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Abstract 

The hyper-Wiener index is one of topological descriptors of 
chemical structures. It is based on distances between vertices. In this 
paper, we introduce its edge versions and compute these new indices 
for some well-known graphs such as path, cycle, complete graphs. 
In addition, we compute these indices for hexagonal chains. 

 
1. Introduction 
The ordinary (vertex) Wiener index is one of the oldest molecular-graph-based 

structure-descriptors [1, 2] and its chemical and mathematical applications are well-

documented [3-6]. This version of Wiener index was based on distances between 

vertices in connected graph G  and it is: 
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where ),( yxd  is the distance between vertices x and y. 

In addition, the edge versions of Wiener index were introduced by Iranmanesh et al. 

in 2008 as follow [7]. The first edge-Wiener number is: 
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� �),(),,(),,(),,(min),(1 vyduydvxduxdfed �  such that xye �  and uvf � . In fact 

we have )))(()(0 GLWGW ve � . 
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Here, the line graph )(GL  is the intersection graph of the edges of G, where vertices 

correspond to edges of G and vertices in L(G) are adjacent if the corresponding edges 

share a vertex. 

The second edge-Wiener index is: 
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The hyper-Wiener index of acyclic graphs was introduced by Milan Randi� in 1993. 

Then Klein et al. [8], generalized Randi�’s definition for all connected graphs, as a 

generalization of the Wiener index. It is defined as: 
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where d2(x, y) = d(x, y)2. We encourage the reader to consult [8–14] for the 

mathematical properties of hyper-Wiener index and its applications in Chemistry.  

In this paper, we introduce its edge versions and compute these new indices for some 

well-known graphs such as path, cycle, complete graphs. In addition, we compute 

these indices for hexagonal chains. 

2. Some definitions and results 
In this section, we introduce the edge versions of desire indices.   

 

Definition 2.1. The edge versions of hyper-Wiener indices are: 
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In follows,  the edge-hyper Wiener indices of some well-known graphs have been 

computed . The results have been stated in Table 1 and 2. 
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Table 1. The first edge-hyper Wiener index of some graphs. 

 

0 ( )eWW G  )(0 GWe  ( )Graph G  
1 ( 1)( 2)( 1)

12
n n n n� � �  1 ( 1)( 2)

6
n n n� �  nP  

21 ( 1)( 2)
24

n n n� �  31
8

n  ,nC n is even
 

1 ( 1)( 1)( 3)
24

n n n n� � �  21 ( 1)
8

n n �  ,nC n is odd
 

1 ( 1)( 2)(3 5)
4

n n n n� � �  21 ( 1) ( 2)
4

n n n� �  nK  

 

Table 2. The second edge-hyper Wiener index of some graphs. 

 

4 ( )eWW G  4 ( )eW G  ( )Graph G  
21 ( 1)( 2)( 5 12)

12
n n n n� � � �

 
)3)(2)(1(

6
1

��� nnn  nP  

3 21 ( 9 14 48)
24

n n n n� � �  21 ( 4 8)
8

n n n� �  ,nC n is even
 

3 21 ( 9 57)
24

n n n n� � �  21 ( 4 13)
8

n n n� �  ,nC n is odd
 

1 ( 1)( 2)( 1)
4

n n n n� � �  
1 ( 1)( 2)( 1)
8

n n n n� � �  nK  

 

Carbon nanoribbons are mesoscopic systems halfway between aromatic molecules 

and extended graphite sheets (2D graphite) [15], and have been a subject of great 

interest due to their properties, which are as interesting as nanotubes’ [15–17]. Band 

structure calculation hows that both zigzag and armchair nanoribbons have electronic 

properties of their respective nanotubes [16]. A zigzag nanoribbon with the minimum 

width may be utilized to study both electronic and magnetic properties of other 

nanoribbons with zigzag edges. The zigzag nanoribbons of minimum width are the 

polyacenes [H2(C4H2)nC2H2] [16], which are linearly arranged organic polymers 

formed from aromatic molecules [18]. In the last decade, the polyacenes and helical 

nanotubes have been objects of great interest for their technological applications.  

Helical nanotubes are nanotubes which hexagons of the tube are arranged along the 

tube helically. 
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Therefore, we compute the edge-hyper Wiener indices linear polyacene hL  and 

heliacene hH , which are the hexagonal chains. Moreover, with the usage of these 

computations, we find the lower and upper bounds for edge-hyper Wiener indices of 

hexagonal chains.  

Theorem 2.2. [19] The first edge-Wiener index of the linear polyacene hL with h  

hexagons is: 

1
3

1712
6

50)( 23
0 ���� hhhLW he  

Theorem 2.3. [19] The first edge-Wiener index of hH with h  hexagons is: 

6
72

6
11530

6
25)( 23

0 ���� hhhHW he  

Theorem 2.4. [19] The second edge-Wiener index of the linear polyacene hL with h  

hexagons is: 

hhhLW he 6
43

2
47

6
50)( 23

4 ���  

Theorem 2.5. [19] The second edge-Wiener index of hH with h  hexagons is: 

6
78

6
124

2
85

6
25)( 23

4 ���� hhhHW he  

Theorem 2.6. The first d2-edge-Wiener index of the linear polyacene hL with h  

hexagons is: 

2 2 3 4
0

767 85 92 50( ) 237
3 3 3 3

d
e hW L h h h h� � � � �  

Proof. Suppose hL is a line hexagonal chain with h  hexagonal and 3�h . We denote 

the first )1( �h ring by 1S  and the last )1( �h  ring by 2S , then 1�, hi LS for 2,1�i  

and 221 �,( hLSS . Therefore, we have,  
2

1 2 1 2

2 2

1 2 1 2
2 1 2

2 2 2 2
0 0 0 0 0

, ( ) , ( ) , ( ) , ( )

2 2
0 0 1 0 2 0

( )\ ( ) ( )\ ( )
( )\ ( ) ( )\ (

2 ( ) ( , ) ( , ) ( , ) ( , )

              2 ( , ) 4 ( ) 2 ( ) 2 ( , ) 

h

d
e h

e f E L e f E S e f E S e f E S S

d d
e h e h

e E S E S e E S E S
f E S E S f E S E

W L d e f d e f d e f d e f

d e f W L W L d e f

� � � � (

� �
� �
� �

� � � �

� � � �

� � � �

�
1)

.

S

�
 

By Figure 1, it is easy to see that 
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1 1 2
2 1

2 1 2
2 1

3 1 2
2 1

2 2 2 2
1 0 1

( ) ( )
( ) ( )

2 2 2 2
2 0 2

( ) ( )
( ) ( )

2 2 2 2
3 0 3

( ) ( )
( ) ( )

( , ) (2 1) 2 (2 ) (2 1) )

( , ) (2 2) 2 (2 1) (2 )

( , ) (2 3) 2 (2 2) (2 1)

e E S E S
f E S E S

e E S E S
f E S E S

e E S E S
f E S E S

E d e f h h h

E d e f h h h

E d e f h h h

� �
� �

� �
� �

� �
� �

� 
� � � � � �+ *

� 
� � � � � �+ *

� � � � � � �

�

�

� � 
+ *

 

and thus   

106216200)](2[2),( 2

)()(
)()(

321
2

0

12
21

�������
��

��

hhEEEfed
SESEf

SESEe
. 

Therefore, we have 
2 2 2 2

0 0 1 0 2( ) 2 ( ) ( ) 200 216 106d d d
e h e h e hW L W L W L h h� �� � � � �  with 

2

0 1( ) 57d
eW L �  and 

2

0 2( ) 351d
eW L � . By solving the above equation, we obtain d2-edge-

Wiener index 
2

0 ( )d
e hW L , for linear hexagonal chain hL : 

2 2 3 4
0

767 85 92 50( ) 237
3 3 3 3

d
e hW L h h h h� � � � � .                � 

 

 

Fig. 1. The distances between special edges of hL . 

 

Theorem 2.7. The first d2-edge-Wiener index of hH with h  hexagons is: 

2 2 3 4
0

1007 25( ) 397 552 40
6 6

d
e hW H h h h h� � � � �  
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Proof. Suppose hH is a linear polyacene with h  hexagonal and 3�h . We denote the 

first )1( �h ring by 1S  and the last )1( �h  ring by 2S , then 1�, hi HS for 2,1�i  and 

221 �,( hHSS . Therefore, we have,  
2 2 2

1 2
2 1

2 2
0 0 0 1 0 2 0

, ( ) ( )\ ( )
( )\ ( )

2 ( ) ( , ) 4 ( ) 2 ( ) 2 ( , ).
h

d d d
e h e h e h

e f E H e E S E S
f E S E S

W H d e f W H W H d e f� �
� �

�

� � � �� �  

And by similar computations of hL  , we have 

1 2
2 1

2 2
0

( ) ( )
( ) ( )

( , ) 50 140 154
e E S E S
f E S E S

d e f h h
� �
� �

� � �� . 

Therefore, we have 
2 2 2 2

0 0 1 0 2( ) 2 ( ) ( ) 50 140 154d d d
e h e h e hW H W H W H h h� �� � � � �  with 

2

0 1( ) 57d
eW H �  and 

2

0 2( ) 351d
eW H � . By solving the above equation,  d2-edge-Wiener 

index 
2

0 ( )d
e hW H , for linear hexagonal chain hH is 

2 2 3 4
0

1007 25( ) 397 552 40
6 6

d
e hW H h h h h� � � � � .                � 

 

 

Fig. 2.  Two dimensional shape of hH . 

Theorem 2.8. The second d2-edge-Wiener index of the linear polyacene hL with h  

hexagons is: 

2 2 3 4
4

1391 277 188 50( ) 397
3 3 3 3

d
e hW L h h h h� � � � �  
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Proof. Suppose hL is a line hexagonal chain with h  hexagonal and 3�h . We denote 

the first )1( �h ring by 1S  and the last )1( �h  ring by 2S , then 1�, hi LS for 2,1�i  

and 221 �,( hLSS . Therefore, we have, 
2 2 2

1 2
2 1

2 2
4 4 4 1 4 2 4

, ( ) ( )\ ( )
( )\ ( )

2 ( ) ( , ) 4 ( ) 2 ( ) 2 ( , ).
h

d d d
e h e h e h

e f E H e E S E S
f E S E S

W L d e f W L W L d e f� �
� �

�

� � � �� �  

and  

1 2
2 1

2 2
4

( ) ( )
( ) ( )

( , ) 200 24 42
e E S E S
f E S E S

d e f h h
� �
� �

� � �� . 

Therefore, we have 
2 2 2 2

4 4 1 4 2( ) 2 ( ) ( ) 200 24 42d d d
e h e h e hW L W L W L h h� �� � � � �  with 

2

4 1( ) 105d
eW L �  and 

2

4 2( ) 607d
eW L � . By solving the above equation, we obtain  d2-

edge-Wiener index 
2

4 ( )d
e hW L , for linear hexagonal chain hL : 

2 2 3 4
4

1391 277 188 50( ) 397
3 3 3 3

d
e hW L h h h h� � � � � .               � 

Theorem 2.9. The second d2-edge-Wiener index of hH with h  hexagons is: 

2 2 3 4
4

2687 1877 170 25( ) 627
3 6 3 6

d
e hW H h h h h� � � � �  

Proof. Suppose hH is a linear polyacene with h  hexagonal and 3�h . We denote the 

first )1( �h ring by 1S  and the last )1( �h  ring by 2S , then 1�, hi HS for 2,1�i  and 

221 �,( hHSS . Therefore, we have,  
2 2 2

1 2
2 1

2 2
4 4 4 1 4 2 4

, ( ) ( )\ ( )
( )\ ( )

2 ( ) ( , ) 4 ( ) 2 ( ) 2 ( , ).
h

d d d
e h e h e h

e f E H e E S E S
f E S E S

W H d e f W H W H d e f� �
� �

�

� � � �� �  

and by similar way for  computation of hL  , we have 

1 2
2 1

2 2
4

( ) ( )
( ) ( )

( , ) 50 240 344
e E S E S
f E S E S

d e f h h
� �
� �

� � �� . 

Therefore, we have 
2 2 2 2

4 4 1 4 2( ) 2 ( ) ( ) 50 240 344d d d
e h e h e hW H W H W H h h� �� � � � �  with 

2

4 1( ) 105d
eW H �  and 

2

4 2( ) 607d
eW H � . By solving the above equation, we obtain  d2-

edge-Wiener index 
2

4 ( )d
e hW H , for linear hexagonal chain hH : 

2 2 3 4
4

2687 1877 170 25( ) 627
3 6 3 6

d
e hW H h h h h� � � � �  
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Corollary 2.10. The first hyper-edge-Wiener index of the linear polyacene hL with h  

hexagons is: 

2 2 3 4
0 0 0

121 50( ) ( ) ( ) 238 250 39
3 3

d
e h e h e hWW L W L W L h h h h� � � � � � �  

Proof. According to Theorems 2-2 and 2-6, the desire result can be concluded.  � 

Corollary 2.11. The first hyper-edge-Wiener index of hH with h  hexagons is: 

2 2 3 4
0 0 0

3427 1187 265 25( ) ( ) ( ) 409
6 6 6 6

d
e h e h e hWW H W H W H h h h h� � � � � � �  

Proof. According to Theorems 2-3 and 2-7, the desire result can be concluded.  � 

Corollary 2.12. The second hyper-edge-Wiener index of the linear polyacene hL with 

h  hexagons is: 

2 2 3 4
4 4 4

913 695 50( ) ( ) ( ) 397 71
2 6 3

d
e h e h e hWW L W L W L h h h h� � � � � � �  

Proof. According to Theorems 2-4 and 2-8, the desire result can be concluded.  � 

Corollary 2.13. The second hyper-edge-Wiener index of the linear polyacene 

hH with h  hexagons is: 

2 2 3 4
4 4 4

2749 1066 365 25( ) ( ) ( ) 640
3 3 6 6

d
e h e h e hWW H W H W H h h h h� � � � � � �  

Proof. According to Theorems 2-5 and 2-9, the desire result can be concluded.  � 

Corollary 2-14. The linear polyacene hL  has the maximum edge-hyper Wiener 

indices and hH  has the minimum edge-hyper Wiener indices among hexagonal 

chains. 

Proof.  Since the linear polyacene hL  has the maximum vertex-Wiener index among 

all benzonoid graphs [20], it has the maximum edge-Wiener indices among all 

hexagonal chains and then hL  has the maximum edge-hyper Wiener indices among 

hexagonal chains. 

Since the linear polyacene hH  has the minimum vertex-Wiener index among all 

benzonoid graphs [20], it has the minimum edge-Wiener indices among all hexagonal 

chains and then hH  has the minimum edge-hyper Wiener indices among hexagonal 

chains.   � 
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Theorem 2-15. The bounds of edge-hyper Wiener indices for hexagonal chains G are: 

4,0),()()( ��� iLWWGWWHWW heieihei  

Proof. According to Corollary 2-14, the desire result can be concluded.   � 
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