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Abstract: The design of DNA sequences is a key process in DNA computing, 
DNA-based steganography and other DNA-based applications. The criteria, to 
constrain the DNA sequence design, include different combinatorial constraints 
proposed by different researchers. However, the unique and all-purpose constraint (or 
constraints) has not been found yet. In this paper, we firstly obtain some DNA 
sequences sets from our algorithm. Then, we employ the minimum free energy (MFE, 
for short) to evaluate the different combinatorial constraints, because the MFE criterion 
is the minimum value among free energies of all the possible structures and the 
effective approach to control the generation of unexpected secondary structure of DNA 
sequences may cause error. Comparisons of the results suggests that the 

1C combinatorial constraint could be the best combinatorial constraints and the CC (or 
WW) constraint be the most important single constraint for designing DNA sequence 
sets. 

1. Introduction 
With the development of biotechnology, especially DNA-based biotechnology, 

DNA molecule have been more and more applied in computer science, 

communication and other subjects, which bring flying development in many aspects. 

To the DNA sequence design, DNA computing, firstly proposed by Adleman in 1994, 
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is an important one in these applications [1]. Subsequently, Clelland proposes a 

method of DNA-based steganography that mean hiding of secret messages among 

other information to conceal their existence with DNA microdot [2]. In his paper, he 

designs the DNA sequences for plaintext encoding where a unique base triplet is 

assigned to each letter of the alphabet, each numeral and some special characters. 

Dietrich use the DNA sequences as storage medium based on the property of DNA 

molecule [3]. With the continuous deepening of the study, the DNA-based method 

will apply in the more and wider areas in the future. 

A single strand of DNA consist of four bases (nucleotides), adenine (A), guanine 

(G), thymine (T), cytosine (C). Two single strands of DNA can form (under 

appropriate conditions) a double strand by hybridization reaction, if the respective 

bases are the Watson-Crick complements of each other-A matches T and C matches G; 

also 3’ end matches 5’ end. The hybridization reaction between two DNA sequences is 

very important for DNA computing, because its efficiency and accuracy directly 

influences the reliability of DNA computing. However, the false hybridization is 

unavoidable to emerge because of limit of biologic technology. False hybridization 

reaction in DNA computing can be assorted two categories: One is false positive, the 

other is false negative. The former is the hybridization reaction between two 

unmatched DNA sequences. The latter is that two match DNA sequences do not 

hybridize each other. The false positive is result of the lack of similarity between 

DNA sequences [4,5]. The false negative is result of the mistake in the biochemical 

operation. The mean ways that are used to reduce the emergence of false 

hybridization reaction can be stated as follows: 

(1) optimizing the DNA sequences and decreasing the similarity between the 

DNA sequences; 

(2) using specific biochemical methods; 

(3) enhancing the accuracy of biochemical operation. 
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1.1 Design DNA Sequence  

The design of DNA sequence is an approach for a robust computation or 

application by designing DNA sequences that satisfy some constraints to avoid 

unexpected false hybridization reactions. The purpose is to design DNA sequences 

that are used as elemental components of computation, DNA-based steganography 

and other DNA-based applications and to improve the veracity and the reliability of 

DNA-based applications. 

The research of designing DNA sequence has obtained a lot of enormous progress 

in many fields, but there are a number of problems not solved. The problem that is 

urgent to solve is that how to combine the recognition of information specific in 

DNA-based applications with varied kind of factors of biochemical reaction and to 

build a unique and all-purpose standard for designing DNA sequences. In this paper, 

we employ the minimum free energy (MFE, for short) criterion to evaluate the 

constraints used in DNA sequence design. The significance of our work is to find the 

best constraint (or constraints) to design DNA sequence based on the MFE criterion 

and to improve the accuracy of hybridization reaction between the two single DNA 

sequences.

1.2 The Significance of Designing DNA Sequence 
The significance of researching DNA sequence design can be briefly stated as 

follows: 

(1) The problem of designing DNA sequence is to produce the DNA sequences 

that satisfy the constraints. Therefore, it could ensure the quality of DNA 

coding and use the shortest DNA sequences to code every information unit. 

(2) According to the actual needs, it can obtain the better DNA sequences and 

use them to decrease the emergence of false hybridization reaction and 

improve the accuracy of DNA –based application. 

(3) According to the results, we could use the least DNA sequences to express 

the data in the DNA data storage. It could decrease the redundancy of DNA 

data storage that could be used in many wide fields. 
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2 Related Works 
There are two main problems of designing DNA sequence: one is to research the 

quantity of DNA sequences, namely obtaining the better DNA sequences used in 

DNA-based applications; the other is to find the quality of DNA sequences, namely 

designing DNA sequence sets. 

The researching the quantity of DNA sequences is earlier than the sets of DNA 

sequences. Baum [4] proposes a new method-the minimal same subsequences that are 

coded between DNA sequences used as information unit should be more than a 

constant. This method could decrease the nonspecific hybridization reaction between 

two single DNA sequences. Deaton [5,6] proposes that the DNA coding should be 

combined with biochemistry reactions and research of the reliability of coding 

problems from information theory. Moreover, he firstly proposes the algorithm of 

design DNA sequences based on genetic algorithm. Wood [7] proposes a method of 

designing DNA sequences which has error correction function and use it in DNA 

computing. Hartemink [8,9] proposes the designing method based on distance 

constraints (such as Hamming distance, we will be described in subsequent chapter) 

and free-energy criterion. S.Y. Shin [10,11] uses the algorithm of Multi-objective 

evolutionary to design DNA sequences and develops a system that named NACST by 

genetic algorithm. W.B. Liu [12] proposes the algorithm that used the template frame 

to design DNA sequences. We used the improved genetic algorithm to design DNA 

sequences used in DNA computing [13]. In [13], we use the combinatorial constraints 

that include distance constraints, GC content and continuity constraint. X.C. Zhang 

uses the invasive weed optimization technology to design DNA sequences [14]. R. 

Zhang employs an improved particle swarm optimization algorithm to solve the 

problem of DNA sequence design and integrate it into required combinatorial and 

thermodynamic constraints for DNA computing [15]. Their experimental results show 

that the proposed method is effective and convenient for the user to design and select 

effective DNA sequences in silicon for controllable DNA computing. 

The main problem of designing DNA sequences set is to research the amount of 

-294-



DNA sequences satisfy the certain constraints. The ways designing the set of DNA 

sequence include two main methods: one is theoretical derivation. It could obtain the 

structural method of DNA sequence set which satisfy the constraints and the 

approximate upper or lower bounds, such as [16-18]. The other is to use the intelligent 

algorithm to search and obtain the improved lower bounds of DNA sequence sets, 

such as stochastic local search algorithm [19,20], hybrid randomized neighborhoods 

search algorithm [21], dynamic neighborhood search algorithm [22], variable 

neighborhood search algorithm [23], improved genetic algorithm [24] and swarm 

optimization algorithm (PSO) algorithm [25]. 

In the theoretical derivation, the main idea is to apply the research results of 

2-component code and q-component code to the DNA coding and improve them [26], 

such as Sphere-Packing bound, Singleton upper bounds, Gilbert-Varshamov lower 

bounds, Plotkin lower bounds and so on. There are some introductions and some 

corresponding derivation in the [16] and [17]. Applying these results, they could 

reduce the values range of DNA sequence sets. In [17], the authors deeply research 

the theoretical bounds that satisfy the Hamming distance (WW, for short). In [16], the 

authors deeply research the theoretical bounds which respectively satisfy the WW, 

WW and reverse-complement Hamming distance (WC, for short), and give the 

relation between them. In [25], the authors research the GC content, WC and GC 

content constraints. In [27], the authors use the method that combines linear 

construction with stochastic local search algorithm. They improve the some lower 

bounds that satisfy the GC content, WC and GC content constraints. 

In the research of intelligent algorithm, the main idea is to use intelligent 

algorithm to search DNA sequences sets that satisfy constraints. In the single 

constraint, this method usually is used to improve the lower bounds. Because the 

theoretical research is hard to find the relation between the combinatorial constraints, 

such as the relation between GC content and other distance constraints, intelligent 

algorithm could improve the upper and lower bounds in the combinatorial constraints.  

In [19], the authors use the stochastic local search algorithm to improve the lower 

bounds that satisfy the WW and WC combinatorial constraints. The results are 
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compared with the theoretical value. At the same time, they also improve the bounds 

that satisfy the WW and WC constraints and obtain the approximate bounds that 

satisfy the WC and GC content constraints. In [21], the authors improve the stochastic 

local search algorithm and the results that are from the [19]. In [22], the authors use 

the dynamic neighborhood search to improve the lower bounds that satisfy the WC 

and GC content constraints. In [23], the authors use the variable neighborhood search 

algorithm improve the lower bounds satisfy GC content constraint, and GC content 

and WC combinational constraints. 

2.1 Minimum Free Energy 

A DNA sequence s is a string composed of alphabet � �= A,G,C,T� . A DNA 

sequence or sequences maybe form secondary structures by the Watson-Crick 

property, which are also called conformations. Each conformation of a sequence (or 

sequences) has a Gibbs standard free energy. The Minimum Free Energy (MFE, for 

short) of a sequence or sequences is the minimum value among free energies of all 

possible conformations of a sequence (or sequences). It is known that a conformation 

with a small Gibbs standard free energy is more stable than the one with larger Gibbs 

standard free energies [28]. 

( , )G u v� denotes the value of MFE between two DNA sequences ,u v , which can 

be calculated by PairFold [29]. In addition, 's  denotes the Watson-Crick 

reverse-complement sequence of DNA sequence s .S is the set of DNA sequences 

s ,S' is the set of 's . In order to calculate the free energy gap� , we need some 

definitions that are stated as following:  

(1) Sequence-Sequence Constraint: for all pairs of ,i ju v inS ,

1
( ) min{ ( , )}ww i i jj n

G u G u v
� �

� � �                   (1) 

(2) Sequence-Complement Constraint: for all pairs of iu inS , '
jv inS' , and i j	 ,

'

1 ,
( ) min { ( , )}wc i i jj n i j

G u G u v
� � 	

� � �               (2) 
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(3) Complement-Complement Constraint: for the pairs of ' ',i ju v inS' ,

' '

1
( ) min{ ( , )}cc i i jj n

G u G u v
� �

� � �                    (3) 

(4) Sequence-Self-Complement Constraint: for all pairs of iu in S , '
iu in S' ,

and ( ') 'u u� ,

'

1
( ) min{ ( , )}ws i i ii n

G u G u u
� �

� � �             (4) 

(5) Free energy gap: the free energy gap is denoted by� . For two DNA sequences 

u and v ,

min{ ( , ), ( , '), ( ', ')} ( , ')G u v G u v G u v G u u �� � � 
� �     (5)  

where ,u v S� ', ' 'u v S� . Roughly speaking, the larger� is, the larger the gap 

between the free energy of desired and undesired hybridizations, and thus the better 

(the quality of DNA sequences set) the set is [30, 36]. 

Tulpan et al. [30] early research the DNA sequence set design based on MFE, 

which uses PairFold package. They describe a new algorithm for design of DNA 

sequence sets, for using in DNA computations or universal microarrays. Their 

algorithm can design sets satisfy any of several thermodynamic and combinatorial 

constraints, which aim to maximize desired hybridizations between strands and their 

complements, while minimizing undesired cross-hybridizations. In the Garzon et al. 

paper [31], authors report results of a tour de force to conduct an exhaustive search to 

produce DNA sequence sets that are arguably of sizes comparable to that of maximal 

sets while guaranteeing high quality, as measured by the minimum Gibbs energy 

between any pair of DNA sequences. By comparing their experimental results with 

previous work, the results has been improved the lower bounds of DNA sequence sets. 

Subsequently, in [28], Kawashimo et al. use dynamic neighborhood searches to design 

DNA sequence sets and further improve the Garzon’s value [31]. In the Kawashimo’s 

paper, authors introduce techniques to reduce such time-consuming evaluations of 

MFE, by which the proposed dynamic neighborhood search strategy become 

applicable to the thermodynamical constraints in practice. Recently, they propose a 
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new speeding up local-search type algorithms for designing DNA sequences based on 

MFE [32]. Comparing the results, their algorithm succeeded in generating better DNA 

sequence sets than exiting methods. 

2.2 The Constraints 

 In this part, we introduce the distance constraints that are frequently used in 

designing DNA sequence. The Hamming distance constraint criterion mainly includes 

word-word Hamming distance constraint (WW, for short), word-complement 

Hamming distance (WC, for short) and complement-complement Hamming distance 

(CC, for short). 

Garzon firstly proposed the definition problem of designing DNA sequences for 

DNA computing [33]. The definition is as follow: in the alphabet � �= A,G,C,T� , there 

exists a set S with the length of n and size of 4nS � . A subsetC S  and let ,u v any

two codes in the C  satisfy

( , )u v d� �                               (6) 

d is a positive integer, � is the constraint criteria (or criterion) for design DNA 

sequences, such as Hamming distance criterion. 

2.2.1 Word-word Hamming distance (WW, for short) 

Word-word Hamming distance constraint: for the DNA sequences ,u v with given 

length n (written from the 5’- to the 3’-end), � �,H u v  denotes the Hamming 

distance between u and v . ( )iWW u denotes the minimal of � �,i jH u v in all DNA 

sequences and should not be less than certain parameter d ,

� �� �
1 ,

( ) min ,i i jj n j i
WW u H u v d

� � 	
� �        (7) 
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2.2.2 Word-complement Hamming distance (WC, for short) 

Word-complement Hamming distance: for the DNA sequences ,u v with given 

length n (written from the 5’- to the 3’-end), � �, 'H u v  denotes the Hamming 

distance between u and 'v . ( )iWC u  denotes the minimal of � �',i jH u v in all DNA 

sequences and should not be less than certain parameter d , i.e.  

� �� �'

1 ,
( ) min ,i i jj n j i

WC u H u v d
� � 	

� �        (8) 

2.2.3 Complement-complement Hamming distance (CC, for short) 

Complement-complement Hamming distance constraint: for the DNA sequences 

,u v with given length n (written from the 5’- to the 3’-end), � �', 'H u v  denotes the 

Hamming distance between 'u and 'v . '( )iCC u denotes the minimal of � �', 'i jH u v in

all DNA sequences and should not be less than certain parameter d ,

1
( ') min{ ( ', '}i i jj n

CC u H u v d
� �

� �               (9) 

2.2.4 GC content constraint 

 GC content constraint affects the chemical properties of DNA sequences. A fixed 

percentage of the nucleotides within each DNA sequence is either G orC . Using this 

constraint, we assume that this percentage is ( 2
n

n
� �
� � ) %. 

2.3 The Combinatorial Constraints 

0C : This combinatorial constraints include the WW, WC, CC and GC content 

constraints.

1C : This combinatorial constraints include the WC, CC and GC content 

constraints (Delete the WW constraint). 

2C : This combinatorial constraints include the WW, CC and GC content 

constraints (Delete the WC constraint). 

3C : This combinatorial constraints include the WW, WC and GC content 
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constraints (Delete the CC constraint). 

4C : This combinatorial constraints include the WW, WC and CC constraints

(Delete the GC content constraint). 

5C : This combinatorial constraints include the WW and WC constraints. 

6C : This combinatorial constraints include the WW and CC constraints. 

7C : This combinatorial constraints include the WW and GC content constraints. 

8C : This combinatorial constraints include the WC and CC constraints. 

9C : This combinatorial constraints include the WC and GC content constraints. 

10C : This combinatorial constraints include the CC and GC content constraints. 

In this paper, we employ the improved genetic algorithm to design DNA 

sequence sets that satisfy the combinatorial constraints and gauge the quality of the 

DNA sequences sets by the free energy gap based on MFE that is calculated by the 

PairFold package [31]. We choose the best combinatorial constraints from 0C to 10C

by comparing their scores.  

3 Design of Algorithm 
 According to the introduction above, different algorithms could be used to design 

DNA sequence sets by many various authors. In this paper, we employ the improved 

genetic algorithm to design DNA sequence sets based on the combinatorial constraints 

from 0C to 10C . The improved genetic algorithm could conquer the shortages and 

enhance the global search capability of traditional genetic algorithm based on the 

characteristic of DNA sequence set. The improved areas can be briefly stated as 

follows: 

(1) Initializing the populations of algorithm with the evenly distributed method. It 

can enhance the multiformity of populations based on global field. According 

to the number of populations, the populations are evenly distributed in the 

value scope by the evenly distributed method. 

(2) Randomly re-initializing the populations when they satisfy certain condition. It 
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can enhance the ability of conquering premature convergence. The time of 

re-initializing the populations is only once, because with the times increasing, 

the convergence of algorithm will be decreased. 

(3) In the mutation process, we adjust the probability of mutation operator with 

dynamic method. In the traditional genetic algorithm, the algorithm adopts 

unique value to process the mutation operation, which could certainly decrease 

the convergence of algorithm. 

The optimization problem is defined by the problem of maximum value, and we 

employ average weight to deal with the function of evaluation. We denote fitness 

function ( )f i  is � �
1

( )
m

j j
j

f i f i�
�

� � ,    

( ) { ( ), ( ), ( )}i i if
j

i WW u WC u CC u�                  (10) 

Where 1j� � is the weight of each constraint, m is the number of constraints 

and ( )f
j

i  are the constraints which have been selected.  

The main process of algorithm is that: initializing DNA sequences with evenly 

distributed method, selecting the sequences that satisfy the constraint (or constraints) 

from these sequences, generating new DNA sequences by selection, crossover and 

mutation operator, lastly obtaining the DNA sequence sets. Fig.1 is the flowchart of 

algorithm. 

The steps of designing DNA word set by the improved genetic algorithm are 

stated as follows: 

Step 1: Setting parameters and initializing population with evenly distributed 
method. 

Step 2: Calculating the value of fitness function. We employ the MeanF to denote 

the mean of the fitness function. If 
1

MeanF < ( )/m
m

i
f i

�
�  then randomly 

re-initializing the populations. 

Step 3: Generating the next generation population by selection crossover and 

mutation. The algorithm uses the random tournament selection in the 
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selection process and three-point crossover strategy in the crossover 
process. The size of tournament is equal to 2, and the number of times to 
repeat is equal to the 10% of the total number of population in the 
random tournament selection. In the mutation process, if one of the 
fitness is larger than MeanF, its probability of mutation is 0.01. In 
addition, if it is equal to MeanF, its probability of mutation is 0.03. Else, 
its probability of mutation is 0.3. It is the process of dynamic adjustment 
of the probability. If the generation is less than 200, go to step2; if not, 
then go to step4. 

Step 4: Ending and outputting results. 

Fig.1 The flowchart of algorithm. 

N

N

Y

Y

N
Y

Y

Calculate the value of fitness 

Evenly initializing the populations 

Meet certain condition Randomly initialize 
populations 

N

Evolution   
complete

Output results 

Generate new populations 

If the fitness is larger 
than MeanF 

If the fitness equal to 
MeanF 

Execute select, crossover and mutate 

Probability of mutation 
is 0.03 

Probability of mutation 
is 0.3

Probability of mutation 
is 0.01
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Note that our algorithms have succeeded in many different combinatorial 

constraints for designing the DNA sequence sets and obtained the better results than 

previous work [24, 34, 35]. Therefore, the algorithm used in this paper has enough 

effect to design DNA sequence sets that satisfy the different combinatorial constraints. 

4 Experimental results 
The parameters of improved genetic algorithm used in our example are: the size 

of population is 1000; the probability of crossover is 0.45; the initial probability of 

mutate which is initialized is 0.01. In order to control the time of running algorithm, 

the generation is 200. We use the PairFold package [22] to calculate the MFE of two 

DNA sequences. The setting temperature is 37 C . In order to increase the reliability 

of our experimental results, we did fifty experiments for every value and employed 

the mean of the fifty experiments as final results.  

 The bold face values in the Table 1 and Table 2 are the energy gaps of DNA 

sequence sets that satisfy the constraints from 0C to 10C , respectively. n denotes the 

length of DNA sequences and d denotes the distance. The numbers in the brackets 

are the values that are sorted in descending order by the each row. For an overall 

evaluation of each combinatorial constraint, we calculate the energy gaps by the 

different lengths and distances. The last row is the overall evaluation for each 

combinatorial constraint and is equal to the sum of the all sorted value for each 

column. 

Table 1. Results satisfying the constraints from 0C to 4C .

n d C0  C1 C2 C3 C4 

4 4 0.676(3) 0.696(2) 0.542(5) 0.716(1) 0.632(4) 

5 4 0.410(5) 0.494(2) 0.526(1) 0.456(4) 0.476(3) 

6 4 0.598(2) 0.380(4) 0.620(1) 0.496(3) -0.026(5) 

7 4 0.114(4) 0.282(1) 0.192(3) 0.282(1) -0.092(5) 

8 4 -0.320(5) -0.264(2) -0.266(4) -0.264(2) -0.206(1) 

5 5 1.048(5) 1.360(1) 1.300(2) 1.236(3) 1.110(4) 
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6 5 1.772(1) 1.418(4) 1.632(2) 1.608(3) 0.468(5) 

7 5 1.338(2) 1.246(3) 1.342(1) 1.246(3) 0.956(5) 

8 5 0.144(1) 0.070(3) 0.008(5) 0.030(4) 0.076(2) 

6 6 2.248(1) 2.176(2) 2.130(3) 2.044(4) 1.844(5) 

7 6 2.648(1) 2.330(3) 2.316(4) 2.410(2) 2.068(5) 

8 6 0.882(3) 1.148(1) 0.996(2) 0.652(5) 0.816(4) 

7 7 2.728(2) 2.722(3) 2.566(5) 2.586(4) 2.788(1) 

8 7 2.048(3) 2.112(2) 2.864(1) 2.042(4) 1.598(5) 

8 8 3.096(3) 2.980(4) 2.870(5) 3.102(2) 3.400(1) 

score 41 37 44 45 55 

Table 2. Results satisfying the constraints 1C and from 5C to 10C .

n d C1 C5 C6 C7 C8 C9 C10 

4 4 0.696(1) 0.526(2) 0.046(4) 0.046(4) 0.526(2) -0.214(7) 0.046(4) 

5 4 0.494(3) 0.574(1) 0.0084(4) -0.144(5) 0.510(2) -0.670(7) -0.144(5)

6 4 0.380(1) 0.018(3) -0.194(6) -0.174(4) 0.022(2) -0.740(7) -0.174(4)

7 4 0.282(1) -0.018(3) -0.420(4) -0.442(5) 0.020(2) -0.892(7) -0.442(5)

8 4 -0.264(2) -0.246(1) -0.386(4) -0.564(5) -0.276(3) -0.974(7) -0.564(5)

5 5 1.360(1) 1.060(3) 0.410(6) 1.032(4) 1.060(2) -0.050(7) 0.964(5) 

6 5 1.418(1) 0.454(7) 0.628(4) 0.696(3) 0.508(5) 0.500(6) 0.724(2) 

7 5 1.246(1) 0.780(3) 0.280(6) 0.522(4) 1.024(2) -0.722(7) 0.486(5) 

8 5 0.070(5) 0.084(4) 0.136(3) 0.204(2) 0.008(6) -0.798(7) 0.262(1) 

6 6 2.176(1) 1.600(3) 1.284(6) 1.394(5) 1.772(2) 0.048(7) 1.514(4) 

7 6 2.330(1) 2.142(2) 1.178(6) 1.536(5) 2.054(3) -0.442(7) 1.812(4) 

8 6 1.148(3) 0.840(5) 1.022(4) 1.288(1) 0.652(6) -0.606(7) 1.212(2) 

7 7 2.722(2) 2.558(3) 1.562(6) 2.384(4) 2.788(1) 0.192(7) 2.340(5) 

8 7 2.112(6) 2.268(5) 2.368(4) 2.658(2) 2.546(3) -0.276(7) 2.712(1) 

8 8 2.980(4) 3.324(1) 2.578(6) 3.018(3) 2.968(5) 0.610(7) 3.142(2) 

score 33 46 73 56 46 104 54 
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5 Conclusions 
 In this paper, we firstly present an improved genetic algorithm to design DNA 

sequence sets that satisfy the different combinatorial constraints based on minimum 

free energy criterion. We employ the energy gap to evaluate the quality of DNA 

sequence sets, namely the larger the energy gap of DNA sequence set is, the larger the 

gap between the free energy of desired and undesired hybridizations is, and thus the 

better the set is [30,36]. For an overall evaluation of each combinatorial constraint 

from 0C to 10C , we calculate the energy gaps by the different lengths and distances. 

Summary, the smaller the score of the constraints is, the greater the impact of the 

constraints on the quality of DNA sequence set is, and vice versa.  

Comparing all the constraints from Table 1 and Table 2, the results suggest that 

the 1C constraint is the best combinatorial constrain for designing DNA sequence set. 

In the Table 2, the score of 5C is equal to 8C  and the score of 7C is nearly equal to 

10C (having the same energy gaps in some rows). Comparing the definition of WW 

and CC constraint, we conjecture that the impact of the WW constraint on the 

designing DNA sequence sets would be the same as the impact of the CC constraint. 

So the impact of 6C  would approximate the impact of one constraint in 6C .

Because the score of 9C  is the largest one, 9C  is the worst combinatorial 

constraint. However, in Table 1, the 0C  and 3C constraints both include the 

9C constraint and are not the worst combinatorial constraints. For these reasons, the 

CC (or WW) constraint is the most important single constraint for designing DNA 

sequence sets.  

In the further, we have some works need to do. We will try to proof our 

conjecture in theory, use the 1C combinatorial constraint to compare other constraints, 

such as edit distance constraint and find the best constraint or combinatorial 

constraints to design DNA sequence sets. 
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