
 

 

3-Dimensional Distance Matrix of a TC4C8(R) Nanotorus  

Shahram Yousefi and Ali Reza Ashrafi1 
Department of Mathematics, Faculty of Science, University of Kashan,  

Kashan 87317-51167, I R Iran 
 

(Received March 12, 2010) 
 

Abstract 
 

A 3-dimensional matrix method for computing the number of vertices with a given 
distance d from a fixed vertex b in a TC4C8(R) nanotorus is presented. As a special 
case, the Wiener and hyper-Wiener indices of this molecular graph are computed. 
  

1. Introduction  

Nanostructured materials have received a lot of attention because of their novel 
properties, which differ from those of the bulk materials. One-dimensional materials are 
an important category of nanostructured materials and have been widely researched 
yielding various special structures like nanotubes and nanotorus. The materials of these 
nano materials can be prepared from carbon.  

Let G be a graph. A topological index Top(G) is a number related to the graph G 
invariant under all elements of Aut(G), where Aut(G) denotes the set of all 
automorphisms of the graph G. The Wiener index is one of the most studied topological 
indices, both from a theoretical point of view and applications [1]. It is equal to the sum 
of distances between all pairs of vertices of the respective graph, see for details [2,3]. 
The hyperr Wiener index of acyclic graphs was introduced by Milan Randić in 1993. 
Then Klein et al. [4], generalized Randić’s definition for all connected graphs, as a 
generalization of the Wiener index. It is defined as WW(G) = 1/2W(G) + 
1/2∑{u,v} V(G)d(u,v)2, where d2(u, v) = d(u,v)2 and d(u,v) is the length of a minimal path 
connecting u and v.  
 The present authors [5 13] studied the distance matrix of the armchair and zig-
zag polyhex nanotubes, TUC4C8(R/S) nanotubes, polyhex nanotorus and TC4C8(R/S) 
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nanotori. As a special case, the Wiener index of these molecular graphs was calculated. 
In this paper, we consider the molecular graph of TC4C8(R) nanotorus and compute the 
number of its vertices with a given distance d from a fixed vertex b. Using our 
calculations, one can compute too many distance based topological indices of an 
TC4C8(R) nanotorus. As special cases, the Wiener and hyper-Wiener indices of these 
nano-materials are concluded. Our motivation for this study come from the pioneering 
work of Diudea [14 17]. We encourage the reader to consult papers [18 21] for 
background materials, as well as basic computational techniques.  

For a permutation  on n objects, the corresponding permutation matrix is an n  
n matrix P  given by P  = [xij], xij = 1 if i = (j) and 0 otherwise. It is easy to see that 
P P  = P , for any two permutations  and  on n objects, and permutational matrices 
are orthogonal. Our notation is standard and taken from the standard book of graph 
theory. Throughout this paper T = T[m,n] denotes an arbitrary TC4C8(R) nanotorus in 
terms of the number of rhombs in a fixed row (m) and column (n), see Figure 1. 

  
(a) (b) 

Figure 1: An TC4C8(R) tori (a) Top view (b) Side view. 
 

2. Main Results and Discussion 
It is clear that the molecular graph T has exactly 4mn vertices and 6mn edges. Choose a 
base vertex b from the 2–dimensional lattice of T and assume that xij is the sum of all 
distances between b and vertices of the (i,j)th rhomb of T, Figure 2. Define Xm,n = 

[xij]mm n. Suppose  denotes the number of entries of Xm,m equal to i. Notice that x1,1 
= 3, when m = 1; and x1,1 = 4, otherwise. In [8], the present authors proved an algorithm 

for computing the matrix Xm,n. In this work, we will find a closed formula for . As 
an immediate consequence of this formula, the Wiener and hyper-Wiener indices of T 
are calculated. 
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Figure 2. 2–Dimensional Lattice of TUC4C8(R) Nanotube. 
 

 It is an easy fact that |V(T)| = 4mn and |E(T)| = 6mn. Suppose rij denotes the 
(i,j)th rhomb in the 2-dimensional representation of T, Figure 2. In Figure 2, if we 
choose the down vertex of r11 as base then the corresponding matrix is denoted by Fm,n. 
We also define the matrices Gm,n and Hm,n, when the left side and right side vertices of 
r11 are considered as the base vertex, respectively. From Figure 2, one can see that Fm,n 
is obtained from Xm,n by a permutation on vertices of T. So, these matrices constructed 
from the same set of entries. On the other hand, all entries of Xm,n are functions of m 
and n. If we change the base vertex b by left (right) side vertex of r11, then one half 
(2mn) of entries of Xm,n are again entries of Gm,n (Hm,n) and for remaining 2mn vertices, 
it is enough to interchange m and n in Xn,m. 

We first assume that m = n. From our calculations given in [8], one can see that 
when m is odd, 

                                          (1) 

and when m is even, we have: 

                                                 (2) 

 The most important part of our problem is the cases that m < n and m > n. For 
these cases we first introduce two 3-dimensional matrices L = [Li,j,k] and M = [Mi,j,k]. To 
define, we just determine the non-zero entries of these matrices as follows: 

L1,1,1 = L1,1,2 = L2,1,1 = L2,1,3 = 2; L2,1,2 = 4                                        (3) 
 
If j is odd then we define:  

Base

x22

x13
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L1,j,k = L1,j 1,k and L1,j,1/2(3j 1) = L1,j,1/2(3j+1) = 2, k ≤ 3/2(j 1)             (4) 
and when j is even, 

L1,j,k = L1,j 1,k and L1,j,3/2j 1 = 4, L1,j,3/2j = 2, k ≤ 3/2(j 1)                  (5) 
 The equations (3 5) define the entries of the first level of 3 dimensional matrix 
L. To define the second level, again two cases that j is odd and even are considered. 
Suppose j is odd. Then we define: 

L2,j,k = L2,j 1,k and L2,j,1/2(3j 1) = L2,j,1/2(3j+1) = 6, k ≤ 3/2(j 1)             (6) 
and for even j,  

L2,j,k = L2,j 1,k, L2,j,3/2j = L2,j,3/2j+1 = 4 and L2,j,3/2j+2 = 2, k ≤ 3/2j 1                  (7) 
The equations (3,6,7) complete our definition for the second level of L. We are now 
ready to define the matrix L completely. When i is odd or even, Li,j,k is defined as 
follows: 

  and   

These equations together with equations (3 7) defined completely the matrix L.  
Next, we describe our second 3-dimensional matrix M. To do this, define two 

ordinary matrices  and  as follows: 
                          (8) 

                          (9) 

 (10) 

 (11) 

We now apply equations (9 11) to define 3 dimensional matrix M. To do this, 
we use the matrix M1 and M2 defined above. It is enough to define all non-zero entries 
of the matrix M. Define Mi,1,k =  and 

(12) 
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We are now ready to state our main result as follows: 

Theorem. Suppose  denotes the number of entries of Xm,n equal to i. Then 

 

 
Corollary. If m = n then W(T) = 2/3m3(14m2 – k1) and  WW(T) = m3/3(37m3+28m2 + 

k2m – 2k1), where  and . 

 
 Set O ={(5,5), (6,6), (8,8), (5,8), (6,8), (8,5), (8,6)}. In the end of this paper, the 
number of vertices of a given distance are computed, for all elements of the set O.  

 

Table 1. The Values of , when (m,n)  O. 

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 i  
  n m 

0 0 0 0 0 0 0 8 16 19 16 13 11 8 5 3 1 

iN  

5 5 
0 0 0 0 2 8 16 21 21 19 16 13 11 8 5 3 1 66
2 8 16 24 29 29 27 24 21 19 16 13 11 8 5 3 1 88
0 0 2 8 13 13 13 16 19 19 16 13 11 8 5 3 1 5 8 
0 0 4 8 10 14 14 16 18 19 16 13 11 8 5 3 1 8 5 
0 2 6 10 14 18 22 23 21 19 16 13 11 8 5 3 1 8 6 
01 5 11 16 19 21 22 21 19 16 13 11 8 5 3 1 6 8 
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