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Abstract

In this paper, the notions of PI and vertex PI energy of a graph G are
introduced. They are defined as the sum of the absolute values of PI and
vertex PI eigenvalues of G, respectively. In this paper, formulas for the PI
and vertex PI energy of the Cartesian product of graphs are given. Some
bounds for these quantities are also proved.

1. Introduction

Let G be a graph with vertex and edge sets V(G) and E(G), respectively. As usual, the
distance between the vertices u and v of G is denoted by dg(u,v) (d(u,v) for short) and it is
defined as the number of edges in a shortest path connecting the vertices u and v.

Suppose Graph denotes the class of all graphs. A map Top from Graphs into real
numbers is called a fopological index, if G = H implies that Top(G) = Top(H). The Wiener
index was the first reported topological index based on graph distances [15]. This index is
defined as the sum of all distances between vertices of the graph under consideration. We
encourage the readers to consult papers [5,6] for background material as well as basic

computational techniques related to the Wiener index.
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Let e = uv be an edge of the graph G. The number of vertices of G whose distance to
the vertex u is smaller than the distance to the vertex v is denoted by ny(e). Analogously, n(e)
is the number of vertices of G whose distance to the vertex v is smaller than the distance to
the vertex u. The edge variants of ny(e) and n,(e) are denoted by my(v) and m,(e),
respectively. We now define four topological indices of the PI, vertex PI, Szeged and edge

Szeged indices of the graph G as follows:
PI(G) = g [my(e) +m,(e)]
e=uv

PLO =) [me) +n,(@)]
2@ =) ny(e).m(e)

SZE(G) = Z _uvmu(e)-mv(e)

This topological indices attracted recently much attention [1,2,4,8,10-12,14]. The
vertex PI matrix VPIM(G) of G is defined so that its (i,j)-entry, aj;, is equal to
o {nvi(e) + n,,j(e) e = v;v;
K 0 otherwise’
The PI-matrix PIM(G) of G is defined analogously. In this paper, we discuss about

vertex Pl matrix. Similarly, these conclusions are established for the Pl matrix. The
eigenvalues of VPIM(G) are said to be the vertex Pl-cigenvalues of G and form the
VPIM(G)-spectrum of G, denoted by VPI-Spec(G).

Since the vertex PI-matrix is symmetric, all of its eigenvalues, 6;, i = 1, 2, ..., n, are
real and can be labeled so that 6; > 6, > -+ > 6,. If &;; > 6, > - > Jj are distinct VPIM-

eigenvalues, then the VPI-spectrum can be written as

VPI — Spec(G) = (6“ bz - 8 ik),

m; my, .. my
where mj indicates the algebraic multiplicity of the eigenvalue §;. Clearly, m; + mp + -+ + my
=n. The ordinary spectrum of G, which is the spectrum of the adjacency matrix of G is well
studied and many properties of graphs in connection with the spectrum are revealed during
the past years. The notion of the energy of a graph was introduced by Ivan Gutman [7, 9]. It
is defined as E(G) = Xi;|4;]. In a similar way, the vertex PI energy of a graph G,
VPIE(G) = Yi-416;], is defined.

In this paper, some bounds for the PI and vertex PI energy of graphs and its

relationship with some topological indices are obtained.
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2. Main Results
In this section, some bounds for the vertex Pl-energy of graphs are obtained.

Theorem 1. Suppose Gi, Gz, ..., Gs are connected graphs with nj, ny, ..., ns vertices,

respectively. The VPI eigenvalues of G = G; X G, x ... x Gy are as follows:

5 = ’ A <i. < <ij<
i igis = t_1|Gt| T 1<i<n,1<j<s.
= =1 |G

In particular, if H = G = G2 = ... = G, then &;,;, ;. = |[H|*™* ¥j_; &;; (H) and zero is an

eigenvalue of H™, for n = [H|.

Proof. We first suppose s =2, G = G; and H = G,. If (a, b)(x, y) is an edge of G X H then by
definition a = x and by € E(H) or ax € E(G) and b = y. Therefore, n¢, ,)((a,b)(a,c)) =
Glny(be)  and  nEp(@D)(6D) = [HIng(@x).  So,  nemn((@b)(@o)+
N, ((ab)(a,c)) = |Gl(ny(bc) + n.(bc)). On the other hand, VPIM(G x H) =
Iy ®[H|. VPIM(G) + |G].VPIM(H)®I|g. This implies that VPI—Spec(G X H) =
{IH16;(G) +|G|6;(H) |11 < i < |G|,1 < j < |H|}. To deduce the result, it is enough to notice
that Gy X G, X ... X Gy = (G X G X ... X Gg_1) X Gg and apply an inductive argument. To

prove the second part, we note that §; , ,, = 0 which proves our theorem. O

Corollary 1. With notation of Theorem 1, we have:

. s VPIE(G))
veiE@ < | Jaah? Y ——1sis
t=1 j=1 |Gi|

with equality if and only if at most one of the graphs Gy, ..., G, are non-empty.
Proof. Apply Theorem 1. o

Lemma 1. Let G be n-vertex graph and VPI — Spec(G) = {81, 8,, ..., 6p}. Then

Zn 8,2 < Min {2P1,(G)?,2nPI,(G), 4(n — 1)*m + 452(G), 2(n — 1)PL,(G) + 45z(G)} .
i=1

Proof. Suppose S = Y7, 8;2. To prove the lemma, it is enough to show that S < 2PI,,(G)?,
S <2(n—1)PL,(G)and S < 4(n — 1)?m + 85z(G). It is clear that
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S =QL16)* = 2%<j6: 6 = —2 %< 6:5;
and by [3, Proposition 2.3], ¢; = ¥,;<; 6;0;. Therefore

S =2%i(ny, + n,,j)2 < 2PIL,(G)>.
On the other hand,

S= ZZ (nyy + 1) < 2(n 1)2 (o +1y,) < 2(n — DPL(G),
i<j i<j
S = ZZ (ny, +n, )% = ZZ (ny.* + 2n,m, +n, %) < 2(n— 1)*m + 452(G),
i<jo ot J i<j * J J
S = z (ny, + 1y )2 = ZZ (ny.* + 2n,.n, +n,.2) <2(n—1)PIL(G) + 45z(G).
i<j / i<ji ! v j
This completes our proof. O

Lemma 2. Let VPI — Spec(G) = {6;, 83, ..., 6,}, where §; < 6, < -+ < 6§,,. Then

8, < Min{ \/@ PI,(6), \/@\/ [(n— DPL(G) + 252(6)], |“=2/[am(n — 1)? + 452(6)}

Proof. Since Y™, 8; =0, 8, = X' 8;. Therefore, |8,| < X8| < vn— 1 |31t 6;

andso0 6, < (n— D YXL6% = (n — D[ n 6 — 5n2]. Therefore, 8,,° < (n;l) ar 62

Now it is enough to apply Lemma 1 to complete the lemma. O

Theorem 2. Let G be a connected graph. Then VPIE(G) < \/Zn Yie=ur(y +ny,)? . Upper
bound is achieved if and only if G is a trivial graph. Moreover, VPIE(G) < vna, in which
a = Min{2PI,(G)? 2(n — 1)PI,(G), 4(n — 1)?>™ + 45z(G), 2(n — 1)PI,(G) + 45z(G)}.

Proof. By definition and Lemma 1,

VPIEG) = SEaldil < [N, 07 = (20 Demunesio[ma(@) + mo(e)],
VPIE(G) < vny2P1,(G)? = V2nPI,(G)
VPIE(G) < Vny2(n — DPL,(G) = /2n(n — 1)PL,(G),

VPIE(G) < Vn4(n — 1)2m + 452(G) = 2v/ny/2(n — 1)2m + Sz(G),

which completes our theorem. O

Lemma 3. Suppose G is bipartite graph with eigenvalues 1; < 1, < -+ < A,, and vertex PI
eigenvalues of §; < -+ < §,. Then VPIM(G) = nA(G) and §; = nd;, 1 <i<n.
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Proof. Suppose G is bipartite. Since G does not have odd cycles, ny(e) + n,(e) = n, for
edge e = uv. Therefore, VPIM(G) = nA(G).

Corollary 2. If G is bipartite then det (VPIM(G)) = n"det (A(G)) and n?%/det (4) <
VPIE(G) < nv2mn.

Let G be a graph with V(G) = {vi, va, ..., vy} and vertex Pl-matrix P. Then the vertex
PI degree of v, denoted by P; is given by P; = 37, a;;. Let the vertex PI degree sequence be
{P1,P2, . . ., Py}. Then the second vertex PI degree of vi, denoted by T; is given by T; =
Z;'l=1 a;;P;. If {P,Ps, ..., Py} is the PI- degree sequence then G is k-vertex PI regular if P; =
k for all i. If G has the vertex PI-degree sequence {P,, P», ..., P,} and second vertex PI degree
degree sequence {Ti, Ty, . . ., Ty} then G is pseudo k-vertex PI degree regular if i—i =k for
all i.
Theorem 3 ([13]). Suppose G is a graph, d = diam(G) and t = t(G) is the number of distinct
eigenvalues of G. Then t < d + 1. In particular, t(G) = 2 if and only if G is Complete.
Moreover, if G has the vertex PI degree sequence {P;, P,, ..., P,} and second vertex PI degree

sequence {T;, Ty, ..., Ty }. Then

5 > T2+ T2 + o+ T2
B N

Equality holds if and only if G is pseudo vertex PI regular.

Theorem 5. With the notations described above

n T2 n T2
VPIE(G) S [Z2—5+(n—1) [S-S=—
Y Py 1P

where S is the sum of the squares of entries in the vertex PI matrix. Equality holds if and

only if either G is a complete graph or a pseudo k-vertex PI regular graph with three distinct
. S—k? S—k?
eigenvalue (k, ’E' 7 ).

Proof. Let {61,602, .. ., 0.} be the eigenvalues of G. Then

n n n
Z 6;=0 , 57 =5= Z (a;))?
i=1 i=1 1j=1
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Now applying the Cauchy—Schwartz inequality to the two n — 1 vectors (1, 1, ..., 1) and
(182], (3], - . -, [8al) we get,

(VPIE(G) — 6,)2 < (n — 1)(S — 6,%)

VPIE(G) < 6, + |(n — 1)(S — 6,%)

Define a function f(x) = x +/(n — 1)(S — x?) for 21:1—1” < x < V/S. Then by applying the

Thus

. . . . L s
max—min techniques of calculus we can see that f'(x) is monotonically decreasing in x > \/;

Now by Cauchy—Schwartz inequality we have

n n
— 2 2
= (Z. a;;)* < nz aij
j=1 j=1
n 5 n n n n
OO0 WS
i=1 =1 L=dj=1 i=14j=1

N n 2 n 2 n n 22 2
Also T; =Xj_ja;; P 2 ¥j a;* and X, T = XL (X, ;%) = S°. Hence 6; >

n 2
’% > \/% = \/_ Therefore VPIE(G) < f(61) < f( ;1[}2) and thus the theorem is
i=1"1

proved. We now suppose the equality holds. Then

Then

2
8§ = llTL
1= Pz
Lll

and by Theorem 4 we have G is pseudo k-vertex PI regular. Also equality holds in the
Cauchy-Schwartz  inequality. Hence |8,| =|83] =+ =[8,] and so (X%L,l86D? =

5812
n-1

(n —1)(S — 6,%). Hence|6;| =

. . 5
, i =23,..,n Since |§;| = i ,8; can have at

most two distinct values and we arrive at the following.
* G has exactly one eigenvalue. Then all eigenvalues are zero as the sum of
eigenvalues is the trace of P and as G is connected. So, G =K.

* G has exactly two distinct eigenvalues. Then by Theorem 3, G is complete.
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oL T
= and |§;] =

2 L
XL, P

* G has exactly three distinct eigenvalues. Then §; =

, 1=23,..,n. Also — =k for all i. Then we get G as a graph with three distinct

eigenvalues (k, , f ) proving the result. O
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