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Abstract

The eccentric connectivity index ξ(G) of a graph G is defined as ξ(G) =∑
u∈V (G) deg(u)ε(u), where deg(u) denotes the degree of the vertex u and ε(u)

is the largest distance between u and any other vertex v of G. In this paper

we present exact formulas for the eccentric connectivity index of TUC4C8(R)

nanotubes.

1 Introduction

All graphs considered in this paper are simple and connected. For two vertices u, v

of a graph G their distance d(u, v) is defined as the length of any shortest path

connecting u and v in G. For a given vertex u of G its eccentricity ε(u) is the

largest distance between u and any other vertex v of G. The maximum eccentricity

over all vertices of G is called the diameter of G and denoted by D(G) and the

minimum eccentricity among the vertices of G is called radius of G.

A topological index is a numerical quantity related to a graph that is invariant

under graph automorphisms. Many topological indices have been defined and used in
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QSAR/QSPR studies over the course of last decades. One of them is the eccentric

connectivity index of a graph G. It is denoted by ξ(G) and defined as

ξ(G) =
∑

u∈V (G)

deg(u)ε(u).

This quantity has been recently used in several papers on structure-property and

structure-activity relationships [1–5], and its mathematical properties have been

investigated [6–9].

The eccentric connectivity index belongs to the family of distance-based topological

indices. A group of researchers investigated recently a number of such indices and

computed their values for a family of structures known as TUC4C8(R) nanotubes

and nanotori [10–21]. A TUC4C8(R) nanotube is a mathematically beautiful object

constructed from squares and octagons. An example is shown in Fig. 1. The aim

of this paper is to compute the eccentric connectivity indices of such nanotubes.

Figure 1: Three-dimensional perception of a TUC4C8(R) nanotube.

The terminology we use is standard and mainly taken from standard graph theory

textbooks such as, e.g., [22]. We encourage the reader to consult [10-13,15,17] and

the references therein for basic properties of the nanotubes of the type considered

here.

Throughout this paper T [p, q] denotes a TUC4C8(R) nanotube parameterized by the

number of octagons in a fixed row (p) and column (q) of a 2-dimensional lattice such

as shown in Fig. 2. The nanotube is obtained from the lattice by wrapping it up

so that each dangling edge from the left-hand side connects to the rightmost vertex
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Figure 2: The 2-dimensional lattice of T [4, 3] nanotube.

of the same row. The reader should notice that the number of both squares and

octagons in one layer of the nanotube is equal to p+1. As each vertex of TUC4C8(R)

is contained in exactly one square, the number of vertices of the nanotube is equal

to 4(+1)(q + 1). Similarly, the number of edges is given by (p+ 1)(6q + 5).

It is obvious that there is no loss of generality if we assume that the axis of the

tube is vertical; hence it makes sense to use terms like top, bottom, above, below,

etc. We label the rows of squares from top to bottom by labels 0, 1, . . . , q. It is also

obvious from the symmetry of the nanotube that all squares in the same row are

equivalent. Hence we need not bother to distinguish them or give them any labels.

Vertices of a square in row i are denoted by v+i (the top vertex), v−i (the bottom

vertex) and v0i (the remaining two vertices). If a need arises to distinguish between

the two vertices denoted by v0i , we will denote them by v0il and v0ir, where l and r

stand for left and right, respectively. When the position of vertices in a square is

not important, we use the wild-card convention v∗i , where ∗ stands for any (or all)

of +,−, or 0. The notation is exhibited in Fig. 3.

2 Main Results

Let us consider an arbitrary TUC4C8(R) nanotube. Our first and most important

task is to compute the eccentricities of the vertices in its top row. Once we know

ε(v∗0) for given p and q, we can compute the eccentric connectivity index of an

arbitrary nanotube of this type by summing the eccentricities of the vertices in
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Figure 3: Notational conventions for vertices of a T [p, q] nanotube.

rows q, q − 1, . . . ,  q+1
2
� and doubling the result. (A correction might be needed

for the equatorial row, depending on the parity of q.) We start by three auxiliary

propositions.

Proposition 1

Any shortest path between v∗0 and v∗m contains exactly one vertical edge of the form

v−i v
+
i+1 for i = 0, . . . ,m− 1, and no vertical edges below the level m.

Proposition 2

The eccentricity ε(v∗0) of a vertex v∗0 can be achieved only on a vertex from the

bottom row.

Proposition 3

If the eccentricity of a vertex v∗0 is achieved on a vertex v+q , then it is also achieved

on some other vertex of the same square.

Proof

Consider the situation shown in Fig. 4. Let ε(v∗0) = d(v∗0, v
+
q ). If d(v∗0, vql) >

d(v∗0, v
+
q ) we have a contradiction. Hence d(v

∗
0, vql) ≤ d(v∗0, v

+
q ). If the equality holds,

we have the claim of the Proposition. Suppose, then, that d(v∗0, vql) < d(v∗0, v
+
q ).

Then, necessary, d(v∗0, vql) = d(v∗0, v
+
q ) − 1. Moreover, d(v∗0, vql) = d(v∗0, vqr) =

d(v∗0, v
+
q )− 1. But then d(v∗0, v

−
q ) = d(v∗0, v

+
q ) = ε(v∗0), and we have the claim.

Hence the eccentricities of the vertices from the top row of squares are achieved on

vertices from the lower border of the nanotube.
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Figure 4: With proof of Lemma 3.

Now we make a digression and consider a closely related type of nanotubes that arise

as Cartesian products of paths and cycles. Let U [p, q] = Cp+1�Pq+1 be one such

nanotube. It is intuitively clear and it can be easily formalized that the diameter of

such nanotube is achieved along a path from a vertex of the top row to a (diametrally

opposite) vertex of the bottom row. Each such path has, roughly speaking, length

of p
2
�+q. Each such path must have a certain number of turns or direction changes;

this number must be at least one, and at most 2min{p
2
�, q}. We denote this quantity

by r. The shortest paths with exactly r turns will be of special interest; two such

paths are shown in Fig. 5. The computation of the eccentric connectivity indices

Figure 5: Shortest paths with maximum number of turns in a short (left) and in a

long (right) nanotube.

of such nanotubes is now straightforward, and we refer the reader to [8] for more

detail.

The nanotube of the above type are important in the present context since the

TUC4C8(R) nanotubes arise from Cp�Pq nanotubes via truncation. (The truncation

Tr(G) of a given graph G is a graph obtained by replacing each vertex v of G by a

deg(v)-gon aligned so that its vertices lie on the edges incident with v; the original
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vertices are then omitted. A truncation of simple graph with n vertices and m edges

results in a cubic graph on 2m vertices and 3m edges. If all vertices in the original

graph have degree at least 3, the resulting graph is also simple.) To be precise, in

order to obtain T [p, q] from Cp+1�Pq+1 one must truncate it and then subdivide by

a vertex the edges in triangles on both borders. However, the effects of those edge

subdivisions are of marginal importance for the following discussion.

Let us now look at what happens to a diametral path in Cp+1�Pq+1 after truncation.

If the path passes trough a vertex v without changing direction, the number of steps

increases by 2; if the path makes a turn in v, the number of steps increases by 1. (See

Fig. 6.) Of all diametral paths in Cp+1�Pq+1 only those with maximum number

Figure 6: Truncation of a path passing straight through (left) and a path changing

direction (right) in a vertex.

of turns will give rise to diametral paths in the truncated nanotube. Hence, the

length of a diametral path (and also the eccentricity of a vertex from the top row)

in T [p, q] will be, roughly, p
2
�+ q + r+ 2|p

2
� − q|. If the tube is short with respect

to its girth, then r = 2min{p
2
�, q} = 2q, |p

2
� − q| = p

2
� − q and the diameter is,

roughly, 3p
2
� + q. If the nanotube is long, then r ∼ p, |p

2
� − q| = q − p

2
� and the

diameter is approximately 3q+ p
2
�. Hence, the eccentricity of a vertex from the top

row of T [p, q] is either of the form 3p
2
�+q or of the form 3q+p

2
�. The dividing line

between “short” and “long” nanotubes is at q ∼ p
2
�, and indeed both expressions

coincide there.

With some care the above heuristic reasoning can be made exact. This results in

small additive corrections in the obtained formulas. The corrections depend on

various combinations of parities of p and q. As an illustration, we work out in some

detail the case of even p and odd q. The remaining cases follow along the same lines.
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We consider first the case q < p/2. By starting at a vertex v∗0 of the top row,

descending as quickly as possible, and then going along the bottom row as far as we

can, we can ascertain ourselves that all vertices in the top row of squares have the

Figure 7: Extremal paths for the vertices of the uppermost row.

same eccentricity, ε(v∗0) =
3
2
p+ q+1. The extremal paths starting in the vertices of

the top row are shown in Fig. 7. Since row i is in no way different from row 0, we

have ε(v∗i ) =
3
2
p+ q+1, for i = 1, . . . , q−1

2
. It remains to sum the contributions from

all rows, taking into account the number of vertices in each row (4(p+1)) and their

degrees. The last condition will force a separate treatment of the top row, since its

v+0 vertices are of degree 2.

ξ(T [p, q]) = 2(p+ 1)

[
2

(
3

2
p+ q + 1

)
+ 3 · 3

(
3

2
p+ q + 1

)

+ 3 · 4
(q−1)/2∑

i=1

(
3

2
p+ q + 1− i

)⎤
⎦

= 2(p+ 1)

[
33

2
p+ 11q + 11 + 9pq + 6q2 + 6q − 9p− 6q − 6− 3

2
q2 +

3

2

]

= (p+ 1)[9q(2p+ 1) + 15p+ 22q + 13]

Next we consider the case q ≥ p. Because of different parities of p and q it effectively

means q > p, and hence q−1
2

≥ p
2
. Hence the vertices in all rows in the upper half

of the nanotube will have the eccentricities of the form 3(q− i) + p
2
, with a possible

additive correction. The correction can be determined by considering the shortest

paths from the top row to the lower border, and it turns out to be dependent

-227-



on the position of a vertex within the square. The dependence is very simple – the

correction is equal to 2 for v+0 , to 1 for v00, and to 0 for v−0 . Hence, ε(v
+
0 ) = 3q+ p

2
+2,

ε(v00) = 3q + p
2
+ 1 and ε(v−0 ) = 3q + p

2
. Furthermore, ε(v∗i ) = 3(q − i) + p

2
+ c for

i = 1, . . . , q−1
2
, where c = 2, 1, or 0 for ∗ = +, 0,−, respectively. The result for this

case now follows by summing the contributions from all rows in the upper half of

the nanotube (again treating the top row separately), and doubling the result of

summation.

ξ(T [p, q]) = 2(p+ 1)
[
2
(
3q +

p

2
+ 2

)
+ 6

(
3q +

p

2
+ 1

)
+ 3

(
3q +

p

2

)

+ 3

(q−1)/2∑
i=1

((
3q +

p

2
+ 2− i

)
+

(
3q +

p

2
+ 1− i

)
+

(
3q +

p

2
− i

))⎤⎦
= (p+ 1)[3q(9q + 2p) + 5 + 48q + 17]

Finally we consider the most complicated case p
2
≤ q < p. The problem with this

case is that the rows of the upper half of the nanotube belong to two different classes

with respect to the formula for the eccentricity of their vertices. Those near the top

will have the eccentricities of the form 3(q − i) + p
2
, those near the middle will have

something like 3
2
p + q − i; in both cases some additive corrections may apply. The

transition between two types occurs at row p
2
, and it must be treated separately from

the rest since the eccentricities of its vertices do not follow usual patterns. They

are neither all equal, as in the case of q < p/2, nor all different, as in the case of

q > p/2. Instead, we have ε(v+p/2) = 2(p + 1) and ε(v0p/2) = ε(v−p/2) = 2p + 1. The

result now follows by summing the contributions over all rows and multiplying the

obtained sum by two.

ξ(T [p, q]) = 2(p+ 1)
[
2
(
3q +

p

2
+ 2

)
+ 6

(
3q +

p

2
+ 1

)
+ 3

(
3q +

p

2

)

+ 3

q−1−p/2∑
i=1

((
3q +

p

2
+ 2− 3i

)
+

(
3q +

p

2
+ 1− 3i

)
+

(
3q +

p

2
− 3i

))

+ 12

(p−q−1)/2∑
i=1

(2p+ 1− i) + 6(p+ 1) + 9(2p+ 1)

⎤
⎦

= (p+ 1)(6p2 + 33q2 − 6pq + 5p+ 42q + 17)

The remaining parity combinations yield to the same type of analysis and we omit

the details. Instead, we present the explicit formulas for ξ(T [p, q]) in a compact

form valid for all combinations.

-228-



Theorem 4

The eccentric connectivity index of T [p, q] is given by

ξ(T [p, q]) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(p+ 1)[(9q2 + 18pq + 15p+ 22q + 10) +R(p, q)] q < p
�

(p+ 1)[(6p2 − 6pq + 33q2 + 5p+ 42q + 14) +R(p, q)] p
2
� ≤ q < p

(p+ 1)[(27q2 + 6pq + 5p+ 42q + 14) +R(p, q)] q ≥ p

Here R(p, q) =
[
(6q + 5)1−(−1)p

2
+ 31−(−1)q

2

]
.

By bringing the term (p+ 1) inside the square brackets, the quantity (p+ 1)R(p, q)

can be interpreted in terms of numbers of edges and vertices of the nanotube as
1−(−1)p

2
|E(T [p, q])|+ 3

4
1−(−1)q

2
|V (T [p, q])|.

As a concluding remark, we point out that our method of reducing a TUC4C8(R)

nanotube to its Cp�Pq parent can be also successfully applied to all-hexagonal nan-

otubes. Apart from the results reported in [9] for hexagonal belts, we are not aware

of any formulas for such nanotubes.
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