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Abstract

In this paper we compute some distance-based topological indices of polyhex nanotori
using a mathematical model given by Cotfas (An alternate mathematical model for
single-wall carbon nanotubes, J. Geom. Phys. 55 (2005) 123-134).

1. Introduction

A topological index is a real number related to a graph of a molecule, which is structural. It does not
depend on the labeling or pictorial representation of the graph. In recent years, there has been
considerable interest in the general problem of determining topological indices of nanotubes and
nanotori'™. Tt has been established, for example, that the Wiener and hyper-Wiener indices of polyhex
nanotubes and tori are computable from the molecular graph of these structures. Accordingly, some of
the interest has been focused on computing topological indices of these nanostructures. Let G be an
undirected connected graph without loops or multiple edges, with the vertex set V(G) and the edge set
E(G). The distance between two vertices x and y is denoted by d(x,y). The Wiener index” W(G) of G,
which is the oldest topological index, is a distance-based topological index and is defined as the sum

of distances between all vertices of the graph:

w(G)= z{u,v}gl"(G)d(u’ V).
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There are some other distance-based topological indices. The Hyper Wiener index® WIW(G) of G is
defined as

WW(G) = %W(G) %Z o dw ).

tuvicl
The diameter d of a graph is the largest topological distance between any two vertices, i.e. the largest
d(u,v) value in the distance matrix. Balaban and co-authors introduced the reverse Wiener index. They
showed that starting from the distance matrix and subtracting from d each d(u,v) value, one obtains a
new symmetrical matrix which, like the distance matrix, has zeroes on the main diagonal and, in
addition, at least one pair of zeroes of the main diagonal corresponding to the diameter in the distance
matrix. They obtained a general formula for reverse Wiener index of a graph G with N vertices and the

diameter d as’
AG) = %N(N -)d-w(G) .

Let u and v be two adjacent vertices of the graph G and e=uv be the edge between them. The Balaban
index of a molecular graph G is introduced by Balaban'® as one of less degenerated topological

indices. It calculate the average distance sum connectivity index according to the equation
JG) ==Y [dadm]
L+ ] B ©)

where m is the number of edges in G and u=m+n-1 (n is the number of vertices of G) is the cyclomatic

number of G and d(u) = zt

’Ewg)d(u,v) is the distance sum of a vertex u of G.

In this paper, we introduce a new method to find distance-based topological indices of polyhex
nanotorus. Our method is based on a mathematical model, given by Cotfas'' for the honeycomb
lattice. Let us recall briefly this model. Consider a honeycomb lattice as shown in Figure 1. Single

wall nanotori may be described as a long rolled-up graphite sheet bent around to the form of torus. Let
€, :(2/\/6,0), e :(—l/\/g,l/\/E) and e, :(—1/\/5,—1/\/5). Then there is a bijection

vl =Ly (vy,v,,v,) > ve, +ve +1,e,
from the set ¢ ={(v,,V,,v,) € Z> |v, +v, +v, € {0,1}} to the set L of all vertices of a honeycomb

lattice (see Ref. [11]).



Figure 1. Honeycomb lattice and vectors ey, e; and e,.

2. Results and discussion

Throughout the paper T:= HCs/p; q] denotes an arbitrary armchair polyhex nanotorus in terms of the
circumference p and the length g. We notice that p and ¢ must be even. We assume that a; denotes the

(i,j)-entry of the two-dimensional lattice of 7 as shown in Figure 2.

Figure 2. Two dimensional lattice for T=HC4[10, 16].

We put the origin O at a;; and consider the vectors e, e; and e, as shown in Figures 1, 3. Let a=ay,,
b=ay,, c=ay; and d=a;,. It is easy to see that every point of T can be constructed by a translation of
these points in two directions w=-¢;+e, and v=_2¢-¢;-e,. In fact, from definitions of the vertices q, b,
¢, d, the vectors v and w, and the geometry of the lattice, it is easy to see that the lattice points of 7 is
the disjoint union of the sets 4, B, C and D, where
A = {a+(i-1)2w+(j-1)/2v | i,j are odd}, B = {b+(i-1)/2w+(j/2-1)v | i is odd and j is even}
C = {c+(i/2-1)w+(j-1)/2v | iis even and j is odd}, D = {d+(i/2-1)w+(j/2-1)v | i,j are even}.
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The points of T and their types are shown in Figure 3. By considering the coordinates of points a,b,c,d
and the vectors v,w we can see that the following fundamental relation holds.

a) if i, j both even or both odd

ij

a;=9 ey
! a;/. otherwise

2—i—j

3—i—j 1+i—j)
5 —).

i-j L
,—=)and a, =(j-1,——=,
3 ) s =0 5

[
where a; =(j -1, 5

2
The mapping f : /x{ —{0,1,2,3,...} ,f(x,y)22| x; — ;| is a distance function on ¢ and f{x,y) is

i=0

the length of a shortest path between vertices x and y of the honeycomb lattice regarded as a graph’.
Now we need to compute d(a,a;), where a; is a point of T, 1<i<q, 1<j<p. According to the
construction of the lattice we divide the lattice into four equal parts (these parts contain a, x, y, z,
respectively, see Figure 2). If g; is in the first part, then d(a,a;)=f(a,a;); if a; is in the second part,
then d(a,ay)=f(x,ay); if a; is in the third part, then d(a,a;)=f(y,a;); and finally if a; is in the forth
part, then d(a,a;)=f(z,a;);. Therefore after rolling up the lattice and constructing the nanotorus 7, the
length of a shortest path between «a and all vertices of 7 is given by

Sfla,ay) if 1<i<q/2+1, 1<j<p/2+1

f(x,a;) if 1<i<q/2+1, p/2+1<j<p

d(a,ay)= . . . (@)
f(ay) if q/2+1<i<q, 1<j<p/2+1
f(z,ay) if q/2+1<i<q, p/2+2<j<p

where x=(p, -p/2, -p/2), y=(0, -q/2, q/2) and z=(p, -(q+p)/2, (q-p)/2). We keep this notation throughout

the paper. Using (2) we can compute some distance-based topological index of nanotori.

b=ap V=39 A B A B

¢ =daz =
w /]' 2 A B A B

77777 C C D
A B A B

77777 C C D
A B A B

C C D

Figure 3. The points of types A, B, C, D.
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Theorem 1. (See Refs. [1] and [4]) The Wiener index of T is given by

2
Prq 2 2 .
2L 6p*+q° -4 if g<
24 (6p™+q -4 q<p
W(T) = %(7172—4) if g=p

2
%(3q2+3pq+p2—4) if p<gq.

Proof: For /1<i<q/2+1, 1<j < p/2+1 we have

i+j-2 i>j
d(a,a,)=42i-2 i=j (3)
2j-2 i<j

when i,/ are both even or both odd, and otherwise
i+j=2 1+i>j
d(a,a;) =+ 2i-1 I+i=j )
2j-3 1+i<j
and for /<i<q/2+1, g/2+2<j < q, we have
p+i—j j>p—i+2
d(a,a;)=4 2i-2 j=p—-i+2 ()
2p=2j+2 j<p—i+2
when 1,j are both even or both odd, and otherwise
p+i—j j>p—i+3
d(a,a;)=4 2i-3 j=p-i+3 (6)
2p-2j+3 j<p—i+3

It is clear that W(D:pz—qd(a), where d(a):ZXEV(T)d(a,x).

d,(a) = Zx o i vy A(@5 %), since for 2<i <q/2, d(a,a;)=d(a,a,.;.2;) we have

W =L )+ d, @+ 23X (@)

Now

if  we

put

By considering the relations (3), (4), (5) and (6) and separate cases (even or odd) for i, p and ¢

one can easily compute the wiener index (see Ref. [12] for details). Also using the relations (3), (4),

(5) and (6) we can write a simple MATHEMATICA program for computing this topological index as

follows. At the end of this program W is equal to the Wiener index of the given polyhex nanotorus.

Clear[a];
p=10; g=16; (*for example*)
A=Table[a[ij].{i,1.4}.{j,1.p}];
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For[i=1,i <q/2 +1,
For[j=1,<p/2 +1,
If1(0ddQ[i] && OddQ[j]) || (EvenQ[i] && EvenQ[j]),
afi,j]= Which[i>],i+j-2, i==j, 2i-2, i<j,2j-2],
afij]= Which[1+i>j,i+j-2, 1+i==j, 2i-1, 1+i<j,2j-3]
]’.
amh
i++];
For[i=1,i <q/2 +1,
For[j=p/2 +2,j<p,
If1(0OddQ[i] && OddQ[j]) || (EvenQ[i] && EvenQlj]),
afij]= Which[j>p-i+2,p+i-j, j==p-i+2, 2i-2, j<p-i+2,2p-2j+2],
afi,j]= Which[j>p-i+3,p+i-j, j==p-i+3, 2i-3, j<p-i+3,2p-2j+3]
JH+]; !
i++];
For[k=q/2+2,k <q,
A[[k]]=A[[q-k+2]]
k++];
A‘.
A//MatrixForm
W=p*q/2*Sum[Sum[A[[ij]].{i.1.9}].{j.1.p}]:

Now by considering relation (3) and the geometry of nanotori we can compute the reverse

Wiener index of polyhex nanotori as follows:

Theorem 2. The reverse Wiener index of the nanotorus 7' is

%(*12p+4q+6p2q*q3) if g<p
3
AT) =12 (8+5p%) if p=gq

%(*ﬁ -6g+3p’q-2p+3pq’) if p<gq

1
Proof: Since we have A(G) = EN(N—I)d —W(G), it is enough to calculate the diameter of the

graph. By the geometry of polyhex nanotori we have
d(a,a . ,na)  ifq<p,p/2+1,q/2+1both oddorboth even

|d(a,a,,,.0) ifq<p,oneof p/2+1, q/2+1 odd and other even
d(asaq/zn,p,zu) ifg=p
d(a’aq/2+l.p/2+l) ifp<q
and so by relation (3) we get that
:{p q<p
(p+9)/2  p<yq

and this completes the proof.
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Theorem 3. (See Ref. [2]) The Balaban index of the armchair polyhex nanotorus is given by

452
... I
(pq+H(6p~ +q~ - 4)
3
JT)= # if q=p
(p”+4H(7p” - 4)
2
524pq 5 if p<q.
(pa+4)3q” +3pq +p~ -4
mZ
Proof: Again we consider d(a) as defined in Theorem 1. Then we claim that J(T)=———,
(u+1D)d(a)

where m=|E(T)|=3pq/2, |V(T)|=pq and so x=3pq/2-pq+1=pq/2+1. To prove the claim, we note that

from the geometry of nanotori, for every u in vertex set of 7, we have d(u)=d(a) and so

_om s m G__m |[ED)|__ m
J0= +1m;m()d @d ()™ = ;1+1w§7d) @ =T d@ - (ard@)’

But since d(a)=2W(T)/(pq), by replacing m, u and d(a) we can get the desired formula for J(7).

If we delete the last line of the MATHEMATICA program for calculating the Wiener index of
nanotori, and replace the below lines the output of the program will be the Balaban index of nanotori.
m=3*p*q/2;

n=p*q/2+2;
J=m"2/(n* Sum[Sum[A[[ij]].{i,1,q}].4j,1.p})

By a similar argument, we can compute the hyper-Wiener index of the polyhex nanotori as

follows.

Theorem 4. (See Ref. [4]) The hyper-Wiener index of the chemical graph of polyhex nanotorus 7' is

2
L ®p+16p" +3q(A+4")+44+6p" +4")) i q<p
3
W)= (-16-4p+28p" +19p) ifq=p

2
%(51)3 +4p2(1+q)+2p(—10+6q+3q2)+4(_4+4q+3q2+q3)) i peq

Proof: From the geometry of nanotori, it is easy to see that for every u, v € V(7),

{d(u.x) | x& V(D)) ={d(vx) | xe V(D)

Thus if we put d(a)= szvm d(a,x)* and di(a)= ZY - x)*, then we have

z{“_v}g,,(r)d(”:")z = pq(dlz(a) + d;/zn(a) + 22

q/2

& @)

i=
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Now by relations (3), (4), (5) and (6) and considering separate cases for p, q and i we can get the
above formula for the hyper-Wiener index of nanotori. Finally if we add the below line to the
MATHEMATICA program, for computing the Wiener index, we get the hyper-Wiener index of

nanotori

172*W+1/4*p*q*Sum[Sum[A[[i,j]]"2,{i,1,q}].{], 1,.p}]

3. Conclusion

A method has been developed which is usually very useful for calculating the distance based
topological indices of C,s nanotubes and nanotorus. As a consequence of calculating the distances
between vertices of zigzag polyhex nanotorus, the Wiener, revers Wiener, hyper-Weiner and Balaban

index of such nanotorous were computed.
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