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Abstract

The Hosoya index of a graph is defined as the total number of matchings of the

graph. In this paper, we characterize the graphs with the minimum Hosoya index

among all graphs of n vertices and m edges, where n+ 2 ≤ m ≤ 2n− 3.

1 Introduction

We only consider finite and simple graphs here. The reader is referred to [1] for

undefined terminology and notation. Let G = (V (G), E(G)) denote graph with vertex-

set V (G) and edge-set E(G). Two edges of G are said to be independent if they are not

adjacent in G. A k-matching of G is a set of k mutually independent edges. Denote by

z(G, k) the number of the k-matchings of G. For convenience, let z(G, 0) = 1 for any

graph G. The Hosoya index of G, denoted by z(G), is defined as z(G) =
∑	n

2



k=0 z(G, k),

where n = |V (G)|. Obviously, z(G) is equal to the total number of matchings of the

graph G. The Hosoya index of a graph was introduced by Hosoya in 1971 [2] and was

shown to correlate with boiling points, entropies, calculated bond orders, as well as for

coding of chemical structures (see [3, 4]). Since then, many authors have investigated

the Hosoya index and many results have been obtained. Among all n-vertex trees, the
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path Pn has the maximum Hosoya index and the star Sn has the minimum Hosoya index

[3]. The unicyclic graphs with prescribed girth and minimum Hosoya index, and the

unicyclic molecular graphs with maximum Hosoya index are characterized in [5] and [6],

respectively. In addition, the minimum Hosoya index of bicyclic graphs is also determined

in [7].

In this paper, we characterize the graphs with minimum Hosoya index among all

graphs of n vertices and m edges, where n + 2 ≤ m ≤ 2n − 3. The extremal graphs

are analogous to those with maximum Merrifield-Simmons index among all graphs of n

vertices and m edges (see [8]), where the Merrifield-Simmons index of a graph is the total

number of its independent sets.

A (n,m)-graph is a connected graph of n vertices andm edges. In particular, (n, n−1)-

graphs, (n, n)-graphs and (n, n + 1)-graphs are well-known trees, unicyclic graphs and

bicyclic graphs, respectively. Let Gn,m denote the set of all (n,m)-graphs. A pendent

vertex is a vertex of degree 1. A pendent edge is an edge incident with a pendent vertex.

Suppose that V ′ ⊆ V (G). Let G− V ′ denote the subgraph obtained from G by deleting

the vertices in V ′ together with their incident edges. If V ′ = {v}, we write G − v

for G − {v}. Let G − uv denote the graph that arises from G by deleting the edge

uv ∈ E(G). For a vertex u of a graph G, we denote the neighborhood and degree of u

by NG(u) = {v|uv ∈ E(G)} and dG(u), respectively. Denote by Pn, Cn and Sn the path,

cycle and star of order n, respectively. There are occasions when it is convenient to select

a vertex of a tree T under discussion and designate this vertex as the root of T . The tree

T then becomes a rooted tree. Often the rooted tree T is drawn with the root r at the

top and the other vertices of T drawn below, in levels, according to their distance from r.

2 Lemmas

In this section, we give some lemmas that will be used in the proof of our result.

Lemma 1([3]). Let G = (V (G), E(G)) be a graph.

(i) If uv ∈ E(G), then

z(G) = z(G− uv) + z(G− {u, v});
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(ii) If v ∈ V (G), then

z(G) = z(G− v) +
∑

u∈NG(v) z(G− {u, v});

(iii) If G1, G2, . . . , Gt are all components of G, then

z(G) =
∏t

i=1 z(Gi).

Lemma 2([9]). Let G be a connected graph and u, v ∈ V (G). Suppose that Gs,t is a

graph obtained from G by attaching s, t pendent vertices to u, v, respectively. Then

z(Gs+i,t−i) < z(Gs,t) for 1 ≤ i ≤ t or z(Gs−i,t+i) < z(Gs,t) for 1 ≤ i ≤ s.

Lemma 3([10]). Let H1, H2 be two connected graphs with V (H1) ∩ V (H2) = {v}.
Let G = H1vH2 be a graph defined by V (G) = V (H1) ∪ V (H2), E(G) = E(H1) ∪ E(H2).

Let H be a connected graph and Tl be a tree of order l with V (H) ∩ V (Tl) = {v}, then
z(HvTl) � z(HvSl) with equality holding if and only if HvTl

∼= HvSl, where v is identified

with the center of the star Sl in HvSl.

By the definition of the Hosoya index, it is easy to obtain the following lemma.

Lemma 4. If H is a subgraph of G, then z(H) ≤ z(G) with equality holding if and

only if E(H) = E(G).

By Lemma 4, any connected graph G of order n contains a spanning tree Tn such that

z(G) ≥ z(Tn) ≥ z(Sn) with equalities holding if and only if the corresponding graphs are

isomorphic. Then we have the following conclusion.

Lemma 5. Sn has the minimum Hosoya index among all connected graphs of order

n.

Lemma 6. Let G,H be two disjoint connected graphs of order at least 2 with v ∈ V (G)

and u ∈ V (H). Denote by G′ (see Figure 1) the graph obtained from the union of G and

H by adding a new edge uv. Let G′′ (see Figure 1) denote the graph obtained from G′ by

deleting the edge uv and identifying v with u to form a new vertex w, and attaching a

pendent vertex i to w. Then z(G′′) < z(G′).
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Proof. By Lemma 1,

z(G′) = z(G′ − uv) + z(G′ − {u, v})
= z(G)z(H) + z(G− v)z(H − u),

where z(G) = z(G−v)+
∑

v′∈NG(v) z(G−{v, v′}) and z(H) = z(H−u)+
∑

u′∈NH(u) z(H−
{u, u′}).
So we have

z(G′) = 2z(G− v)z(H − u)

+ z(G− v)
∑

u′∈NH(u)

z(H − {u, u′})

+ z(H − u)
∑

v′∈NG(v)

z(G− {v, v′})

+
∑

v′∈NG(v)

z(G− {v, v′})
∑

u′∈NH(u)

z(H − {u, u′}). (1)

Similarly,

z(G′′) = z(G′′ − w) +
∑

w′∈NG′′ (w)

z(G′′ − {w′, w}).

Note that

NG′′(w) = NH(u)
⋃

NG(v)
⋃

{i}.

So

z(G′′) = z(G′′ − w) +
∑

w′∈NG′′ (w)

z(G′′ − {w′, w})

= z(G′′ − w) + z(G′′ − {w, i}) +
∑

w′∈NG′′ (w)\{i}
z(G′′ − {w′, w})

= 2z(G− v)z(H − u)

+
∑

w′∈NG(v)

z(G′′ − {w′, w}) +
∑

w′∈NH(u)

z(G′′ − {w′, w}),
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where ∑
w′∈NG(v)

z(G′′ − {w,w′}) = z(H − u)
∑

v′∈NG(v)

z(G− {v, v′})

and ∑
w′∈NH(u)

z(G′′ − {w,w′}) = z(G− v)
∑

u′∈NH(u)

z(H − {u, u′}).

Then we have

z(G′′) = 2z(G− v)z(H − u)

+ z(H − u)
∑

v′∈NG(v)

z(G− {v, v′})

+ z(G− v)
∑

u′∈NH(u)

z(H − {u, u′}). (2)

By comparing (1) and (2), we have

z(G′)− z(G′′) =
∑

v′∈NG(v)

z(G− {v, v′})
∑

u′∈NH(u)

z(H − {u, u′}) > 0

that is z(G′′) < z(G′). The proof of the lemma is complete.

Lemma 7. Suppose that G ∈ Gn,m, where n+ 2 ≤ m ≤ 2n− 3, and all cut edges are

pendent edges incident with the same vertex. Then there exists an edge uv in G such that

the subgraphs G− uv and G− {u, v} are still connected.

Proof. Suppose that all the pendent vertices v1, v2, . . . , vt of G are attached to the

vertex v0. Then there exists a spanning tree T of G rooted at v0 and besides v1, v2, . . . , vt,

there exist other pendent vertices in T . We have to distinguish two cases according to

whether there are edges in G between these pendent vertices or not.

Case 1. There exist two pendent vertices u and v other than v1, v2, . . . , vt in the

spanning tree T with uv ∈ E(G). Then both G− uv and G− {u, v} are connected, since

T and T − {u, v} are spanning trees of G − uv and G − {u, v}, respectively. Thus the

edge uv is as required.

Case 2. Each pair of two pendent vertices of the spanning tree T are not adjacent in

G. Then T is not a star and there exists at least a vertex u which is a pendent vertex

in T but not a pendent vertex in G. Without loss of generality, assume u is one of the

farthest vertices from itself to the root v0. Suppose that the adjacent vertex of u in T is
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v. Then v 	= v0, since T is not a star and u is one of the farthest vertices from itself to

the root v0. There are two subcases according to the degree of v in T .

Subcase 2.1. dT (v) = 2. Then the edge uv is as required. In fact, since u has

neighbours in G other than v, G − uv is still connected. In addition, G − {u, v} is still

connected, since T − {u, v} is a spanning tree of G− {u, v}.
Subcase 2.2. dT (v) > 2. Suppose that u, u′

1, u
′
2, . . . , u

′
l are all adjacent pendent

vertices of v in T . Then u, u′
1, u

′
2, . . . , u

′
l are not pendent vertices in graph G, since v 	= v0.

Consequently, by the hypothesis in Case 2, u, u′
1, u

′
2, . . . , u

′
l are not adjacent to one another

in G. Thus, in G, each of u, u′
1, u

′
2, . . . , u

′
l is adjacent to at least one of those vertices which

are not pendent vertices of T . Then G − uv is connected, since u has another adjacent

vertex other than v in G. In addition, T −{u, v} is connected except for isolated vertices

u′
1, u

′
2, . . . , u

′
l, which however, must have neighbours in G − {u, v, v1, . . . , vt, u′

1, . . . , u
′
l}.

Then G− {u, v} still connected. So the edge uv is as required.

Lemma 8([7]). Bn,n+1 (see Figure 2) has the minimum Hosoya index among all

(n, n+ 1)-graphs.
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Figure 2.

3 The (n,m)- Graphs of Minimum Hosoya Index

Theorem 9. Let G ∈ Gn,m.

(i) If m = n + 2, then z(G) ≥ z(Tn,n+2) = z(T ′
n,n+2) with equality holding if and only

if either G ∼= Tn,n+2 or G ∼= T ′
n,n+2, where Tn,n+2 and T ′

n,n+2 are shown in Figure 3;

(ii) If n + 3 ≤ m ≤ 2n − 3, then z(G) ≥ z(G∗
n,m) with equality holding if and only if

G ∼= G∗
n,m, where G∗

n,m is shown in Figure 3.
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Proof. For any G ∈ Gn,m (n+ 2 ≤ m ≤ 2n− 3), by Lemmas 3, 6 and 2, we can obtain a

graph G′ from G such that all cut edges are pendent edges incident with the same vertex

and z(G′) ≤ z(G) with equality holding if and only if G′ ∼= G. By Lemma 7, there exists

an edge uv in G′ such that G′−uv ∈ Gn,m−1 and G′−{u, v} is a connected graph of order

n− 2.

(i) Assume m = n+ 2.

Firstly, it is easy to see that

z(Tn,n+2) = z(Tn,n+2 − xy) + z(Tn,n+2 − {x, y})
= z(Bn,n+1) + z(Sn−2)

= z(T ′
n,n+2 − x′y′) + z(T ′

n,n+2 − {x′, y′})
= z(T ′

n,n+2),

where x, y, x′, y′ are shown in Figure 3.

Secondly, since G′ − uv ∈ Gn,n+1 and G′ − {u, v} is a connected graph of order n− 2,

we have

z(G) ≥ z(G′) = z(G′ − uv) + z(G′ − {u, v})
≥ z(Bn,n+1) + z(Sn−2)

= z(Tn,n+2) = z(T ′
n,n+2),

where the last inequality is obtained from Lemmas 8 and 5. In order for the equalities to

hold, all inequalities in the above argument should be equalities. Thus we have G′−uv ∼=
Bn,n+1, G

′ − {u, v} ∼= Sn−2 and G′ ∼= G. Then it is not difficult to check that either

G ∼= G′ ∼= Tn,n+2 or G ∼= G′ ∼= T ′
n,n+2.

(ii) When m ≥ n+ 3, we apply induction on m.

-817-



Firstly, let m = n+ 3. On the one hand,

z(G∗
n,n+3) = z(G∗

n,n+3 − x′′y′′) + z(G∗
n,n+3 − {x′′, y′′})

= z(Tn,n+2) + z(Sn−2),

where x′′, y′′ are shown in Figure 3. On the other hand, since G′ − uv ∈ Gn,n+2 and

G′ − {u, v} is a connected graph of order n− 2,

z(G) ≥ z(G′) = z(G′ − uv) + z(G′ − {u, v})
≥ z(Tn,n+2) + z(Sn−2)

= z(T ′
n,n+2) + z(Sn−2)

= z(G∗
n,n+3)

where the last inequality is obtained from the result (i) of this theorem and Lemma 5.

In order for the equalities to hold, all inequalities in the above argument should be

equalities. Then G′ − uv ∼= Tn,n+2 or T ′
n,n+2, G

′ − {u, v} ∼= Sn−2 and G′ ∼= G. To begin

with, we claim G′ − uv � T ′
n,n+2. In fact, assume G′ − uv ∼= T ′

n,n+2. Let u′ and v′

denote the images of u and v, respectively, under the isomorphism from G′−uv to T ′
n,n+2.

Then u′v′ 	∈ E(T ′
n,n+2), since uv /∈ G′ − uv, and T ′

n,n+2 − {u′, v′} ∼= (G′ − uv) − {u, v} =

G′ − {u, v} ∼= Sn−2. However, for all pairs of u′, v′ ∈ V (T ′
n,n+2) with u′v′ 	∈ E(T ′

n,n+2),

T ′
n,n+2 − {u′, v′} � Sn−2, a contradiction. So the claim is true. Then G′ − uv ∼= Tn,n+2

and G′ − {u, v} ∼= Sn−2. Thus it is not difficult to check that G ∼= G′ ∼= G∗
n,n+3. So the

result holds for k = 3.

Secondly, assume the result holds for m− 1 (m ≥ n + 4), we are going to prove that

it is true for m in the following. On the one hand,

z(G∗
n,m) = z(G∗

n,m − x′′y′′) + z(G∗
n,m − {x′′, y′′})

= z(G∗
n,m−1) + z(Sn−2)

where x′′, y′′ are shown in Figure 3.

On the other hand, since G′ − uv ∈ Gn,m−1 and G′ − {u, v} is a connected graph of

order n− 2,

z(G) ≥ z(G′) = z(G′ − uv) + z(G′ − {u, v})
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≥ z(G∗
n,m−1) + z(Sn−2)

= z(G∗
n,m)

where the last inequality is obtained from the inductive hypothesis and Lemma 5. In order

for the equalities to hold, all inequalities in the above argument should be equalities.

Then G′ − uv ∼= G∗
n,m−1, G

′ − {u, v} ∼= Sn−2 and G ∼= G′. Then it is not difficult to

check that G ∼= G′ ∼= G∗
n,m. Thus the result holds for m. Consequently, it holds for all

n+ 3 ≤ m ≤ 2n− 3.

The proof of the theorem is complete.

4 Remark

Although we characterized the graphs with the minimum Hosoya index among all

(n,m)-graphs, where n + 2 ≤ m ≤ 2n − 3, the same problem for m > 2n − 3 deserves

further study.
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