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Abstract 
The movement of an excitation (or a vacancy) on a carbon nanotube can be 
regarded as a sequence of jumps between neighboring sites and described by a 
walk. In this paper, we give a mathematical model for the graph of C4C8(S) net and 
using this model, we write a GAP program to calculate the adjacency matrix and 
the number of all k-step walks in the graph of infinite net of C4C8(S) nanotube and 
nanotori. 
 

 

1.  Introduction 

Walks can be used for characterization of molecular graphs for quantification of their 

complexity and for definition of various molecular descriptors. A walk in a graph is an 

alternating sequence of vertices and edges, such that each edge begins and ends with the 

vertices immediately preceding and following it. Note that repetition of vertices or edges is 

allowed in a walk. 

Given a graph and starting point, we select a neighbor of it at random, and move to this 

neighbor; then we select a neighbor of this point at random, and move to it etc. The random 

sequence of this points selected this way is a random walk on the graph. A self-returning walk 

is a random walk starting and ending at the same vertex. Let G=(V,E) be a connected graph 
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with vertex set V and edge set E. Consider a random walk on G; we start at a vertex v0; if at 

the t-th step we are at a vertex vt, we move neighbor of vt  with probability 1/deg(vt).  

A random walk is a finite Markov chain that is time-reversible. In fact, there is not much 

different between the theory of random walks on graphs and the theory of finite Markov 

chains; every Markov chain can be viewed as random walk on a directed graph, if we allow 

weighted edges. Similarly, time-reversible Markov chains, as random walks on regular 

symmetric graphs2. 

Therefore, the sequence of random vertices is a Markov chain. Let M=[mij] be the matrix of 

transition probabilities of this Markov chain that is called Markov matrix. Thus if ij�E, then 

mij=1/deg(i) and zero otherwise. Let A be the adjacency matrix of G and let D denote the 

diagonal degree matrix of G, then multiplication of inverse of degree matrix and adjacency 

matrix is Markov matrix i.e. M=D-1A. 

It is well known that the number of walks of length k beginning at vertex i, and ending at 

vertex j, is given by the ij-element of the k-th power of the vertex adjacency matrix A. Then 

the number of self-returning walks of length k is given by the ii-element of the k-th power of 

the adjacency matrix A.  

It has been found that the total number of self-returning walks of length k that coincide with 

the trace of k-th power of A, can be applied to the theory of total π-electron energy, in as 

much as this gives moments of the eigenvalue distribution. Moreover, more recently, self-

returning walk counts have been found to be applicable to systematic search of isocodal 

vertices in molecular graphs. Isocodal vertices in a graph are those vertices that have the same 

number of self-returning walks for each length of walk. 

The atomic walk count of order k, denoted by (awc)k , is the number of all possible walks of 

length k that start at a specified vertex i and end at any vertex j. The molecular walk count of 

order k, denoted by (mwc)k is obtained by summing up all atomic walks counts of order k. The 

total walk count, twc, is the sum of all (mwc)k for k=1,..,N-1, where N is the number of 

vertices of the graph. Finally, the probability that, starting at i, we reach j in k step is given by 

the ij-entry of the Mk. Therefore, that is enough to compute the adjacency matrix of the 

graph6. 

The theory of random walks is very closely related to a number of other branches of graph 

theory. Basic properties of a random walk are determined by the spectrum of the graph, and 

also by electrical resistance of the electric network naturally associated with graphs. There is a 

-232-



number of other processes that can be defined on a graph, mostly describing some sort of 

diffusion (chip-firing, load-balancing in distributed networks etc.), whose basic parameters 

are closely tied with the above-mentioned parameters of random walks. All this connections 

are very fruitful and provide both tools for the study and opportunities for applications of 

random walks2.  

Much of the recent interest in random walks is motivated by important algorithmic 

applications. Random walks can be used to reach obscure parts of large sets, and also to 

generate random elements in large and complicated sets, such as the set of lattice points in a 

convex body or the set of perfect matching in a graph which, in turn, can be used to the 

asymptotic enumeration of these objects2,6. 

A C4C8 net is a trivalent decoration made by alternating squares C4 and octagons C8. It can 

cover either a cylinder or a torus. Such a covering can be derived from a square net by the 

leapfrog operation. In this paper, we introduce a mathematical model for the vertex set of 

infinite lattice of C4C8(S) and define a distance function on this set and using these, we can 

give a mathematical model for the graph of this nano-structure. 

Since the lattice graphs of tube and tori are subgraphs of the infinite lattice, we can present 

mathematical models relating to graphs of these structures. By these models, we can write a 

simple GAP program, or in any mathematics software, for compute the all k-step walks 

between any two arbitrary vertices of the graphs (many other problem related to walks can be 

reduced to this important problem1). In addition, we can write a program to compute the very 

important adjacency matrix of these graphs. We know that there are some topological indices 

related to this matrix. 
 

2.  Describing the C4C8(S) net with a mathematical model 

 Let us consider the vectors e0, e1, e2 and e3 as shown in Figure1. Put a1= e0-e1+e3 and a1= 

e0+e1-e2. The periodic set }),(|{ 212211 Lnnanan ���; , where �
3

0�

�
i

iLL , L0=Z2, L1= 

Z2+ )
22

1,
22
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��

, L2= Z2+ )
22

1,
22
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��

�  and L3= Z2+ )
22

2,0(
�

�  is the TUC4C8(S) 

lattice. Instead of the basis {a1, a2} we have the possibility to use the vectors e0, e1, e2 and e3. 

Now we are ready to define a bijection that allow us to consider a subset of Z4 as the set of all 

vertices of C4C8(S) lattice as follows. 
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Theorem 1. There is a bijection ;<�:= , 4210),,,( eeee >���>��� ���� from the set 

}}1,0{},1,0{|),,,{( 4 �������� >��>��>��� Z� to the set Γ of all the vertices of a 

C4C8(S) lattice. 

Proof: It is clear that Ψ is well-defined.  We prove that this map is one-to-one and onto. Let 

 
Figure1. C4C8(S) net. 

 
v=(v0,v1,v2,v3) and u=(u0,u1,u2,u3) be in �  and Ψ(u)= Ψ(v). By considering the vectors e0, e1, 

e2 and e3, we have αe0+β e1+γ e2+δe3=(α+
2
2 ( δ- γ), - β+

2
2 ( δ+ γ)). Thus from Ψ(u)= 

Ψ(v) we have v0-u0=
2
2 ((v2-u2)-(v3-u3)) and v1-u1=

2
2 ((v3-u3)+ (v2-u2)). However, the 

coordinates of v and u are integers, so vi=ui for i=0, 1, 2, 3. Therefore, Ψ is one-to-one. By 

choosing an arbitrary point P=n1a1+n2a2 in Γ and considering four cases for (n1, n2) �
3

0�

�
i

iL  

we can give suitable (α, β, γ, δ) ��  such that Ψ(α, β, γ, δ)=P, for example if (n1,n2)�L0 then 

Ψ(n1+n2, n2-n1,-n2,n1)=P. Thus, Ψ is onto and this completes the proof. ■ 

The mapping d: ?<� ��  with d(u,v)=|u0-v0|+|u1-v1|+|u2-v2|+|u3-v3| is a distance on � . 

Note that this distance function gives us the length of a shortest path between any two 

arbitrary vertices of C4C8(S) infinite lattice. Moreover u is a neighbor of order k of v if 

d(u,v)=k and u is adjacent vertex of v if d(u,v)=1. By this fact one can easily see that the 

nearest neighbors of v= (α, β, γ, δ) ��  are   

v1=(α+ε1(v), β, γ, δ)         v2=(α, β+ε2(v), γ, δ)       v3=(α, β, γ+ε31(v), δ+ε32(v)) 

where ε1(v)=(-1) α+γ- δ, ε2(v)=(-1) β+ γ+ δ and when α+γ- δ= β+ γ+ δ, ε31(v)= ε2(v) and 0 

otherwise, also if α+γ- δ≠ β+ γ+ δ then ε32(v)=0 and else ε32(v)=ε2(v). 
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3. Random walks on infinite C4C8(S) net, tube and nanotori 

By the above theorem the graph of C4C8(S) net is G=( ), E� , where E={{v,vi}| v �� , 

i�{1,2,3}}. A k-step walk on this graph with the starting point v has the form 

},{},...,,{},,{ 1211212111 ...... kkk iiiiiiiiiii vvvvvv �� and will denoted by (v,i1i2…ik) [See Ref.3]. If we start 

with vertex v and after k-step walks be at vertex u then we write u= kiiiv ...21 .  The number Nk of 

all the k-step walks connecting the points (0, 0) and (n1, n2) on the Cartesian lattice graph Z2 

coincides to the coefficient of 21
21
nn xx  in the expression (x1+x1

-1+x2+x2
-1)k (for more details see 

Ref.1.). The description of the C4C8(S) net presented in the above theorem allows us to 

compute the number Nk(v,u) of all k-step walks from v �� to u �� using a simple GAP 

program. For this purpose, we write a function named nbr that its output is neighbors of any 

vertices of the net. At first we write a program to calculate the Nk(v,u) in the infinite C4C8(S) 

net as follows 

nbr:=function(v,i) 
if i=1 then return v+[(-1)^(v[1]+v[3]-v[4]),0,0,0]; 
elif i=2 then return v+[0,(-1)^(v[2]+v[3]+v[4]),0,0]; 
elif i=3 and v[1]+v[3]-v[4]=v[2]+v[3]+v[4] then 
return v+[0,0,(-1)^(v[2]+v[3]+v[4]),0]; 
elif i=3 and v[1]+v[3]-v[4]<>v[2]+v[3]+v[4] then 
return v+[0,0,0,(-1)^(v[2]+v[3]+v[4])]; 
fi;end; 
v:=[5,-4,0,4];#(for example) 
w:=v; 
u:=[1,1,0,0]; k:=13#(for example) 
A:=[];; 
T:=Tuples([1,2,3],k);; 
for x in T do 
for i in [1..k] do 
v:=nbr(v,x[i]); 
od; 
Add(A,v); 
v:=w;; 
od; 
Nk:=Size(Filtered(A,x->x=u)); 
 
Now we are ready to calculate Nk(v,u) in C4C8(S) tube and tori. Let T=TUC4C8(S)[p,q] be the 

lattice of C4C8(S) tube in which p and q are the number of octagons in vertical and horizontal 

directions, respectively, Fig. 2. 
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Note that the graph T has exactly 8pq vertices. We assume that aij denotes the (i,j)-entry of the 

two-dimensional lattice of T as shown in the Fig.2. We put the origin point O at the a41 and 

consider the vectors e0, e1, e2 and e3. 

Consider the points a=a11, b=a21, c=a31, d=a41=O, e=a12, f=a22, g=a32 and h=a42. It is easy 

a11 a12 a13 a14 a1,2 q 1 a

a21 a22

a31 a32
a41 a42

a51

a4 p 1,1
a4 p,1

a4 p,2 q 1  
Figure2. The (i,j)-entry of TUC4C8(S)[4,5] nanotube. 

 
to see that every point of T can be constructed by a translation of these points in two 

directions v=2e0-e2+e3 and w=2e1-e2-e3. This is the content of lemma below. 

Lemma 1. Assume that aij, 1≤ i≤ 4p and 1≤ j≤ 2q, denotes the (i,j)-entry of the two-

dimensional lattice of T, as shown in the Fig.2, in our model we have 
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where 
1
ija =(j-1) e0+(i-3)/2 e1+(7-i-2j)/4 e2+(3-i+2j)/4 e3, 
2
ija =(j-1) e0+(i-3)/2 e1+(9-i-2j)/4 e2+(1-i+2j)/4 e3, 

3
ija =(j-1) e0+(i-4)/2 e1+(8-i-2j)/4 e2+(-i+2j)/4 e3 

4
ija =(j-1) e0+(i-4)/2 e1+(6-i-2j)/4 e2+(2-i+2j)/4 e3. 

Proof: It is enough to consider the coordinates of the points a, b, c, d, e, f, g, h and the vectors 

v, w. ■ 
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After rolling up the lattice and forming the nanotube we have a1
i1 =ai,2q and so a1

i,2q=ai1 when 

i≡2 (mod 4) or i≡3 (mod 4). By the previous lemma and above explanation we can write a 

neighbor-function program that is necessary to generating adjacency matrix of the nanotube 

molecular graph. For this purpose, we must generate the vertex set of the nanotube, which is 

easy according to the above lemma. Now we write a GAP program to compute the adjacency 

matrix of the nanotube molecular graph. 

 
p:=4;q:=5;#(for example) 
a:=[0,-1,1,1];b:=[0,-1,1,0];c:=[0,0,1,0];d:=[0,0,0,0];e:=[1,-1,1,1];f:=[1,-1,0,1]; 
g:=[1,0,0,1];h:=[1,0,0,0]; v:=[2,0,-1,1];w:=[0,2,-1,-1];V:=[]; 
for i in [1..4*p] do 
for j in [1..2*q] do 
if i mod 4=1 and j mod 2=1 then Add(V,a+(i-1)/4*w+(j-1)/2*v); 
elif i mod 4=1 and j mod 2=0 then Add(V,e+(i-1)/4*w+(j/2-1)*v); 
elif i mod 4=2 and j mod 2=1 then Add(V,b+(i-2)/4*w+(j-1)/2*v); 
elif i mod 4=2 and j mod 2=0 then Add(V,f+(i-2)/4*w+(j/2-1)*v); 
elif i mod 4=3 and j mod 2=1 then Add(V, c+(i-3)/4*w+(j-1)/2*v); 
elif i mod 4=3 and j mod 2=0 then Add(V, g+(i-3)/4*w+(j/2-1)*v); 
elif i mod 4=0 and j mod 2=1 then Add(V, d+(i/4-1)*w+(j-1)/2*v); 
elif i mod 4=0 and j mod 2=0 then Add(V, h+(i/4-1)*w+(j/2-1)*v); 
fi; 
od; 
od; 
nbr:=function(v,i,p,q) 
if i=1 and v[1]=0 and v[3]-v[4]=1 and (2*v[2]+4) mod 4=2 then 
return v+[2*q-1,0,-1*q,q]; 
elif i=1 and v[1]=2*q-1 and v[3]-v[4]=1-2*q and (2*v[2]+4) mod 4=2 then 
return v-[2*q-1,0,-1*q,q]; 
elif i=1 and v[1]=0 and v[3]-v[4]=1 and (2*v[2]) mod 4=0 then 
return v+[2*q-1,0,-1*q,q]; 
elif i=1 and v[1]=2*q-1 and v[3]-v[4]=1-2*q and (2*v[2]) mod 4=0 then 
return v-[2*q-1,0,-1*q,q]; 
elif i=1 then  return v+[(-1)^(v[1]+v[3]-v[4]),0,0,0]; 
elif i=2 and v[2]=-1 and v[3]+v[4]=2 then  return v; 
elif i=2 and v[2]=2*(p-1) and v[3]+v[4]=2*(1-p) then return v; 
elif i=2 then return v+[0,(-1)^(v[2]+v[3]+v[4]),0,0]; 
elif i=3 and v[1]+v[3]-v[4]=v[2]+v[3]+v[4] then 
return v+[0,0,(-1)^(v[2]+v[3]+v[4]),0]; 
elif i=3 and v[1]+v[3]-v[4]<>v[2]+v[3]+v[4] then 
return v+[0,0,0,(-1)^(v[2]+v[3]+v[4])]; 
fi;end; 
dis:=function(u,v) 
if v[1]=0 and v[3]-v[4]=1 and (2*v[2]+4) mod 4=2 and u[1]=2*q-1 and u[3]-u[4]=1-2*q 
and (2*u[2]+4) mod 4=2 and u[2]=v[2] then return 1; 
elif v[1]=0 and v[3]-v[4]=1 and (2*v[2]) mod 4=0 and u[1]=2*q-1 and u[3]-u[4]=1-2*q  
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and (2*u[2]) mod 4=0 and u[2]=v[2] then return 1; 
else return AbsInt(u[1]-v[1])+AbsInt(u[2]-v[2])+AbsInt(u[3]-v[3])+AbsInt(u[4]-v[4]); 
fi; end; 
Dis:=function(u,v) 
return dis(v,u); end; 
A:=0*IdentityMat(8*p*q);; 
for i in [1..8*p*q] do 
for j in [1..8*p*q] do 
if dis(V[i],V[j])=1 or Dis(V[i],V[j])=1 then A[i][j]:=1;A[j][i]:=1; 
fi; 
od; 
od; 
 
As you see in the first section, we have that the number of k-step walks from i to j is  

Nk(i,j)=(Ak)ij . The number of self-returning walks of length k is (Ak)ii ,total number of self-

returning walks of length k is Tr(Ak), the atomic walk count of order k is (amc)k(i)=∑j (Ak)ij . 

Also the molecular walk count of order k is (mwc)k= ∑i ∑j (Ak)ij and finally the total walk 

count is twc=	 �

�

1

1
)(N

k kmwc . Therefore, we can easily add some lines to the above program and 

compute all of the above counting. 

 Also we have Dii=A2
ii, and we now that the Laplacian matrix of a graph is A-D where its 

eigenvalues are very important and have been used for calculating the some of topological 

indices as Quasi-Wiener index , Mohar indices TI1, TI2 and the number of spanning trees 4,5,8. 

Of course, several topological indices are related to adjacency matrix of graph. 

Now we describe the molecular graph of nanotori, and by this description, we write a program 

for generating the adjacency matrix of this graph. 

Let V1, V2 be the set of all vertices of C4C8(S)[p,q] tube and C4C8(S)[p,q] torus, respectively, 

then V1=V2. Let E1, E2  be the set of all edges of C4C8(S)[p,q] tube and C4C8(S)[p,q] torus, 

respectively, then  E1� {{a1,j,a4p,j} |1 ≤ j ≤ 2q}=E2. Similarly, we can write a neighbor 

function and a simple program for generating the adjacency matrix of nanotori molecular 

graph. For this goal, we repeat first 26 lines of the last program and add these below lines to 

it. 

 
elif i=2 and v[2]=-1 and v[3]+v[4]=2 then  return v+[0,2*p-1,-1*p,-1*p]; 
elif i=2 and v[2]=2*(p-1) and v[3]+v[4]=2*(1-p) then 
return v-[0,2*p-1,-1*p,-1*p]; 
elif i=2 then return v+[0,(-1)^(v[2]+v[3]+v[4]),0,0]; 
elif i=3 and v[1]+v[3]-v[4]=v[2]+v[3]+v[4] then 
return v+[0,0,(-1)^(v[2]+v[3]+v[4]),0]; 
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elif i=3 and v[1]+v[3]-v[4]<>v[2]+v[3]+v[4] then 
return v+[0,0,0,(-1)^(v[2]+v[3]+v[4])]; 
fi;end; 
dis:=function(u,v) 
if v[1]=0 and v[3]-v[4]=1 and (2*v[2]+4) mod 4=2 and u[1]=2*q-1 and u[3]-u[4]=1-2*q 
and (2*u[2]+4) mod 4=2 and u[2]=v[2] then return 1; 
elif v[1]=0 and v[3]-v[4]=1 and (2*v[2]) mod 4=0 and u[1]=2*q-1 and u[3]-u[4]=1-2*q 
and (2*u[2]) mod 4=0 and u[2]=v[2] then return 1; 
elif v[2]=-1 and v[3]+v[4]=2 and u[2]=2*(p-1) and u[3]+u[4]=2*(1-p) and u[1]=v[1] then 
return 1;  
else return AbsInt(u[1]-v[1])+AbsInt(u[2]-v[2])+AbsInt(u[3]-v[3])+AbsInt(u[4]-v[4]); 
fi;end; 
Dis:=function(u,v) 
return dis(v,u); end; 
A:=0*IdentityMat(8*p*q);; 
for i in [1..8*p*q] do 
for j in [1..8*p*q] do 
if dis(V[i],V[j])=1 or Dis(V[i],V[j])=1 then A[i][j]:=1;A[j][i]:=1; 
fi; 
od; 
od; 
 
4. Conclusion  
The mathematical models, introduced in this paper, are useful tools for computing some 

structural properties of nano-structures. For example, we can compute the full symmetry 

group and the irreducible representations of these graphs7. Also by defining suitable subsets 

of vertex set of nanotube and tori, for every fixed vertex v, we can compute the distance 

matrix and so some distance-based topological indices of these graphs. Moreover, using these 

definitions, we can compute the diameter of these graphs. 
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