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Abstract

The Cluj index is a topological index that counts all the vertex proximities in a
molecular graph. In this paper, the Cluj index is computed for dendrimer
nanostructures of type 1-3.

1. Introduction

A single number, representing a chemical structure, in graph-theoretical terms, is
called a topological descriptor. Being a structural invariant, it does not depend on the labeling
or the pictorial representation of a graph. Despite the considerable loss of information by the
projection in a single number of a structure, such descriptors found broad applications in the
correlation and prediction of several molecular properties [1,2] and also in tests of similarity
and isomorphism [3,4]. When a topological descriptor correlates with a molecular property, it
can be denominated as molecular index or topological index (TI).

A graph, G = G (V, E) is a pair of two sets: V =V (G), a finite nonempty set of N points
(i.e. vertices) and E = E (G), the set of Q unordered pairs of distinct points of V. Each pair of
points (vi, v;) (or simply (i,j) ) is a line (i.e. edge), e;j, of G if and only if (i,j)€ E(G). In a
graph, n equals to the cardinality, | V], of the set V while e is identical to |[E|. A graph with n

points and e lines is called a (n, e) graph. Two vertices are adjacent if they are joined by an
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edge. If two distinct edges are incident with a common vertex, then they are adjacent edges.
The angle between edges as well as the edge length is disregarded.

In an undirected connected acyclic graph, a given pair of vertices (i,j) is joined by a unique
path p(i,j), that is, a continuous sequence of edges, with the property that all are distinct and
any two subsequent edges are adjacent. The length of the path p(i,) is equal to the number of
edges in the path between vertices i and ;.

In an undirected connected cycle-containing graph between any two vertices, there is at least
one path connecting them. If more than one path connects a given pair of vertices (i,j), we
denote the k™ path by the symbol py(i,j). The shortest path joining vertices i and j is called
geodesic and its length is the topological distance, (A); ;. The longest path is the elongation
and its length is equal to the detour distance, (D);;. The square arrays which collect the lengths
of the two path types are called the distance matrix, denoted asA, and the detour matrix,

denoted as D, respectively:

(D), = N.sip:  plEJisa geodesic ifis=j
= 0 ifi=j 1)

ation ifi=] 2)

(& } — rNe.-Fi:iJ}:
e io ifi=j

Where Ny is the number of edges on the shortest/longest path p(i.j). The subscript e in the
symbols of the above matrices means that they are edge-defined, that is, their entries count
edges on the path p (i,)).

When paths of length 1< ‘ p‘ < ‘ p(i, j] are counted on path p(i,j), another pair of matrices can

be constructed

Noris:  2(,J) is a geodesic ifi#]
(Dp)f{o PH 3

if i=j

(a,) = Npwiijy:  pif) is an elongation ifi#j )
*5 0 if i=j
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They are path-defined matrices and the number of paths Ny ) is obtained from entries (M.);

,M.=D.or A, by:

42
|+
1

N, oep = H[Mej.. ‘;jz 5)

(i i

The asymmetric Cluj matrices CJD, and CJ A, have been introduced by Diudea [5, 6]. These
matrices are nxn square matrices and the subscript u denotes the unsymmetricity of matrices.

The non-diagonal entries, (M.);;, My = CJD, or CJ A, in the two Cluj matrices are defined as:

- | "
(.Mu)ij = N;“ s — MAX |Vl',p.-.{i,_.l‘}| (6)
L ' % i
D (Y fe o oot
Pyl jJ i5 @ gEGRESITY
@)
Or
7. eIl e VG A = A - P (i AP = (. Di ) isan elongation!
" Lpghid) LMIs = PSSy Sie ™ Sy &Rl BSE IS s g S Wit SEiLjJ s an elongalion;
’ k= 1,2, ;h=1.2, (8)

Quantity V; i, denotes the set of vertices lying closer to vertex i than the vertex j, and are
external with respect to path p ) (condition p(i,v) N px(i,j) :{i}). Since in cycle-containing
structures, various shortest paths p(i,j), in general, lead to various sets Vi), by definition,
the (ij)-entries in the Cluj matrices are taken as max| Vj k| . The diagonal entries are zero.
For paths p; (i,v), no restrictions related to their length are imposed. The above definitions,
Eqgs. (6)—(8), are valid for any connected graph.

The two Cluj matrices M, allow the construction of the corresponding symmetric matrices M,
(defined on paths) and M. (defined on edges) by:
My=M,e (M)"

M.=M, e+ A 10)

®

where A is the adjacency matrix. The symbol e means the Hadamard matrix product, i. e.,
(M, o My);; = (Ma); (M) [7].
The Cluj indices are calculated as half-sum of the entries in a Cluj symmetric matrix, M, (M

=CJD, CJA)
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EM =1/, [M] [4], a
IP(M)=(1/2)), > [M]U_ 12

The number defined on edge, /E, is an index while the number defined on path, /P is a
hyper-index [8]. The Cluj Index of dendrimer nanostars computed recently in [9] and another
topological index of a dendrimer is obtained in [10].

In this paper, we obtain the Cluj indices for a type of dendritic nanostructures.

2. Computing of IEx (CJD) and 1Eg (CJA) for a dendrimer of
type 1-3

Figure 1 shows dendrimer of type 1-3 which has grown third stages.
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Figurel. Dendrimer of type 1-3 which has grown three stages
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We denote [Ex (CJD) and IEx (CJA) for the Clyj indices of k-connected hexagons according
to there are two edges between each two hexagons and the first and the last hexagons have an
external edge and the sum of entries in i row of [CID];[Al; is called the valuation of it

vertex and we denote it by v;.

The main result of this section is the following theorem:

Theorem 2.1: The number of IEx (CJD) for this type of dendrimer is:

IEK(CJD):%GSKZ—K +2(i7(1< +i)+1),K 22.

i=1

Proof: At first we compute IE, (CJD) of Figure 2.

=

Figure 2. Tow connected hexagons

For this purpose, we need to compute the matrix CJD. For IE, (CJD), the matrix is

001 1 1 1 1 1 1 1 1 1 1 1 1°1
14 0 4 3 3 3 4 3 4 4 4 4 4 4 4
11110 4 3 3 2 4 4 5 5 5 5 55
111011 0 4 2 104 6 6 6 6 6 6 6
101010 110 11 10 7 7 7 7 7 7 7 7
111010 2 4 0 11 4 6 6 6 6 6 6 6
11112 33 4 0 4 4 5 5 5 5 55
8§ 88 8 8 8 8 0 8 8 8 8 8 8 8
7 7 7 77 7 7 7 0 111010 10 11 10
6 6 6 6 6 6 6 4 4 0 11 10 10 2 11
5 55 5 4 5 5 4 3 4 011 2 3 11
4 4 4 4 4 4 4 3 3 3 4 0 4 314
555 5 4 5 5 4 3 3 211 0 4 I
6 6 6 6 6 6 6 4 4 2 10 10 11 0 11
111 1 1 1 1 1 1 111 110
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We now compute the Cluj index of this graph (Figure 2) by its definition (IE (CJD) = (1/2)
3.3 [CID] ;; [Aly). Thus [CID] ; [Al; is

o1 0 0O0OOOOOOTOOOO O
140 4 0 0 0 40 0 0 0 0 0 0 0
o 1.0 4 0 0 0 0 0 0 0O 0O O 0 O
o 0 10 4 0 0 0 0 0 0 0 O 0 O
o 0 0 110 110 7 0 0 0 0 0 0 O
o 0 0 0 4 011 0 0 0 0 0 0 0 O
o 10 0 0 4 0 0 0 0 0 0 O 0 O
o o0 0 0 8 0 0O O 8 0 0 O O O O
o0 0 0 0 0O 0O 7 011 0 0 0 11 0
o0 0 0 OO O O 4 011 0 0 0 0
o0 0 0 0O O O O 4 011 0 0 0
o 0 0 0 O O O O 0 0 4 0 4 0 14
o0 0 0 0 0O O O 0 0 011 0 4 0
o0 0 0 0O O O 4 0 0 011 0 O
o0 0 0 O0OOOOO0OO0OT1T O0TO0 O

We can compute IE; (CJD) with dividing the summation of rows by two and therefore IE,
(CJD) =120.

Now, we analyze matrix based on this graph. The graph has 15 vertices that the valuation of
vertex 1 and 15 is equal to 1, i.e., v; and v;sis equal to 1. In addition, v, and v, are 22, vs and
vg are 29, vg is 16 and the valuation of eight remaining vertices is equal to 15.

Now, we can compute IE, (CJD) regarding the valuation of these vertices.
Thus]Ez(CJD)=%(2><1+2><22+2><29+8x15+16) =120.

By the same procedure, we can compute IE; (CID) of Figure 3.

Figure 3. Three connected hexagons.
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IEz(CJD):%(lx2+2><29+2><43+2><36+2><23+12><22):264.

Now, suppose that there are k-connected hexagons, k>2, according to there are two edges

between each two hexagons and the first and the last hexagons have an external edge. The

number of all vertices in this graph is equal to 6k+ (k+1) =7k+1.

We define the position and valuation of vertices as follows:

Vertices, connected to the first and the last hexagons, are called external vertices and the

valuation of these vertices is 1. In all growth process, the number of these vertices is 2.

The vertices that are between two hexagons are called central vertices. The number and

valuation of these vertices are (k-1) and 7k+2 respectively.

Now, in this graph vertices which are connected beside three vertices are called joining

vertices. The number of these vertices in all growth process is 2k. Each pair of joining

vertices has the same valuation and the value of each pairs is as follows:
Tk+8,7k+8+7,7k+8+2x7,7k+8+3x7,..., 7Tk +8+(k—1)x7.

Thus, the valuation of all joining vertices is equal to
k k

D (Tk+8)+7(i-1)= T(k+i)+1.

i=1 i=1

The remainder vertices are 7k+1-(k-1+2k+2) =4k and the valuation of these vertices are equal
to 7k+1 in all process growth. Thus we have

]Ek(CJD):%(2><1+(k—1)><(7k+2)+2><(i7(k+i)+1)+4kx(7k+1)).

i=1

k
Therefore, IE, (CJD) =%(35k2 —k+2xQ Tk + D)+ D) k22,

i=1

Theorem 2.2: The number of IEx (CJA) for this type of dendrimer is:

K-1
IE, (CJA):%(7K2+3K +200 7K +i)+4).K 22.

i=0
Proof. The proof theorem is similar to Theorem 2.1 but the shortest path (i.e., geodesic) is

replaced by the longest path between two vertices i and j.
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3. The Cluj index for dendrimer nanostructures of type 1-3.

We denote IE, (CJD) and IE, (CJA) for the Clyj indices of this type of dendrimer that has

grown n stages.

Theorem 3.1: IE, (CJD) of this type dendrimer is:

IEH(CJD)=%(35K2—K +2x(i7(1< +i)+1)

i=1

where K =3(2"" -1).

Proof: At first we compute IE, (CJD) of this dendrimer which has grown three stages
(Figure 1). Thus, we compute IE, (CJD) of this nanostar in the o' stage.

In Figure 4 we show the graph of a nucleus in dendrimer nanostructures of type 1-3

Figure 4. Nucleus

In the graph of Figure 4, we have three connected hexagons thus we can compute IE, (CID)

(IE (CJD) of nucleus) from Theorem 2.1. Hence, we have

IE,(CJD) :%(35(32)73+2><(Z3:7(3+i)+1)) =264 .

i=1
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As shown in Figure 1 in growth primary stage, 6 connected hexagons add to nucleus and
hence this graph has 9 connected hexagons in the first growth. Thus, we have from Theorem
2.1
9
IE,(CJD) = %(35(92) -9+2 x(z 7(9+i)+1)) =2304 .

i=1

Now, in the second growth stage, 12 connected hexagons add to the graph that has grown one
stage. Therefore, in the second growth stage, all graphs have 21 connected hexagons. Thus,
we have from Theorem 2.1

IE,(CJD) :%(35(212)—21+2x(i7(21+i)+1)) =11559.

i=1

In the third growth stage, 24 connected hexagons add to graph which has grown two stages.
Therefore, in the third growth stage, all graphs have 45 connected hexagons. Thus, we have

from Theorem 2.1
45
IE,(CJD) = %(35(452) —45+2x (Z 7(45+i)+1)) =46431.
i=1

Now, suppose that the graph of Figure 1 has grown n stages, thus, we compute IE, (CIJD) of
this type dendrimer that has grown n stages. With consider growth process and examples as a
result for computing IE, (CJID) it is sufficient to obtain, how many connected hexagons add to
nucleus in each stage of growth. Each stage growth process of connected hexagons is the
same. In the first stage, 6 connected hexagons are added to nucleus and in the second stage,
12 connected hexagons are added to graph and in the third stage, 24 connected hexagons are
added to graph. Therefore when the graph has grown n stages, 3x2" connected hexagons in
the n™ stage are added to graph. Thus, the number of all connected hexagons in the n™ stage is
equal to
K =3+ 3x2 =3(2""-1).
i=1
Therefore, we compute IE, (CJD) of this type of dendrimer as follows:
1 K
IE"(CJD):EGSKZ -K +2><(Z7(K +i)+1))
i=l1

where K =3(2"" -1). '
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Theorem 3.2: IE, (CJA) of this type of dendrimer is equal to:
K-1
]E"(CJA):%(W(2 +3K +2><(Z7(K +i)+4))
i=0
where K =3(2"" -1).
Proof: At first, we compute IE, (CJA) of this type dendrimer that has grown three stages

(Figure 1). Thus, we can compute IE,, (CJA) of this nanostar in the stage n. We have

IE(,(CJA)=%(7(32)+3x3+2x(22:7(3+i)+4))=116 .

i=0

As shown in Figure 1, in the first growth stage, 6 connected hexagons are added to the
nucleus; therefore, we have 9 connected hexagons in the first growth. Thus, we have from
Theorem 2.2

8

1E,(CJA) =%(7(92)+3><9+2><(z7(9+i)+4)) =1054 .

i=0
Now, in the second growth stage, 12 connected hexagons are added to the graph that has
grown one stage. Therefore, in the second growth stage, all graphs have 21 connected
hexagons. Thus, we have from Theorem 2.2

20

1E,(CJA) =%(7(212)+3><21+2><(Z7(21+i)+4)) =3896.

i=0
In the third growth stage, 24 connected hexagons are added to the graph that has grown two
stages. Therefore, in the third growth stage, all graphs have 45 connected hexagons. Thus, we

have from Theorem 2.2
44
IE,(CJA) = %(7(452)+3><45 + 2X(Z7(45 +i)+4))=14018.
i=0

With considering growth process and examples as a result for computing IE, (CJA) it is
sufficient to obtain how many connected hexagons need add to the nucleus in each stage of
growth. In Theorem 3.1, we computed K. Therefore, we compute IEn (CJA) of this type of
dendrimer as follows:
1 K-1
]E”(CJA):E(W(2 +3K +2><(Z7(K +i)+4))
i=0

where K =3(2"" -1). '
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