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Abstract

Recently introduced Zagreb coindices are a generalization of classical Zagreb
indices of graphs. In this paper we determine the extremal values of these new
topological invariants over some special classes of graphs. The extremal graphs are
also presented.

1 Introduction

A graph invariant is any function on a graph that does not depend on a labeling of

its vertices. Such quantities are also called topological indices. Hundreds of different

invariants have been employed to date (with unequal success) in QSAR/QSPR studies.

Among more useful of them appear two that are known under various names, but mostly as

Zagreb indices. Due to their chemical relevance they have been subject of numerous papers

in chemical literature [2, 9, 10, 11, 15, 19], while the first Zagreb index, also attracted

a significant attention of mathematicians. One of the focal points of their research has

been the problem of determining their extremal values and the corresponding extremal

graphs [3, 4, 5, 14]. The aim of this paper is to investigate similar problems for a recently

introduced generalization of Zagreb indices.
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2 Definitions and preliminaries

All graphs in this paper are finite and simple. For terms and concepts not defined here

we refer the reader to any of several standard monographs such as, e.g., [6] or [17].

Let G be a connected graph with vertex and edge sets V (G) and E(G), respectively.

For every vertex u ∈ V (G), the edge connecting u and v is denoted by uv and δG(u)

denotes the degree of u in G. We will omit the subscript G when the graph is clear from

the context.

The Zagreb indices were originally defined as follows:

M1(G) =
∑

u∈V (G)

δ(u)2

M2(G) =
∑

uv∈E(G)

δ(u)δ(v) .

Here M1(G) and M2(G) denote the first and the second Zagreb index, respectively. The

first Zagreb index can be also expressed as a sum over edges of G,

M1(G) =
∑

uv∈E(G)

[δ(u) + δ(v)] .

We refer the reader to [15] for the proof of this fact. The readers interested in more

information on Zagreb indices can be referred to [2, 9, 10, 11, 12, 19].

The Zagreb indices can be viewed as the contributions of pairs of adjacent vertices

to certain degree-weighted generalizations of Wiener polynomials [12]. It turned out that

computing such polynomials for certain composite graphs depends on such contributions

from pairs of non-adjacent vertices. That prompted introduction of Zagreb coindices in

reference [7].

The first Zagreb coindex of G is defined by

M1(G) =
∑

uv �∈E(G)

[δ(u) + δ(v)]

and the second Zagreb coindex is given by

M2(G) =
∑

uv �∈E(G)

[δ(u)δ(v)] .

For the sake of completeness we state here some results of references [1, 16, 18] and

[20] which will be useful throughout the paper.

-86-



A sequence δ1 ≥ δ2 ≥ · · · ≥ δnis called the degree sequence of a graph G if there

exists a labeling {v1, . . . , vn} of vertices of G such that δ1 = δ(v1), . . . , δn = δ(vn).

The girth of G is the length of a shortest cycle contained in G. We assume that Ni(v) =

{w ∈ V (G) | d(v, w) = i}, where d(v, w) is the length of a shortest path connecting

v and w. Define ni(v) = |Ni(v)|. The eccentricity ε(v) of v is defined as ε(v) =

maxw∈V (G){d(v, w)}. The radius r = r(G) and the diameter D = D(G) are defined

as the minimum and maximum of ε(v) over all vertices v ∈ V (G). A Moore graph is

a graph of diameter k with girth 2k + 1. Those graphs have the minimum number of

vertices possible for a regular graph with given diameter and maximum degree.

Lemma A. [1]

Suppose G is a connected graph. Then we have:

(a) M1(G) = 2m(n− 1)−M1(G)

(b) M2(G) = 2m2 −M2(G)− 1
2
M1(G) .

Reference [16] is concerned with degree-distances in unicyclic and bicyclic graphs.

The following result will be useful in establishing bounds and extremal graphs for Zagreb

coindices over such graphs.

Lemma B. [16]

(a) Let n ≥ 3. The integers δ1 ≥ · · · ≥ δn ≥ 1 are degrees of the vertices of a unicyclic

graph if and only if their sum is equal to 2n and at least three of them are greater or

equal to 2.

(b) Let n ≥ 4. The integers δ1 ≥ · · · ≥ δn ≥ 1 are degrees of the vertices of a bicyclic

graph G if and only if their sum is equal to 2n+ 2, at least four of them are greater than

two, and δ1 ≤ n− 1.

Reference [18] gives upper and lower bounds on the Zagreb indices over triangle- and

quadrangle-free graphs. Our results on extremal values and graphs for Zagreb coindices

of such graphs will depend on the following results.

Lemma C. [18]

(a) Let G be a connected graph. Then

M1(G) ≥ 2m+
∑

v∈V (G)

n2(v)

-87-



M2(G) ≥ 1

2
M1(G) +

1

2

∑
v∈V (G)

δ(v)n2(v) .

The equalities hold if and only if G is a triangle- and quadrangle-free graph.

(b) Let G be a triangle- and quadrangle-free graph on n vertices and m edges with radius

r. Then M1(G) ≤ n(n + 1− r) and M2(G) ≤ m(n + 1− r). The equality is valid if and

only if G is a Moore graph of diameter 2 or G = C6.

We conclude this section by quoting relevant results from reference [21] concerned with

bounds on the Zagreb indices of series-parallel graphs. A graph is called series-parallel

if it does not contain K4 as a minor; equivalently, it does not contain a subdivision of K4

[8].

Lemma D (Theorems 1 and 3 of [20])

Let G be a series-parallel graph with n vertices and m edges without isolated vertices.

Then

M1(G) ≤ n(m− 1) + 2m

M2(G) ≤ m2 +
1

2
n(m− 1)

with equality for n ≥ 3 if and only if G is isomorphic to K1,1,n−2.

In the above Lemma K1,1,n−2 denotes the complete tripartite graph on n vertices with

partition classes of sizes 1, 1, and n− 2.

3 Main Results

It is easy to see that M1(Cn) = 4n for n ≥ 3. Also, M1(P1) = 0 and M1(Pn) = 4n − 6

for n > 1. Let Tn and Gn denote the set of all n−vertex trees and n−vertex connected

graphs, respectively. If G ∈ Gn then M1(G) ≤ n(n − 1)2, with equality if and only if G

is isomorphic to a complete graph Kn. Obviously, the path Pn and the star Sn have the

minimum and maximum M1 in Tn, respectively. On the other hand, if H is a subgraph

of G then M1(H) ≤ M1(G). Therefore, the minimum of M1 on the set of all connected

graphs with n vertices is the same as the minimum of M1 on Tn. This implies that Pn

and Kn have the minimum and maximum Zagreb index M1 on Gn.

The aim of this section is to obtain the extremal graphs with respect to the Zagreb

coindices. We first consider M1(G). In particular, we will prove that for all T ∈ Tn,

M1(Sn) ≤ M1(T ) ≤ M1(Pn). The results of the same type will be also established for

the classes of unicyclic and bicyclic graphs.
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Lemma 1. If T ∈ Tn then M1(Sn) ≤ M1(T ) ≤ M1(Pn).

Proof. This is an immediate consequence of Lemma A (a) and the first paragraph of this

section.

Suppose G1
n denotes the set of all n−vertex unicyclic graphs.

Lemma 2. If G ∈ G1
n then (n+ 2)(n− 3) ≤ M1(G) ≤ 2n(n− 3). Moreover, the left and

right equalities hold if and only if G is isomorphic to K1,n−1 + e and Cn, respectively.

Proof. Since the sum of degrees in G is equal to 2n, by Lemma B (a) M1(G) attains

its maximum on G1
n if and only if δ1 = n − 1, δ2 = δ3 = 2 and δ4 = · · · = δn = 1, i. e.,

G ∼= K1,n−1 + e. Therefore, M1(G) ≤ n2 − n+ 6. By Lemma A (a), n2 − n− 6 ≤ M1(G).

On the other hand, M1(G) attains its minimum on G1
n if and only if every vertex of G has

degree 2. Therefore, M1(G) ≥ 4n and by Lemma A (a), M1(G) ≤ 2n2 − 6n.

Let G2
n denote the set of all n−vertex bicyclic graphs. Such graphs have obviously

n+ 1 edges.

Lemma 3. If G ∈ G2
n then n2 + n − 16 ≤ M1(G) ≤ 2n2 − 4n − 12. The left equality is

satisfied if and only if G is isomorphic to K1,n−1+e+f , where e and f are two edges with

a common vertex forming two adjacent triangles in K1,n−1. The right equality is satisfied

if and only if G is isomorphic to a graph constructed from Cp and Cq joined by a path

Pn−p−q, 3 ≤ p, q ≤ n− 3.

C C
P

e

K

f

p q
n−p−q

1,n−1
+e+f

Figure 1: Extremal graphs for Lemma 3.

Proof. Since the sum of degrees is 2n + 2, by Lemma B (b) the maximum is attained

if and only if δ1 = n − 1, δ2 = δ3 = 2, δ4 = 3 and δ5 = · · · = δn = 1. Therefore,

M1(G) ≤ n2 − n + 14 and so n2 + n − 16 ≤ M1(G). On the other hand, the minimum

of M1(G) on G2
n is attained on a graph with the degree sequence δ1 = δ2 = 3 and

δ3 = · · · = δn = 2. Such graphs are constructed from two cycles Cp and Cq by connecting
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them by a path of length n − 1 − p − q. This implies that M1(G) ≥ 4n + 10 and so

M1(G) ≤ 2n2 − 4n− 12, proving the lemma.

The extremality results for M1(G) for unicyclic and bicyclic graphs can be also derived

from results of [13] as reported in [21].

Let us now turn our attention to M2(G). Starting from the extremal trees for M2(T )

as reported in [5] and formula

M2(G) = 2m2 −M2(G)− 1

2
M1(G)

from Lemma A (b) it is easy to see that for an n−vertex tree T , M2(Sn) ≤ M2(T ) ≤
M2(Pn).

Let us now look at more general graphs. If a connected graph G is triangle- and

quadrangle-free, we can use the results of reference [18] summarized in Lemma C to

obtain both upper and lower bounds on M2(G).

Lemma 4. Suppose G is a triangle- and quadrangle-free connected graph with n vertices,

m edges and radius r. Then M2(G) ≥ 2m2 − (n + 1 − r)(m + 1
2
n) with equality if and

only if G is a Moore graph of diameter 2 or G ∼= C6.

Proof. The proof is straightforward and follows from Lemma C (b) and Lemma A (b).

The upper bound follows by the same reasoning from Lemma A (b) and Lemma C

(a).

Lemma 5. Suppose G is a connected graph. Then

M2(G) ≤ 2m2 − 1

2

∑
v∈V

δ(v)(δ(v) + n2(v))−
1

2

∑
v∈V

(δ(v) + n2(v)).

The equality holds if and only if G is a triangle- and quadrangle-free connected graph.

For a triangle- and quadrangle-free connected graph, we have the following identity

between M1(G) and M2(G).

M2(G) = M1(G) + 2m(m− n+ 1)− 1

2

∑
v∈V (G)

δ(v)n2(v).

This identity is analogous to the identity

M2(G) =
1

2

⎡
⎣M1(G) +

∑
v∈V (G)

δ(v)n2(v)

⎤
⎦
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of reference [18]. For trees this further reduces to

M2(G) = M1(G)− 1

2

∑
v∈V (G)

δ(v)n2(v) .

We conclude the section with a result concerned with series–parallel graphs.

Lemma 6. Suppose G is a series-parallel graph without isolated vertices. Then M1(G) ≥
m(n − 4) + n and M2(G) ≥ (m − n)(m − 1). The equality holds if and only if G ∼=
K2, K1,1,n−2.

The proof follows from Lemma A and Lemma D, and we omit it.

4 Concluding remarks

It would be interesting to extend the presented results also to some other classes of graphs

of chemical interest. Our results leave open the question of the minimum values of Zagreb

coindices over chemical trees. Another interesting class is formed by unbranched polymers

such as, e.g., benzenoid chains. At the present we are not aware of any results of this

type.
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