derive either ‘zero-level’ descriptors, or semi-random descriptors. This has not only 
allowed to have a concrete idea of the model quality of random indices but also do draw 
interesting considerations about the quality of semi-random descriptors that is, descriptors based 
both on random numbers and on molecular connectivity indices and/or experimental 
parameters. In fact, a few properties can advantageously be described with this type of 
descriptors. This last investigation has allowed to better focus the validity of the q2 leave-one-
out statistics and of the Topliss-Costello rule. On the other side, the full combinatorial 
technique, either with normal descriptors or with super-descriptors has shown the real limits of 
the greedy search algorithm, has confirmed previous conclusions about the contributions of the 
hydrogen atoms, and has underlined the importance of pseudoconnectivity indices, experimental 
indices, and of some ad hoc parameters.  

 
INTRODUCTION

     In a recent paper,1 the satisfactory QSPR model of twelve properties of a highly 

heterogeneous class of organic solvents has been done with three different model strategies 

using the greedy algorithm, which is a forward combinatorial search that consists to add the 

next best index keeping constant the previous ones. Normally, this search algorithm that 
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drastically reduces the number of combinations to be searched, gives satisfactory results, but 

it is not guaranteed that it finds the best descriptor, a drawback that all inclusion stepwise 

methods share. Furthermore, it is not evident how far from optimal the found descriptor is. 

The greedy model strategy, which gave rather good results, was performed with a set of thirty 

configuration-dependent molecular connectivity indices shown in Table 1, where the � index 

encodes the number of electronegative atoms (nEA), while the �  index encodes the sum of the 

S-State index for the electronegative atoms: N, O, F, Cl, Br (<SEA> is the average value for a 

specific type of atom, sulphur has not been considered as an electronegative atom). To these 

indices the molar mass, M, was added, and for the boiling and melting points as well as for 

the dipole moment three ad hoc parameters were introduced: AHb, AHm, and � (0, 1), 

respectively. These parameters helped to take care of the hydrogen bond problem and/or 

structural problems. It was also proposed and used a model greedy strategy that included five 

experimental parameters as indices: Tb, the boiling temperature; Tm, the melting temperature; 

�, the dielectric constant; d, the density, and RI, the refractive index of the organic solvents. 

The model of the surface tension, for instance, could only be achieved by the aid of five 

experimental parameters, while the model of other six properties could be achieved with 

semiempirical descriptors made of molecular connectivity indices and experimental 

parameters.  

    Table 1. Definition of the MCI indices used in this study. 

MCI pMCI Dual MCI Dual pMCI 

D = �i�i S�I = �iIi 0�d = (- 0.5)N�i(�i)   0�Id = (- 0.5)N�i(Ii) 
      0 � = �(�i)- 

0 5

     0�I = �(Ii)-  

0 5

       1�d = (- 0.5)( N + �  - 1)�(�i       1�Id = (- 0.5)( N + �  - 1)� (Ii 

         1� = 
0 5

       1�I = � 

0 5

1�s = � (�i + �j)–0.5     1�Is = � (Ii + Ij)-0.5   

    �t = (� �i)- 

0 5

       T�I =(�  Ii) 

0 5

� = �EAnEA   � = �EA<SEA>    

N is the number of atoms, ij means � bond, �  is the cyclomatic number. 1, 4, 9 Replacing � with �v and I with S the 
valence �v indices and �E indices are obtained for a total of twenty-eight �-� MC indices. � and � are special 

indices (see Introduction and method sections). 
 

    Present study uses the same indices and experimental parameters, but, here, the model 

strategy uses the full combinatorial algorithm, which in many cases encompasses a search 

over tens of millions of combinations. The purpose of the present study is (i) to obtain the 

overall best descriptor for each property, (ii) to compare it with the greedy descriptor, (iii) to 

check how random or ‘zero-level’ descriptors made of random indices work, (iv) to check 

how semi-random descriptors, a mixing of random indices plus MC indices and experimental 

parameters work, (v) to see if it is possible to derive from the best configuration-dependent 
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descriptors improved super-descriptors, (v) to check the importance of the hydrogen 

perturbation and how it depends on the type of search algorithm. Concerning point (i) let us 

remind that while the number of six-index combinations from a set of 36 indices (theoretical 

plus the empirical indices, plus M) entails millions of combinations, the number of greedy 

combinations for the same case entails only hundreds of combinations. Point (ii) will allow to 

measure the real utility of the greedy method and to check the importance of semiempirical 

graph-theoretical methods. Point (iii) and (iv) will allow not only to characterize a zero-level 

description for each property, but to check under which conditions sets of descriptors made of 

random indices plus experimental and/or graph-theoretical indices may describe a property. 

There are some ‘urban legends’ that try to put on an equal foot the model quality of random 

and of molecular connectivity indices, it is then highly interesting to know, if, how and when 

random indices work. As many subjects in physics (quantum gravity, quantum 

chromodynamics, disordered physical systems, amorphous materials), use randomized 

matrices,2 it is a no minor task to check the role of random numbers in computational 

chemistry.  

METHOD
     The valence delta number, �v, is the basic parameter for the valence MCI (�v), and for the I- 

and E-State pesudoconnectivity indices. In fact, I and S are �v-dependent:3 

 

                               I = (�v +1) / �,  S = I + ��I,  with �I = (Ii – Ij) / r2
ij                               (1)  

 

Here, rij counts the atoms in the minimum path length separating atoms i and j, which equals 

the graph distance, dij + 1; ��I incorporates the information about the influence of the 

remainder of the molecular environment, and, as it can be negative, S can also be negative. To 

avoid imaginary �E values, every S value (as some atoms have S < 0) has to be rescaled.4, 5 

Throughout the present model and as already done in Ref. 1, the rescaling value is 6.611. This 

rescaling procedure brings about that S�I 	 S�E, while, normally, the electrotopological state 

concept implies �iSi = �iIi.   

      Our � v number shown in eq. (2) takes care of the core electrons, by the aid of complete 

graphs, and of the depleted hydrogen atoms, by the aid of a perturbation parameter,1, 5-9 

 

                                                       )1(
)()(

��
�

�
rp

psfq vn
v �� �                                                        (2) 
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Here, �v(ps) is the valence delta for a chemical pseudograph (or general graph) only. 

Parameters p is the order of a complete graph, Kp, which is a graph where every pair of its 

vertices is adjacent, and r r (= p – 1) is its regularity.10 A Kp is always r-regular, i.e., all its 

vertices have the same r. The first order complete graph, a K1 graph (a vertex), has normally 

been used to encode second row atoms, and especially the carbon atom.  Usually, q = 1 or p, 

where p can be either odd-valued (p = 1, 3, 5, 7,..) or sequential-valued ( p = 1, 2, 3, 4,...). 

Four representations for �v are possible: Kp-(p-odd) for q = 1, and p = odd; Kp-(p-seq) for q = 

1, and p = seq (sequential); Kp-(pp-odd) for q = p, and p = odd, and Kp-(pp-seq) for q =  p, and 

p = seq. To keep the number of MCI indices under control only two representations have been 

chosen as in ref. 1: the Kp-(p-odd) representation with the smallest �v values (p = 1, 3, and 5 

and q = 1), and the Kp-(pp-odd) representation with the second largest �v values, that is, the (p 

= 1, 3, and 5 and q = p). The f� fractional perturbation parameter encodes the depleted 

hydrogen atoms (or K0 null complete graphs), and is defined in the following way, 

 

                      f� = [�v
m(ps)- �v(ps)] / �v

m(ps) = 1 - �v(ps)/�v
m(ps) = nH / �v

m(ps)                    (3) 

 

Here, �v
m(ps) is the maximal �v(ps) value a heteroatom (a vertex) can have in a hydrogen 

depleted chemical pseudograph when all bonded hydrogen atoms are substituted by 

heteroatoms, and nH equals the number of hydrogen atoms bonded to a heteroatom. For 

completely substituted heteroatoms, f� = 0 as �v
m(ps) = �v(ps) (i.e., nH = 0). In hydrocarbons � 

and �v are no more equal, as �v(ps) = �, but,  �v = (1+ f�
n)� (with, p = 1). For quaternary 

carbons f� = 0 and �v = �. Exponent n quantifies the importance of the perturbation, i.e., the 

higher the n values the lower the importance of the perturbation. It is no optimization 

parameter, as different values of n give rise to different sets of indices, where in each set n is 

constant, and, consequently, the corresponding �v is constant. In this study, n = - 1, - 0.5, - 0.1, 

0.1, 0.5, 1, 2, 5, 8, 50. Relatively to our greedy study two new n values are here considered, n 

= -0.1 and 0.1.  
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Table 2. The f�
n values for n = 8, 5, 2, 1, 0.5, 0.1, - 0.5, and -1 for hydrogenated carbon, nitrogen and 

oxygen atoms. �CH means: �CH, �CH, and �CH, while =CH2 means: >CH2 and  =CH2. 

Groups 8* 5 2 1 0.5 0.1 -0.1 -0.5 -1  
� CH 1.5�10-5 0.001 0.06 0.25 0.5 0.87 1.15 2.00 4 
= CH2 0.004 0.031 0.25 0.50 0.71 0.93 1.07 1.41 2 
- CH3 0.100 0.237 0.56 0.75 0.87 0.97 1.03 1.15 1.333 
- OH 0 0.0001 0.03 0.17 0.41 0.84 1.20 2.45 6 
= NH 0 0.0003 0.04 0.20 0.45 0.85 1.17 2.24 5 
- NH2 0.001 0.010 0.16 0.4 0.63 0.91 1.10 1.58 2.5 

              *The n = 50 values correspond to zero perturbation, and they are similar to the values in this column. 
 

      Table 2 shows the f�
n values for n < 50 (n = 50 means no perturbation) for hydrogenated 

carbon, nitrogen and oxygen atoms. Here, �CH means the three ways a carbon atom can be 

thrice-bonded: �CH (three �-bonds), �CH (a �-bond and a �-bond), and �CH (a triple �-

bond); =CH2 means the two ways a carbon atom can be twice-bonded: >CH2 (two �-bonds), 

and =CH2 (a �-bond). From now, indices which have been derived either with a Kp(p-odd) or 

with a Kp(pp-odd) representation for the core electrons and with a particular type of f�
n 

hydrogen perturbation will belong to either to the Kp(p-odd) / f�
n or Kp(pp-odd) / f�

n 

configuration. 

       Fig. 1 top shows the (hydrogen depleted) simple graph of Br-CH=CH-Br from which it is 

possible to derive the � values (here: 1, 2, 2, 1). Fig. 1 middle shows the pseudograph (or 

general graph) of the same molecule from which it is possible to derive �v(ps) values (here: 7, 

3, 3, 7), and Fig. 1 bottom shows the chemical pseudograph plus complete graph of the same 

molecule whose valence �v are: 7/21, 3.1875, 3.1875, 7/21, where, the core electrons of Br 

have been encoded with K5 odd complete graphs (p = 5, q = 1, and nH = 0), while the two 

carbon atoms throughout the three graphs have been encoded with K1 vertices and their 

valence delta values have been calculated with a f�
2 hydrogen perturbation (nH = 1, �v

m(ps) = 

4).  

 
Fig. 1. The simple (top) graph, the pseudograph, and the 

pseudograph plus K5 complete graph (bottom) of Br-CH=CH-Br. 
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All indices in Table 1 can be considered molecular connectivity indices, as, formally, all of 

them have their origin in Randi�’s index.11-13 MCI of subset �D, 0�, 1�, �t, 0�d, 1�d, 1�s, �� are 

independent of the hydrogen content of the solvent molecules as well as from the complete 

graph representation for the core electrons. To the thirty indices of Table 1, the molar mass, 

M, and the experimental parameters �Tb, Tm, �, d, RI� are be added for a total of thirty-six 

indices (graph-theoretical plus empirical indices). The huge number of possible combinations 

these indices give rise should be multiplied by twenty as two are the representations for the 

core electrons: Kp-(p-odd) and Kp-(pp-odd). For each representation, there are ten different 

values for f�
n. The full combinatorial space for the best descriptor has been searched with the 

help of Statistica 6.0 of Statsoft Inc.  

     A particular attention in this study will be given to the Topliss-Costello rule, i.e., at least r 

> 0.84 (r2 > 0.71) for a ratio N° data/N° indices � 5.14 Usually, r2 is given as it can be 

compared with the q2 leave-one-out statistics.  The correlation parameters  (ci)  of  the 

regressions  together with their errors si (see ref. 15 for their relevance) are collected into the 

vector, C = [c1(s1), c2(s2), ….., cn(sn), c0(s0)]. Vector C can be read as the ordered list of 

regression values of a property P with respect to the vector of the MC indices, � = (�1, �2, …., 

�n, �0	1), and the property can be computed as the scalar product of the row vector C (the ci 

only) with the column � vector:  P = C��. Observed vs. calculated plots for all models can be 

obtained from the author (as well as the index values), as sometimes ‘good’ statistics hide 

rather poor plots.5, 16-19 The prediction q2 coefficient, used to check the validity of the leave-

one-out method will also be given. Each observation is removed one at a time and during the 

removal, it is assumed that the descriptor does not change. The prediction coefficient q2 

equals (SD- PRESS)/SD, where SD = �(yi - <y>)2 is the squared deviation of the observed 

value from their mean, and  PRESS = (yi - yiloo)2, where yiloo is a predicted value of the studied 

property where the prediction has been made by the leave-one-out method.13, 20 It has been 

suggested that q2 > 0.6. The present study will show that this is a too optimistic choice. The 

leave-one-out method has some drawbacks with small data sets and with strong clusterization, 

which is here rarely the case.21, 22  

      The model quality of the optimal descriptor of the given properties has  been previously 

tested on a smaller training set of compounds by leaving out those compounds with ‘°’ in 

Table 3, and the chosen descriptor is both the best descriptors for both the training and the full 

set of compounds. Strong outliers, as few as possible, whenever advantageous, were excluded 

from the model. The super-descriptors have been obtained with a search over the set of 
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indices of the optimal configuration-dependent descriptors for the twelve properties. The best 

‘zero-level’ descriptors have been searched among two thirty-eight sets, r1-r38, and rd1-rd38 

of 0-1 random numbers. A combinatorial space made of the r1-r38 and then (due to the limits 

of our PC) of the rd1-rd38 sets of random indices plus the given MC indices, the five 

experimental parameters, and M is searched for the best semi-random or mc-exp-rn-descriptor 

(mc means molecular connectivity, exp experimental and rn random). Whenever it is not 

computationally feasible, only the indices of the best descriptors will be added to the r1-r38 

and/or rd1-rd38 random sets. Random numbers have been obtained with the algorithm of the 

2003 Microsoft Excel electronic sheet. The strongest correlations (r > 0.98 23) among the 

indices of the descriptor will be given to check, about the possibility of a loss of meaning of 

the structure-property relationship. In this case, it might be advantageous to work with 

orthogonalized regressions, which can easily be obtained with the Randi�’s stepwise 

orthogonalization method, as performed in Ref. 1.24, 25 It has been suggested that even 

strongly correlated indices are not that damaging.2 

Table 3. The properties of organic solvents plus their molar mass M (g�mol-1): Tb,  boiling points (K, 
in parenthesis AHb values); Tm, melting points (K, in parenthesis AHm values); RI, refractive index 

(20°C); d,  density (at 20°C 5°C relative to water at  4°C, g/cc); �, dielectric constant; FP, FlashPoint 
(K); �, viscosity (Cpoise, 20°C; 1at 25°C, 2 at 15°C); !, surface tension (mN/m at 25°C); UV, Cutoff 
UV values (nm); �, dipole moments in debye (1D = 10-18 esu cm = 3.3356 10-3 C m); MS (-��106),  

magnetic susceptibility (emu mol-1, 1 emu = 1 cm3, temperatures cover a range from 15°C to  32°C); 
and EV , Elutropic value (silica). 

Solvents M Tb           Tm RI d 	 FP " ! UV � MS EV 
(°)Acetone  58.1 329 179 1.359 0.791 20.7 256 0.32 23.46 330 2.88 0.46 0.43 
(°)Acetonitrile  41.05 355 (1) 225 (1) 1.344 0.786 37.5 278 0.37 28.66 190 3.92 0.534 0.50 
Benzene  78.1 353 278 (1) 1.501 0.84 2.3 262 0.65 28.22 280 0 0.699 0.27 
Benzonitrile  103.1 461 260 1.528 1.010 25.2 344 1.241 38.79     
1-Butanol  74.1 391 (1) 183 (1) 1.399 0.810 17.1 308 2.95 24.93 215    
(°)2-Butanone  72.1 353 186 1.379 0.805 18.5 270 0.40 23.97 330   0.39 
Butyl Acetate  116.2 398 195 (-1) 1.394 0.882 5.0 295 0.73 24.88 254    
CS2  76.1 319 161 1.627 1.266 2.6 240 0.37 31.58 380 0 0.532  
CCl4  153.8 350 250 (1) 1.460 1.594 2.2  0.97 26.43 263 0 0.691 0.14 
Cl-Benzene  112.6 405 228 1.524 1.107 5.6 296 0.80 32.99 287    
1Cl-Butane  92.6 351 150 1.4024 0.886 7.4 267 0.35 23.18 225    
CHCl3  119.4 334 210 1.446 1.492 4.8  0.57 26.67 245 1.01 0.740 0.31 
Cyclohexane  84.2 354 280 (1) 1.426 0.779 2.0 255 1.00 24.65 200 0 0.627 0.03 
(°)Cyclopentane  70.1 323 179 (1) 1.400 0.751 2.0 236 0.47 21.88 200  0.629  
1,2-diCl-Benzene  147.0 453 257 1.551 1.306 9.9 338 1.32  295 2.50 0.748  
1,2-diCl-Ethane  98.95 356 238 1.444 1.256 10.4 288 0.79 31.86 225 1.75   
diCl-Methane  84.9 313 176 1.424 1.325 9.1  0.44 27.20 235 1.60 0.733 0.32 
N,N-diM-Acetamide  87.1 438 (1) 253 (1) 1.438 0.937 37.8 343   268 3.8   
N,N-diM-Formamide  73.1 426 (1) 212 (1) 1.431 0.944 36.7 330 0.92  268 3.86   
1,4-Dioxane  88.1 374 285 1.422 1.034 2.2 285 1.54 32.75 215 0.45 0.606  
Ether  74.1 308 157 1.353 0.708 4.3 233 0.24 16.95 215 1.15  0.29 
Ethyl acetate  88.1 350 189 (-1) 1.372 0.902 6.0 270 0.45 23.39 260 1.8 0.554 0.45 
(°)Ethyl alcohol  46.1 351 (1) 143 1.360 0.785 24.3 281 1.20 21.97 210 1.69 0.575  
Heptane  100.2 371 182 1.387 0.684 1.9 272  19.65 200   0.00 
Hexane   86.2 342 178 1.375 0.659 1.9 250 0.33 17.89 200   0.00 
2-Methoxyethanol   76.1 398 (1) 188 1.402 0.965 16.0 319 1.72 30.84 220    
(°)Methyl alcohol   32.0 338 (1) 175 (1) 1.329 0.791 32.7 284 0.60 22.07 205 1.70 0.530 0.73 
(°)2-Methylbutane  72.15 303 - 1.354 0.620 1.8 217   
4-Me-2-Pentanone  100.2 391 193 1.396 0.800 13.1 286   334    
2-Me-1-Propanol  74.1 381 (1) 165 (1) 1.396 0.803 17.7 310     0.534  
2-Me-2-Propanol  74.1 356 (1) 298 (2) 1.387 0.786 10.9 277  19.96  1.66   
DMSO  78.1 462 (2) 292 (2) 1.479 1.101 46.7 368 2.24 42.92 268 3.96   
(°)Nitromethane   61.0 374 244 1.382 1.127 35.9 308 0.67 36.53 380 3.46 0.391  
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1-Octanol   130.2 469 (1) 258 (1) 1.429 0.827 10.3 354 10.6 27.10     
(°)Pentane  72.15 309 143 1.358 0.626 1.8 224 0.23 15.49 200   0.00 
3-Pentanone  86.1 375 233 1.392 0.853 17.0 279  24.74     
(°)1-Propanol  60.1 370 (1) 146 (1) 1.384 0.804 20.1 288 2.26 23.32 210    
(°)2-Propanol  60.1 356 (1) 184 (1) 1.377 0.785 18.3 295 2.30 20.93 210   0.63 
Pyridine  79.1 388 231 1.510 0.978 12.3 293 0.94 36.56 305 2.2 0.611 0.55 
tetraCl-Ethylene  165.8 394 251 1.506 1.623 2.3  0.90    0.802  
(°)tetra-Hydrofuran  72.1 340 165 1.407 0.886 7.6 256 0.55 215 1.75  0.35 
Toluene  92.1 384 180 1.496 0.867 2.4 277 0.59 27.93 285 0.36 0.618 0.22 
1,1,2triCl,triFEthane   187.4 321 238 1.358 1.575 2.4  0.69 230   0.02 
2,2,4-triMe-Pentane  114.2 372 166 (-1) 1.391 0.692 1.9 266 0.50  215   0.01 
o-Xylene  106.2 417 249 1.505 0.870 2.6 305 0.81 29.76     
p-Xylene  106.2 411 286 1.495 0.866 2.3 300 0.65 28.01     
(°)Acetic acid  60.05 391 (1) 290 (1) 1.372 1.049 6.15   27.10  1.2 0.551  
Decaline  138.2 465 230 1.476 0.879 2.2      0.681  
diBr-Methane  173.8 370 221 (1) 2.497 1.542 7.8   39.05  1.43 0.935  
1,2-diCl-Ethylen(Z)  96.9 334 193 1.449 1.284 9.2     1.90 0.679  
(°)1,2-diCl-Ethylen(E)  96.9 321 223 1.446 1.255 2.1     0 0.638  
1,1-diCl-Ethylen  96.9 305 151 (-1) 1.425 1.213 4.7     1.34 0.635  
Dimethoxymethane  76.1 315 168 (-1) 1.356 0.866 2.7      0.611  
(°)Dimethylether  46.1 249 (-0.5) 134 (-0.5)   5.0        
Ethylen Carbonate  88.1 511 (2) 310 (2) 1.425 1.321 89.6     4.91   
(°)Formamide  45.0 484 (2) 276 (2) 1.448 1.133 109   57.03  3.73 0.551  
(°)Methylchloride  50.5 249 (-0.5) 175 (-0.5) 1.339 0.916 12.6     1.87   
Morpholine  87.1 402 (1) 270 (1) 1.457 1.005 7.3      0.631  
Quinoline  129.2 510 258 1.629 1.098 9.0   42.59  2.2 0.729  
(°)SO2  64.1 263 (-1) 200  1.434 17.6     1.6   
2,2-tetraCl-Ethane  167.8 419 229 1.487 1.578 8.2   35.58  1.3 0.856  
tetraMe-Urea  116.2 450 272 1.449 0.969 23.1     3.47 0.634  
triCl-Ethylen   131.4 360 200 1.480 1.476 3.4     0.734  

       (°) compounds excluded for a checking of the model.  
 

RESULTS AND DISCUSSION 
       Tables 3 and 4 show the values of the twelve properties (for the origin of the values see 

1).  Table 5 shows the best greedy descriptions obtained in Ref. 1. Superscripts on the left and 

right side of a combination means the type of configuration, for instance, superscript f1 means 

that the (�v-based) valence MC indices have been obtained with the f�
1 hydrogen perturbation, 

while superscript pp-odd on the right means that these indices have been obtained with the 

Kp(pp-odd) representation for the core electrons where p = odd and q = p. Notice that even 

with the full combinatorial algorithm, Tb and Tm and μ properties need, for an optimal model, 

their corresponding ad hoc parameters, AHb, AHm, and �(0, 1), respectively. The best 

descriptors for the twelve properties are collected in Table 6, the zero-level descriptors in 

Table 7, and some good  and also very good semi-random descriptors are shown in Table 8. 

 

      
Table 5. The greedy descriptors for the twelve properties (P) of the organic solvents, together with   

 their statistics. Superscripts specify the configuration of the �v-based MC indices (N = nº of 
points).  

P Greedy Descriptors N r2 s q2 
Tb f1�Dv, 0�Id, �, M, AHb�pp-odd 63 0.912 17.8 0.826 
Tm f8�Dv, 0�d  , 0�Ed , 1� , 0�Id , AHm�pp-odd 62 0.741 25 0.654 
� f8�� 3/M 1.7, Tb, 1�s�p-odd 62 0.903 5.3 0.867 
d f8�0�v/M, T�I/M, �, Tb�pp-odd 62 0.972 0.04 0.965 
RI f5��t

v, Dv, 1�Is, S�I, 1�s�p-odd 61 0.922 0.04 0.861 
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FP f-0.5�Tb, 0�E, �, S�I, 1�v�p-odd 41 0.984 4.7 0.979 
� f-0.5�0�Ed, 1�Ed, �, 0�I�p-odd 39 0.929 0.5 0.839 
! �Tb, d, �, RI, M� 40 0.916 2.5 0.847 

UV f50�1/RI, (S�I / M)2, (1/")0.5, (T�I / M)2�pp-odd 33 0.891 17.8 0.854 
� f 50��(��Tb)/M 0.5, �(� /M)2.3, �(� / (� + 5))0.6, �(�� 0�Id)0.4�pp-odd 34 0.903 0.4 0.866 

-�
106 f 50�(M + � 0.5 + Tb 
0.7), (S�I + 5RI),  (0�d

v / M�),(1�Ed / ��pp-odd 32 0.885 0.04 0.854 
EV f0.5�1� v, Tb, �, RI�p-odd 20 0.920 0.07 0.820 
 

Boiling Points, Tb.

     The C vector of descriptor in Table 6 is: [0.88 (0.1), 44.1 (4.2), 0.68 (0.07), 26.1 (1.9), - 

295 (31), 2.27 (0.6), 195.2 (7)]. The quality of the training set obtained excluding items (°) in 

Table 3 is: N = 45, r2= 0.939, s = 14, q2 = 0.802, F = 97. The strongest correlated indices 

instead are: r(D, 1�E) = 0.97, while the strongest correlation of Tb is: r(Tb, D) = 0.71. The 

search for a six-index descriptor is outside the range of our PC. If the search for a six-index 

descriptor is restricted to r1-r38 plus rd1-rd38 and the indices of descriptor,  f50��, AHb, M, 

D,1�E, ��pp-od, we 

land on the same six-index descriptor. The search for a six-index semi-random descriptor with 

r1-r38 and rd1-rd38 plus indices of the set, ��, AHb, M, D�, whose quality is: r2 = 0.870, s = 

21, q2 = 0.826, lands on the descriptor shown in Table 8.  

 

Table 6. The full combinatorial descriptors for the twelve properties (P) and their statistics. 
 P Full Descriptors N r2 s q2 

Tb f50��, AHb, M,  D, 1�E, ��pp-odd 63 0.951 13.4 0.933 

Tm f-0.5�Tb, AHm, �t, 0�d, 1�d, 1�E, �, ��p-odd 62 0.799 22.0 0.698 

� f8�Tb, 0�E, T�/M �p-odd 62 0.916 4.9 0.902 

d f 50�D/M, S�I/M, 0�E/M, ��pp-odd 62 0.975 0.4 0.969 

RI f 5�M, D, 1�s, �t
v, 0�I, 1�Is, ��p-odd 61 0.944 0.04 0.915 

FP f - 0.5�Tb, d, RI, S�I , S�E�p-odd 41 0.984 4.7 0.979 

� f - 0.5�Tb, �, 1�Id , 0�Ed , ��p-odd 39 0.963 0.3 0.863 

! f1��, d, RI, �t
v, T�I�p-odd 41 0.959 1.8 0.915 

UV f1�RI, AHb, 0�I, S�E , 0�E �p-odd 33 0.876 19.4 0.802 

� f0.5��	, �1�, �Dv, ��, �T�/M�pp-odd 34 0.926 0.4 0.818 

-�
106 f 50�M, �t , 0�v, 1�s
v�p-odd 32 0.848 0.5 0.789 

EV f 0.5�1� v, 0�I, 0�E, ��pp-odd 20 0.949 0.06 0.906 
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Table 7. The full combinatorial zero-level descriptors on the r1-r38 plus rd1-rd38 space. 
P Zero-level Descriptor N r2 s q2 

Tb �rd2, rd6, rd9, rd24, rd34, rd37� 63 0.410 45 0.255
Tm �r1, r23, r27, r29, r30, r31, r35, r38� 62 0.427 37 0.252
� �rd9, rd14, rd16, rd20, rd27, rd32, rd34, rd37� 62 0.479 13 0.265
d �rd21, rd36, r1, r348� 62 0.336 0.2 0.213
RI �r1, r5, r13, r20, r30, r35, r36� 61 0.328 0.1 0.14 
FP �rd6, rd11, rd16, rd19, rd20� 41 0.702 20 0.605
� �rd8, rd28, rd34, r9, r20� 39 0.567 1.2 0.01 
! �rd27, r10, r27, r30, r35� 41 0.677 4.9 0.545

UV �rd11, r13, r21, r27, r38� 33 0.649 33 0.480
� �rd9, rd14, rd16, rd24, rd28� 34 0.516 1.0 0.326

-�
106 �rd7, rd16, rd21, r25� 32 0.568 0.1 0.379
EV �rd14, rd22, rd25, r30� 20 0.864 0.1 0.751 

Melting Points, Tm.

   The C vector of descriptor in Table 6 is: = [0.21 (0.08), 34.1 (5.2), 63.9 (26), 32.5 (6.5), 

0.014 (0.003), 109 (25), 7.15 (2.6), - 1. 72 (0.4), 43.2 (35)]. The training set without items (°) 

has: N = 45, r2=0.833, s = 20, q2= 0.684, F = 22. The restricted search for a six-index 

descriptor using the r1-r38 and then rd1-rd38 sets plus the six the indices of set  f50�AHm, D, 

�t, 0�d, 1�d, �v
t�pp-odd confirm these six indices.  

Dielectric Constant, �. 

    Ethylencarbonate is a strong outlier and it was left out of the model. The C vector of 

descriptor in Table 6 is: = [0.11 (0.02), - 8.22 (1.5), 25.4 (1.8), - 19.9 (4.8)]. Leaving out 

compounds with (°) we have (no ethylencarbonate): N = 44, r2 = 0.883, s = 3.7, q2 = 0.846, F 

= 100. An interesting correlations is: r(	, T�/M) = 0.93. Notice that the T�/M term encodes the 

information about the molar mass but also about the overall E-State index of the 

electronegative atoms, i.e., it reflects the charge distribution due to these atoms, normalized to 

the molar mass. The search for a three-index mc-exp-rn-description (with no 

Ethylencarbonate) with r1-r38 plus rd1-rd38 plus the MCI- Kp(p-odd) / f� 
8  indices (T�/M 

inclusive) finds the already found three-index descriptor. If the search for a five-index 

descriptor is done with the previous three-index descriptor plus all random indices, the 

interesting descriptor of Table 8 is found. Leaving out compounds with (°, no 

ethylencarbonate) the semi-random descriptor shows: N = 44, r2 = 0.897, s = 3.5, q2 = 0.854, 

F = 66. For the final model, we prefer to stick to the unique three-index descriptor. These 
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results are illuminating about the potential uses of random numbers, when they can count on 

good indices.  

 Refractive Index, RI.  

    The C vector of descriptor in Table 6 is: [0.0019(0.0006), 0.054 (0.006), 0.88 (0.15), 0.82 

(0.05),  - 0.17 (0.02), - 2.73 (0.3), - 0.043 (0.01), 1.41 (0.03)]. The training test that excludes 

items (°) shows: N = 45, r2=0.957, s = 0.04, q2 = 0.878, F = 117. The search for a five-index 

mc-exp-rn-description throughout r1-r38 and then rd1-rd38 plus the MC- Kp(p-odd)/f�
5 

indices and M finds the same five-index descriptor already found. If the search for a seven-

index semirandom descriptor is done with the five indices of descriptor f 5�M, D, 1�s, �t
v, 0�I, 

1�Is�p-odd (N = 61, r2= 0.887, s = 0.05, q2 = 0.792, F = 86) plus r1-r38 and then rd1-rd38 we 

obtain the best q2 descriptor of Table 8, which confirms nonetheless the five MC indices. 

Excluding items (°) in Table 3 we have: N = 45, r2=0.954, s = 0.04, q2 = 0.911, F = 108. 
 

Flash Point, FP.  

      FP is the lowest temperature at which there is enough fuel vapor to ignite. It is here 

possible to use as indices parameters Tb, 	, d, and RI, but no Tm as it has no data for 2-

methylbutane. The vector C of descriptor in Table 6 is: [0.85 (0.03), 34.6 (7.9),- 95.6 (18), 

1.71 (0.2), 1.06 (0.1), 95.2 (22)]. Notice that r(FP, Tb) = 0.93. The training test has: N = 29, 

r2=0.985, s = 4.3, q2 = 0.981, F = 362. The search for a mc-exp-rn-description with r1-r38 and 

then rd1-rd38 plus Tb, d, RI and the set of MC indices finds the optimal descriptor  of Table 8,  

where  only  S�I  is  configuration-dependent.  Notice that f - 0.5�Tb, D, S�I, ��p-odd is a quite 

good descriptor with:  r2 = 0.982, s = 5.0, q2 = 0.976. Excluding items (°) in Table 3 the semi-

random descriptor shows: N = 29, r2 = 0.989, s = 4.0, q2 = 0.982, F = 405.  

Table 8. The best semi-random descriptors obtained with the full combinatorial method 
applied to the r1-r38 plus rd1-rd38 indices plus some of the indices of the best descriptors. 

P Semi-random Descriptor N r2 s q2 

Tb ��, AHb, M, D, rd14, rd25� 63 0.901 19 0.858 

Tm None found (due to PC limits)      

�      f 8�Tb, 0�E, T�/M , r21, r32�p-odd 62 0.939 4.3 0.923 

d    f 50�D/M, S�I/M, 0�E/M, rd31�pp-odd 62 0.960 0.06 0.951 

RI f 5�D, 1�s, �t
v , 0�I, 1�Is, rd6, rd25�p-odd 61 0.941 0.04 0.924 

FP f - 0.5�Tb, D, S�I, �, rd38�p-odd 41 0.987 4.2 0.983 

� f - 0.5�Tb, �, 0�Ed, �, r32� p-odd 39 0.956 0.4 0.791 
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! f1��, d, RI, �t
v, rd33�p-odd 41 0.948 2.0 0.822 

UV �RI, rd11, rd34, r21, r38� 33 0.767 27 0.645 

� f0.5��	, ��, �T�/M, �rd10, �rd34�pp-odd 34 0.953 0.3 0.908 

-�
106 f 50�M, �t , T�I, r30�p-odd 32 0.887 0.04 0.842 

EV f 0.5�1� v, rd1, rd10, rd25�p-odd 20 0.895 0.1 0.812 
 
 Viscosity, �. 

      The Vector C of descriptor in Table 6 is: = [0.014 (0.002), - 0.029 (0.006), 0.25�10-4 

(6�10-6), - 0.37�10-5 (10-7), 0.07 (0.01), - 4.23 (0.6)]. The training test has: N = 28, r2 = 0.972, s 

= 0.35, q2 = 0.786, F = 155. The search for a mc-exp-rn-description with r1-r38 and then rd1-

rd38 plus Tb, 	, and the set of MC-Kp(p-odd)/f�
-0.5 indices finds exactly the already found five-

index descriptor. The descriptor searched among r1- r38 plus rd1-rd38 plus the five indices of 

the optimal descriptor finds again the same descriptor. The descriptor is now chosen among 

r1- r38 plus rd1-rd38 plus 0�Ed, �, Tb and �. The search lands on the descriptor of Table 8, 

which, relatively to the optimal descriptor, has a worse q2 statistics.  
 
Surface Tension, �. 

   Vector C of descriptor in Table 6 is: [0.27 (0.01), 21.0 (1.4), 48.8 (3.5), -42.2 (4.5), 39.4 

(9.1), - 64.7 (5.4)]. Here there is no need to exclude CH2Br2 as required by the greedy 

algorithm. Notice that solvents with high dielectric constants and high density have usually 

high surface tension. The training set (no items (°) in Table 3) has:  N = 29, r2=0.948,  s = 1.7,  

q2 = 0.916, F = 84. The search for a mc-exp-rn-description with r1-r38 and then rd1-rd38 plus 

	, d, RI, and the set of MC- Kp(p-odd)/f�
1 indices finds the already found five-index descriptor. 

Instead, the mc-exp-r-descriptor searched among r1- r38 plus rd1-rd38 plus 	, d, RI, and �t
v, 

finds the semi-random descriptor of Table 8 with a worse q2 quality [f1��, d, RI, �t
v�p-odd: r2 = 

0.937, s = 2.2, q2 = 0.721].  
 
Cutoff UV Values, UV.

The full combinatorial search, like the greedy search, needs to exclude the four strong 

outliers: heptane, 4-Me-2-pentanone, N,N-diMe-acetamide, and acetonitrile, but here, there is 

no need of any strange composite indices. Vector C of descriptor in Table 6 is: [736.820 

(62),- 106.109 (13),500.009 (79), 39.7165 (4.7),- 2065.97 (277), - 785.973 (88)]. There is a 

strong correlations with r(0�I, 0�E) = 0.98. The training set has been modeled with a four-

index descriptor (excluding the last index) to obey the Topliss-Costello rule, and has: N = 23, 
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r2=0.879, s = 16, q2 = 0.783, F = 33. The search for a mc-exp-rn-descriptor that uses r1-r38 

and then rd1-rd38 plus RI, AHb and the MC- Kp(p-odd)/ f�
1 indices (excluding the previous 

strong outliers) finds the already found five-index descriptor. Limiting the search to r1-r38 

plus rd1-rd38 plus RI, AHb, 0�I, and S�E, the mediocre descriptor of Table 8 is found. 

 

Dipole Moment, �.. 

     Acetonitrile is even here a strong outlier and even here the model takes advantage of the 

two-valued �(0, 1) symmetry parameter that zeroes all indices of those properties with � = 0 

and leaves them unchanged if � 	 0, i.e., for � = 0, �·� = 0, while for � 	 0, �·� = �. 1 The C 

vector of descriptor in Table 6 is: [0.048 (0.004), 0.64 (0.3),- 0.05 (0.03),  0.19 (0.03),- 0.31 

(0.05), - 0.13 (0.15)]. A rather strong correlations is, r(�1�, �Dv) = 0.97. The positive role of 

the dielectric constant and of �, the overall E-State index for the electronegative atoms, and of 

T�/M (= � 3/M 1.7) is not unexpected. The training set (no items (°) in Table 3) with a four-

index descriptor (no �Dv), due to the Topliss-Costello rule, has: N = 24, r2=0.928, s = 0.4, q2 = 

0.742, F = 63. The search encompassing a combinatorial space made of �r1-�r38 and then 

�rd1-�rd38 plus �MCI and �	 (no acetonitrile) finds the mc-exp-rn-descriptor of Table 8, 

which is even better (and easier) than the greedy convoluted descriptor (only �� and �T�/M are 

configuration-dependent). Notice that the quality of f0.5��	, ��, �T�/M�pp-odd is: r2= 0.903, s = 

0.4, q2 = 0.771, F = 93. This means that the two random indices bring a striking contribution 

to q2.    Without items (°) in Table 3 and with a four-index descriptor without �rd10 (to hold 

the Topliss-Costello rule), we have: N = 24, r2= 0.960, s = 0.3, q2 = 0.915, F = 114.   

 

Magnetic Susceptibility, -��106. 

     The found greedy descriptor (Table 5) is superior but quite convoluted. The training set 

shows: N = 23, r2=0.850, s = 0.04, q2 = 0.758, F = 26. A four-index descriptor searched 

among MCI plus M, plus r1-r38 and then rd1-rd38 finds the optimal mc-exp-rn-descriptor of 

Table 8 with a single random index. This descriptor is statistically similar to the highly 

convoluted greedy descriptor but more ‘down-to-earth’. The vector C of this descriptor is 

[0.0019 (0.0002), - 0.13 (0.04), 0.36 (0.07), 0.14 (0.03), 0.037 (0.03)]. Without r30 we have: 

r2 = 0.788, s = 0.05, q2 = 0.729, F = 34. Here only T�I is configuration-dependent. Leaving-out 

items (°) in Table 3 we have: N = 23, r2=0.858, s = 0.04, q2 = 0.777, F = 27.  
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Elutropic Values, EV. 

     Vector C of descriptor in Table 6 is: [-2.24 (0.2), 1.99 (0.2), -2.02 (0.2), 0.05 (0.01), 0.08 

(0.07)]. It should here be noticed that we are bordering the Topliss-Costello rule (N° data/N° 

indices � 5). The strongest correlations are: r(1� v, 0�I) = 0.99 and r(0�I, 0�E) = 0.97. Notice 

that the quality of the single descriptor f 0.5�1� v�p-odd is: r2 = 0.707, s = 0.1, q2 = 0.661. The 

training test (no (°) items in Table 3) is useless as the number of data become quite few for an 

interesting model. The random descriptor of Table 7 let us guess that giving up the Topliss-

Costello rule, i.e., with a descriptor encompassing seven random indices it should be possible 

to reach a very satisfactory model, even at the q2 level, as it is the case with the following 

random descriptor, which, nevertheless, continue to have a lower q2 quality than the previous 

descriptor with four indices,    

�rd3, rd10, rd15, rd22, rd25, rd32, r37�: N = 20, r2= 0.954, s = 0.06, q2 = 0.856, F = 36 

   The attempt to model this property with a four-index descriptor searched among the sets of 

MC indices plus the r1-r38 and then rd1-rd38 random numbers gave no new results (the 

previous descriptor was confirmed). If the search is restricted to r1-r38 plus rd1-rd38 plus 1� 
v, and 0�I, then the rather good descriptor of Table 8 is obtained. Notice that its q2 is far from 

the q2 of the optimal descriptor (only 1� v is configuration-dependent).  

Super-Descriptors.  

    All MC or empirical indices of the best descriptors of Table 6 are joined together to form a 

space of super-indices of differing configurations, which will be used for a full combinatorial 

search of the best super-descriptors in a kind of configuration interaction of the best indices. 

This super-descriptor space gave no remarkable results with the greedy algorithm, but it does 

find improved descriptors for the following four properties, which are shown in Table 9.  

 

Melting Points, Tm.  
      The very good super-descriptor for this property is too large to enter in Table 9 and it is: 

�AHm,0�d, Dv(f 0.5-ppo),1�E(f - 0.5-po), 0�Ed(f -0.5-po), �(f - 0.5-po), �(f 0.5-ppo),1�E(f 50-ppo)� 

 Its statistics are shown in Table 9. It is probably the best descriptor ever obtained of a set of 

sixty-two melting points with graph-theoretical methods, and we would dare to say, with any 

theoretical method. The C vector of this descriptor is: [40.3 (3.9), 36.0 (5.9), 3.75 (0.9), 286 

(45), - 1·10-5(10-6), -3.90 (0.5), 4.14 (1.1), -288 (49), 142.7 (8.0)]. The largest correlations is: 

r[1�E(f - 0.5-po), 1�E(f 50-ppo)] = 0.97. The training test has: N = 45, r2=0.853, s = 18.7 q2= 

0.760, F = 26. A feasible search for a seven-index semi-random super-descriptor with the 
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eight indices of the super-descriptor plus the r1-r38 and then the rd1-rd38 excluded index �(f 
0.5-ppo) and confirmed the other indices (N = 62, r2 = 0.81, s = 21, q2= 0.750).  

     Table 9. The super-descriptors for four properties (P) of the organic solvents and their statistics.  
 P Super-descriptors N r2 s q2 

Tm see correponding Tm  paragraph 62 0.852 19.0 0.804

FP �Tb, �, �(f - 0.5-po), S�E(f 1-po), rd8� 41 0.989 4.0 0.984

UV �RI, AHb, 1�s, S�I/M(f 50-ppo), Dv(f 0.5-ppo)� 33 0.904 17.0 0.807

� 
f0.5��	, �
, ��(f 50-ppo), �T�/M (f 0.5-ppo), �rd5�pp-odd  34 0.960 0.3 0.914

 

Flash Points, FP. 
   A search throughout a combinatorial space made of Tb, the thirty-two super-indices plus the 
r1-r38 and then rd1-rd38 indices finds the optimal mc-exp-rn-super-descriptor of Table 9, 
which improves slightly in s and q2 over the previous optimal semi-random descriptor. Notice 
that excluding rd8 the remaining four-index descriptor is quite good:  r2 = 0.982, s = 5.0, q2 = 
0.975, F = 485, i.e., rd8 brings about a small but noticeable improvement.  The raining test 
has: N = 29, r2 = 0.988, s = 4.2, q2 = 0.980, F = 374.  
 
Cutoff UV Values, UV.
     Without the four strong outliers, heptane, 4-Me-2-pentanone, N,N-diMe-acetamide, and 
acetonitrile, the optimal super-descriptor shown in  Table 9 can be found. The training test, 
leaving out the last index of the previous descriptor (due to the Toplis-Costello rule), has: N= 
23, r2=0.902, s = 15, q2 = 0.798, F = 41. The combinatorial space made of RI, AHb, the thirty-
two super-indices plus the r1-r38 and then rd1-rd38 random sets has been searched and no 
interesting results have been obtained. The given super-descriptor is by far the best descriptor. 
A search with the five indices of the previous descriptor plus the two sets of random indices 
finds no different descriptor. A search with the first four indices of the previous descriptor [r2 
=0.733, s = 28, q2 = 0.425] plus the random indices finds a poorer semi-random descriptor 
with an even poorer q2 statistics (0.667). 
 
Dipole Moment, �.  
    The optimal semi-random super-descriptor of Table 9, which improves over the previous 

semi-random descriptor, is found by the aid of a combinatorial space made of the �-super-

indices (inclusive �	 and  �M) plus �r1-�r38 and then �rd1-�rd38 random sets. Without rd5 
the statistics of the remaining super-descriptor is: r2 = 0.929, s = 0.3, q2 = 0.883, F = 94.  The 
training test has: N = 24, r2=0.967, s = 0.3, q2 = 0.909, F = 106.  
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CONCLUSIONS 
       With the full combinatorial method, an optimal model for the twelve properties has been 
achieved and for some of them the model is even outstanding. Normally the zero-level 
descriptors show their weakness especially at the s and q2 level. The random tests of the EV 
property confirm in a clear way the importance of the Topliss-Costello rule. The very good 
model of EV by a semi-random descriptor with three random indices borders the limit of five 
for the ratio N°data/N°indices. The importance of this rule and of the q2 statistics is confirmed 
by the ‘zero-level’ descriptors for EV and FP. The zero-level model suggests that the lowest 
value for q2 should be as high as possible and we would suggest that q2 � 0.8. They also 
suggest that the Topliss-Costello rule should always hold with no exceptions, a fact that had 
already been underlined by other authors. 27-29 The semi-random tests (Table 8) tell us if  q2 � 
0.8 should hold, the semi-random model for UV should be rejected, while the semi-random 
model for the viscosity, �, should be considered with a critical eye. The other good semi-
random models confirm the importance of having at hand several good MC indices or/and 
experimental parameters that by themselves could give rise to a satisfactory description. If the 
positive side of a semi-random description is that it allows an economy of the number of MC 
indices to be used for a model, the negative side is that it is not possible to know from scratch 
which MC indices or experimental parameters are the best ones for the random indices. Four 
properties are optimally modeled with the help of random indices: the refractive index, RI, the 
flash point, FP, the dipole moment, , and the magnetic susceptibility, -�·106. Random indices 
seem to tell us that in every property there are minor contributions that can be seen as random 
on a macro-level, due to a lack of detailed information about structure, interaction, and 
dynamics at the micro-level. The very good model of the twelve properties with normal 
(MCI), semiempircal, semi-random, and super-descriptors underlines the power of the full 
combinatorial algorithm. This algorithm confirms the utility of the experimental parameters 
and M as well as of the ad hoc parameters AHb, AHm, and �. Due to the huge number of 
combinations of the full combinatorial space, we should expect that, normally, the 
configuration of the full combinatorial descriptors be different from the configuration of the 
greedy descriptors. Looking at our best descriptors, throughout Tables 5 - 9, we notice that 
things are not exactly that way. Properties, 	, d, RI, and �, share the same (nearly the same for 
d) configuration with both search algorithms. This is good news for the greedy algorithm. 
Assuming the q2 statistics as the critical statistics the full combinatorial algorithm does an 
optimal job with Tb (the greedy algorithm could not find a better descriptor with higher 
number of indices), Tm (excellent with a super-descriptor), 	, RI, �, �,  (this last with a super-
descriptor), FP (a super-descriptor), and EV. Concerning UV the full combinatorial descriptor 
has not the same q2 of the greedy descriptor but it is much simpler. The tendency to choose 
semiempirical descriptors is nearly the same with both search algorithms (nine properties), 
whiles the greedy algorithm for the surface tension, �, chooses a pure empirical descriptor. 
Normally, the full combinatorial algorithm does not need highly convoluted descriptor for an 
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optimal model. Concerning   the   normal descriptors the full combinatorial algorithm prefers 
a stronger hydrogen perturbation, i.e., f�

.n with n = - 0.5, 0.5, and 1 (in 7/12 cases see text; the 
greedy algorithm in 4/12 cases, see Table 5), and also a Kp(p-odd) encoding for the core 
electrons (in 8/12 cases see text; 6/12 cases with the greedy method). Practically, the full 
combinatorial algorithm prefers to compensate a strong hydrogen contribution with a weaker 
electron core contribution. The model of properties with the highest and similar number N of 
compounds (Tb, Tm, 	, d, and RI) confirms that the hydrogen perturbation is mainly property-
dependent.  
      The advantage to work with configuration-dependent indices is emphasized by possibility 
to use super-descriptors, i.e., to work with a combinatorial space made of indices of the best 
descriptors of all properties, and thus performs a kind of configuration interaction of the best 
indices. Last but not least, throughout the model of the twelve properties the 
pseudoconnectivity indices together with the electrotopological index, �, which encode 
specific information on the electronic environment, bear the main responsibility for the 
success of the model.  
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