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Abstract

The topology of Inorganic Titanium oxide lattices called rutile and anatase is
described in terms of Omega counting polynomial. Close formulas for
calculating the polynomial and the Cluj-Ilmenau index derived from this
polynomial are given.

1. Introduction

Various inorganic compounds including oxides, sulfides, selenides, borates, silicates,
etc of many metals show very ordered structures at the nano-scale. Many of these
compounds form nanotubes, similar to those of carbon: MX2, M=Mo, W, Ta, In, Zn, Ti,
Cd, X=0, S, Se, Te, CBx, BN, etc. In the last years, oxides and other above-mentioned
inorganic substances found applications in the design of nanostructured functional
materials as films, nanorods, porous systems, nanoclusters and nanocrystallites or as
nanofibers, by filling the inner space of carbon nanotubes.'°

Among numerous oxide nanostructures, the titanium nanotubular materials are
of high interest due to their chemical inertness, endurance, strong oxidizing power, large
surface area, high photocatalytic activity, non-toxicity and low production cost. TiO,
nanotubes have found applications in photo-catalysis, in solar cells, as nanoscale

materials for lithium-ion batteries or as gas-sensing materials.*"!

* This paper is dedicated to Dr. Peter John, Technical University Ilmenau, Germany, for his bright
contribution to the development of Chemical Graph Theory.
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The numerous studies on the use of titania in technological applications also
required theoretical studies of stability and other properties of such structures.'*"

It is known that the morphology of TiO, nanotubes depends on the size and
structure of the starting material. Well-crystallized nanotubes can be obtained by
hydrothermal reaction of ultra-dispersed TiO, (rutile or anatase) with aqueous NaOH.
These nanotubes preserve in some extend the structure of the starting material.

The present study is devoted to the study of rutile and anatase, as periodic

crystal networks, by using a topological description in terms of the Omega counting

polynomial.

2. Omega polynomial

Let G(V,E) be a connected graph, with the vertex set V(G) and edge set E(G). Two
edges e = uv and f'= xy of G are called codistant e co f if they obey the following
relation:'®!”

dv,x)=dv,y)+1=du,x)+1=d(u,y) 1)

Relation co is reflexive, that is, e co e holds for any edge e of G; it is also
symmetric, if e co f then f co e. In general, relation co is not transitive, an example

showing this fact is the complete bipartite graph K3, . If “co” is also transitive, thus an

equivalence relation, then G is called a co-graph and the set of edges
C(e) ={f € E(G); f co e} is called an orthogonal cut oc of G , E(G) being the union
of disjoint orthogonal cuts: E(G)=CuCU..0C, GNC;=D,i#*j. Klavzar'® has
shown that relation co is a theta Djokovié-Winkler relation.'**°

Let e = uv and f' = xy be two edges of G which are opposite or topologically
parallel and denote this relation by e op f. A set of opposite edges, within the same
face/ring, eventually forming a strip of adjacent faces/rings, is called an opposite edge
strip ops, which is a quasi-ortogonal cut goc (i.e., the transitivity relation is not
necessarily obeyed). Note that co relation is defined in the whole graph while op is
defined only in a face/ring.

The ops relation has the properties: (i) any two subsequent edges of such a strip

are in op relation; (ii) any three subsequent edges belong to adjacent (edge sharing)
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faces/ rings; (iii) the inner dual of an ops is a path or a cycle, thus neither revisiting nor
branching is allowed.

An ops starts/ends in either one even face/ring or in two odd faces/rings; in the
first case, the ops is a cycle while in the second one it is a path. In case of open
structures, the open (or infinite) faces are equivalent to the odd faces. There are cases in
which the two odd faces/rings superimpose and ops is a pseudo cycle, because the op
relation in the first/last odd face/ring is not obeyed.'®

The length of ops is maximal irrespective of the starting edge. The choice is
about the maximum size of face/ring, and the mode of face/ring counting, which will
decide the length of the strip. In case of ring mode counting, the procedure will search
for the detour of the inner duals of ops.

Let m(G,s) be the number of ops strips of length s. The Omega polynomial is

defined as®'

Q = x5
(Gx)=D, m(G.s)-x @
The first derivative (in x=1) equals the number of edges in the graph
Q'(G,)) =Zsm(G,s)-s =e=|E@G)| 3)
A topological index, called Cluj-Ilmenau,* CI=CI(G), was defined on Omega
polynomial
CI(G)={[Q(G,DF ~[Q(G,D+X(G. D]} @

An example is given in Figure 1, which illustrates just the pattern of TiO, lattice.
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Figure 1. TiO, lattice; Q(Gx)=3x"+3x"; Q(G,)=24=¢(G);
CI(G) =474
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Data were calculated by an original program called Nano_Studio,” developed at

the TOPO Group Clu;.
3. Rutile lattice

The rutile lattice is non-isotropic in the three directions of the Euclidean space (Figure
2), this anisotropy being reflected in their physical properties. Different views can also
be seen in a “corner view” (Figure 2, d).

We took the repeat unit of the periodic structure as the cube of unity dimensions
(x,y,z=1), superimposed (or not) to the crystallographic elementary cell.
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Figure 2. Rutile lattice &=3, v=864, cube face view (a,b,c), and k=4 , v=1912, corner
view (d)

In calculating Omega polynomial, different results are obtained if the maximum
ring Rpmax considered is varied. Thus, the form of polynomial was different for Ry.x[6]
and [8], respectively. The general form of Omega polynomial in Rutile lattice is as

below
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QR oy Rax [6]) = ay X +a, X2 + X )
Q(R(t s ) X R [8) = X V0T 4 X RO2 4 yes
i ai, Rmax[6] €i, Rmax[é]
2 2k(2k+1) 2t
3 1

16k>(2k +1) =8k - ay

From (5) and (6), the index CI can be derived as
CI(R,,..[6]) =2k(2k +1)(=1+2k(2k +1)(-1+24k +80k?)) @)

CI(R,, [8]) =16k’ 2k +1)*(5+18k) (8)

Some examples are given in Table 1.

Table 1. Omega polynomial in rutile: examples

Rutile Omega (Riax[6]/ Rmax[8]) v CI
1 rutile 111 6XH6X+X 52 3702
X"2+X8 x4 3312
2 rutile 222 20X +20X°+x3% 292 146780
X 8041004320 131200
3 rutile 444 72X3+72X 0+ X0 1912 7127928
X576+X648+X2304 6386688
4 rutile 555 110X'%4110X " +x*% 3580 25639790
Xl IOO+X12]O+X44OO 22990000
5  rutile 666 156X'2+156X 3 +X7488 6012 73567572
X1872+X2028+X7488 65999232
6 rutile 777 210X"+210X"3+x!176 9352 180236490
X2940+X3150+X11760 161758800

The number of atoms in a complete cube C(£, £, k) of the rutile net is calculated by the

recursive formula:

Ve =(%)[2(k—7)+(k+1)(%ﬂ ©)

This linear inhomogeneous recurrent relation can be solved by the method of

undetermined coefficients or mathematical induction,

Ve = 2k(12k% +11k +3) (10)
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Since the number of atoms increase quickly in the cubes of rutile, it is useful to
have a composition rule of the polynomial for a given cube from non-complete cube
fragments. The rule is based on “net-face identification” procedure, using the “net-face”
(a) (Figure 2). The number of fragments used in composition scheme is denoted by nf.

The composition rule, union of fragments and examples (Table 2) are given below.
—(nf -1 X
Q(R(k,k,k),u’x) _ alefe]’f n alefez’f (nf-1) 4 lef e 11

Us=tkky _k(k =mg)p _kk=mg)cls 3om =k

Table 2. Composition rule for Omega polynomial in rutile: examples.

Fragment Omega; Rnax[6]  nf Ccl

1 rutile 333 2X54+42X7+X19% 1 1395282

2 mtile 333HALF  42X°+42X*+X°™ 2 381738
3 rutile 33a 31b 3lc 42X*+H42X°+X7% 2 184674
rutile 33a 32b 32¢ 42X*+42X°+X°7 649194
4 rutile 33a 31b 3lc 42X7+42X*+X*¢ 3 184674
rutile 33a 31b 3lc 42X*+42X3+X33 184674
rutile 33a 31b 3lc 42X*+42X3+X3% 184674

The formulas for Omega polynomial (relations 5 and 6) have been derived as follows.
Rutile Ry,a4[8]:

Q) =X" + X" + X

a, =4-x,

¢, =16-x,

x, =3
Based on the composition rule for rutile cubes C(k, k, k), the following recurrent

formula holds

k+1)° k+1)°
X1 :( k3) xk_%'

After regrouping, we have

Xii X 1 X, 1 1
= —— =—+4|——
(k+1° K k(k+1) K \k+1 k
Use telescoping series to solve the recurrent formula:
A L_i+l_;+_"+1_1):3+( L,
(k+1)° T k+1 k k k-1 2 1 k+1

x, =k>Qk+1)
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In this way, the exponents a; and ¢; are computed. For the exponent b, notice the

following

b, =x, = 2k(2k +1)%.

22k +1)
k
Rutile Rpa[6]:
Q) =d X* +d X"+ X«
For the coefficient d, there is the following recurrent formula

A _ d, 2

(k+1* k> k(k+1)

Using the same method as above, it follows:

d, =2k(2k+1).
4.  Anatase lattice
The anatase lattice is also anisotropic, as can be seen from Figure 3. The Omega

polynomial consists of three terms, as in case of rutile, but no variation with Ry,x was

observed.
;

Q(An(k,k,k) ,x) = CllXel + azXeZ + a3X€3 5 Rimnax[4] (12)

The index CI can be derived from (4) as

CI(R,,, [6]) = 2k(dk + 1)(=3 + 2k (=3 + 4k(25 + 108k +144k%)))  (13)
i a; e;
1 4k(4k+1) 1
2 2k(4k(4k +1)) 2
3 2k(4k+1) 4k +1

Some examples are given in Table 3.

Table 3. Omega polynomial in anatase lattice: examples

Anatase Omega % CI
1 anat_111 20X+40X*+10X° 94 22070
2 anat_222 72X+288X*+36X° 547 940644
3 anat 333 156X+936X*+78X"? 1648 9236682
4 anat_444 272X+2176X*+136X'7 3685 48059816
5 anat_555 420X+4200X>+210X*" 6946 174923070
6 anat_666 600X+7200X>+300X> 11719 506033100
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The number of atoms in a complete cube C(k, k, k) of the anatase net is

calculated by a similar procedure as in case of rutile. This leads to the close formula
Ve =14 3k(3 + 12k +16k%) (14)
(a) (b)

(c) (d)

Figure 3. Anatase lattice k=2; v=547, (a) corner view and (b, c, d) cube face
view.

5. Conclusions

The topology of Titanium oxide lattices, namely rutile and anatase can be described by
sing the Omega counting polynomial. Close formulas for calculating the polynomial and
the Cluj-Ilmenau index derived from this polynomial were given. A composition rule

for the network or rutile was also found.
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