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Abstract

A topological index of a molecular graph G is a numeric quantity related
to G that is invariant under symmetry properties of G. A dendrimer is an
artificially manufactured or synthesized molecule built up from
branched units called monomers. In this paper the Wiener, PI, vertex PI,
the first and second Zagreb indices of a class of nanostar dendrimer are
computed.

1. Introduction

Throughout this section G is a simple connected graph with vertex and edge sets V(G) and
E(QG), respectively. As usual, the distance between the vertices u and v of a connected graph
G is denoted by dg(u,v) and it is defined as the number of edges in a minimal path
connecting the vertices u and v. A topological index is a numeric quantity from the
structure of a graph that is invariant under automorphisms of the graph under consideration.

One of the most famous topological indices is the Wiener index introduced by Harold
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Wiener [1]. The Wiener index of G is the sum of distances between all unordered pairs of
vertices of G, W(G) = Xy vy de (U, V).

The Szeged index is another topological index which is defined by Ivan Gutman [2]
as Sz(G) = ZEZWGE(G) n, (e)n,(e), where ny(e) is the number of vertices of G lying closer to
u than to v and n,(e) is the number of vertices of G lying closer to v than to u. If in the

definition of Szeged index, we consider the sum of contributions, then we obtain a recently

defined topological index, named vertex PI index. In mathematical language, the vertex PI
index of G is defined as P/ (G) = ZCZWEE(G)[nM (e)+n,(e)] [3,4].

The Padmakar-Ivan (PI) index of the graph G is  defined
as PI(G) = Zo—yyer(q)lm, (€) + m, (e)], where my(e) is the number of edges of G lying

closer to u than to v and m(e) is the number of edges of G lying closer to v than to u [5,6].

Finally, the first and second Zagreb indices of the graph G are defined as
Zg,(G) = zuey(mdegé u and Zg,(G) = ZFWEE(degG u deg v, respectively, see [7-9]

and references therein for mathematical properties and chemical applications.
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Figure 1. NSBJ[2].
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2. Main Results

The nanostar dendrimer is a part of a new group of macromolecules that seem photon
funnels just like artificial antennas and it is a great resistant of photo bleaching.
Experimental and theoretical insight is needed in order to understand the energy transfer
mechanism. In recent year, some people investigated the mathematical properties of this
nanostructures into [10-14]. One type of nanostar dendrimers is N-branched
phenylacetylenes, see [15,16]and it is shown by NSB[n], see Figure 1. In order to compute
some topological indices of the nanostar dendrimer NSB[n], we first compute the number

of vertices and edges of this nanostructure.

Lemma 1. The number of vertices and edges of dendrimer NSB[n] are given as:
|[V(NSB[n])| = 87x2" - 38,
[E(NSB[n])| = 99x2"—45.

Proof. At first we compute the number of vertices:

[V(NSBI[n])| = 19 (1+3+...42™'x3)+ 3x2"x10
= 19(1+3(2"-1))+30x2"
=87x2" -38.
Now we obtain the number of edges:
[E(NSB[n])| = 21 (143+...+3x2" ) +3(142+...42") + 3x2"x 10
=21 (1+3(2"-1)) +3(2™"'-1) + 30x2"
=99x2"— 45. LI}

For computing the Wiener index of NSB[n], we use the method of [17]. In what
follows we recall some useful concepts. Let G be a connected graph. Then edges e = xy and
f=uv of G are in the Djokovi¢-Winkler relation ® [18,19] if

d(x,u) + d(y,v) # d(x,v) + d(y,u).
The relation ® is always reflexive and symmetric. Let © be the transitive closure of ©.
Then © is an equivalence relation on E(G) for any connected graph and it partitions the

edge set of G into ©"-classes. For computing ©"-classes it is useful to know the following
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facts. Since two adjacent edges of G are in relation © if and only if they belong to a
common triangle, all the edges of a given complete subgraph of G will be in the same ©'-
class. Also, since an edge e of an isometric cycle C of G is in relation ® with its antipodal
edge(s) on C, all the edges of an odd cycle will be in the same 0©"-class.

In what follows a powerful method given by Klavzar is described. Using this
concept, it is possible to compute the Wiener index of nanostar dendrimers. Following
Klavzar [17,20], the canonical metric representation o of a connected graph G is defined as
follows:

e Let G be connected graph and F},F»,...,Fy its ®"-classes.

e Define quotient graph G/F;, i=1,...,k, as follows. Its vertices are the connected
components of G-Fj, two vertices C and C' are adjacent if there exist vertices
xeC and ye C' such that xyeF; .

k
e Define a : G — HG/Fi with o : u—( o(u),..,0x(u) ), where o;(u) is a

i=1
connected component of G—F; that contains u. Let G be an arbitrary connected
graph and

a:G— IL[G/Fi

i=1
is canonical metric representation of G. Let (G/F; w;) are natural weighted graphs, the
weight of G/F; is the number of vertices in the corresponding connected component of G-F;.
Then,
k
Theorem 2. [17] For any connected graph G, W(G) :z W(G/Fi,wi).
i=1

Theorem 3. The Wiener index of NSB[n] is given by follows:
W(NSB[n]) = 27> 2" (e, |V]| - &> —=14)+9x 2" (87x2" =39),
k=0
where a, =29 x 2"~19, [V| = |[V(NSB[n])|.
Proof. We prove this theorem by applying Theorem 2. We may partition the molecular

graph of NSB[n] into a core together with three isomorphic subgraphs Nj[n], N,[n] and
Nj[n] (see Figure 1). We name each of N;[n], N,[n] and Ns[n], to be a branch of NSB[n].
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We partition O -classes of NSB[n] into three subsets A, A,, A; where Aj, Ay, A
are contained ® —classes of edges of hexagons, cut edges and edges which have a vertex of
degree 1, respectively. It is easy to see that if an edge on a hexagon then [e/®"] contains
two elements, therefore each hexagon is partitioned to three ©"-classes and if e be a cut
edge or has a vertex of degree 1, then [e/®"] contains just one element, in this
case [e/@®"] = {e} . Therefore, the number of elements of A}, A,, As are given by

|A]| =9 (1+3+...43x2"") + 9x 2"= 18(2""'-1),

|Ag| =3 (1+4+.. +4x2™1) +2x3x2" = 9(2™ 1),

|As| =9x2".
The number of vertices of each branch of NSB[n] are a,= [Ni[n]| =29 x 2" 19 fori= 1,
2, 3. We now define the values of Wy, W,, W3 as follows:

1821

W, = z W(NSB[n]/ E,,w,), where E, e 4 fori=1,..., 18(2™1-1),

9211y

W,= Z W (NSB[n]/ F,,w,), where F, € 4, fori=1,..., 9(2““—1),

9x2"
Ws= > W(NSB[n]/G,,w,), where G, € 4, fori=1,...,9x2"

i=1

By definition of Wi, W, and W3 one can prove the following equalities:

W, =3[, +3)(|V | ~(a, +3) +(@, =3V |~(a, -3))]

+3"x2[(a,, +3)(V |-(a,, +)) +(@,, =)V [~(a,, =3)]+..

+32x 2" 10+ 3)(|V | -(10+3)) + (10-3) (| V | —(10 - 3))]

=32 x2(a, |V | —af —9)+32 ><22(0{M,I [V | —af,l -9)+..

+32x2" (e, | V | ~atf —9) :322”:2”””1 (a, |V |-af -9).

W =3[, +6)(|V|-(a,+O)+a,(VI]-a,)+(a,-6)(|V]|-(a, -6))]

+32a,, +0)(|V|-(a, +O)+a, (V]-a, )+ (@, -6)(V]|-(a,, —6)]+..
+3x2"[A0+6)(|V |-(10+6))+10(| ¥V |-10)+ (10-6)(| V' | -(10-6))]
=3 (a, |V |-a] =28)+3" x2a, |V |-a], —24)+..+3*x2" (a, |V | -a; —24)
=3ZZ":2”" (o, |V |—-a; =24).

k=0
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It is easy to see that W3 =3?x2"(87x2" —39) where |[V| = [V(NSB[n])|.
By these calculations, we can see that
W(NSB[n]) =W, + Wy + W3 = 272 2" (a, \V\ —a, —14)+9x2"(87x2" —39). LN
k=0
Theorem 4. With notation of Theorem 3, the Szeged index of NSB[n] is given by :
Sz(NSB[n]) = 5x3? iz”‘ (o [V]-af =14)+9%x2"(87x2" =39) .
k=0

Proof. By definition of Szeged index and partition of edges as described in the proof of

Theorem 3,
2 (e, (e)=2x33" 2" oy |V | -af -9),
e=uved, k=0
> n,(e)n,(e) = 32" (o [V -’ —24)+37 x2" (87 x 2" =39).
e=uved, U4, k=0
Therefore, SZ(NSB[n]) =5 x 3222””‘ (e, ‘V‘ —a; —14)+9x2"(87x2" —39). LN
k=0

Theorem 5. The PI index of the dendrimer NSB[n] is obtained by:
PI(NSB[n]) = 9801x2>" —9081x 2" +2106.
Proof. By definition, we have
PI(NSB[n)) = Z m, (e)m, (€)= 3% (99x2"— 46)(1+4+4x2+. . +4x2"+5x2")
- +3%(99x2"— 47)(6 + 6X3 + 6x3x2 +...+ 6x3x2""+2")
=3%(99x2"— 46)( 9% 2") + 3x(99%x2" — 47)( 24x2"-12)

= 9801x2%" —9081x 2" +2106. [ Ini

Theorem 6. The vertex PI index of the dendrimer NSB[n] is obtained as follows:
PL(NSB[n]) = 8613x2%" — 7677 x 2"+ 1710.
Proof. It is easy to see that this nanostar is bipartite graphs, then
PL(NSB[n]) = [V(NSB[n])| E(NSB[n])|
= (87x2" - 38)(99x2" - 45)
=8613x27"- 7677 x 2" + 1710. ]
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Theorem 7. The first and second Zagreb indices of NBS[n] are computed as follows:
Zgi(NSB[n]) =492x 2"—~222,  Zgy(NSB[n]) =591 x 2" —273.

Proof. At first we compute the first Zagreb index as follow:

Zg(NSB[n]) = 9 +3x 37[(2"1)+2+6(1+...+2"")+2""]
+3x22[4+4x3(142+.. 42" )+ 4 x 2"
3% 4% 2" + 3% 3 x 122"
=492x 2"-222,
Now we obtain the second Zagreb index.

Zg(NSB[n]) = 3% [4x3x2"+ 3x3(1-+4+4x2+. . +4x2" 142"
F3X2(4+4X3+4X3%2+. . +4x3x 201 +4x2")
F2XQ(2H3X2H3X2X 2+ A3x2X 2" 2 x 2N +4x 1 x3x2"]
=591 x 2"~ 273, L In
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