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Abstract: Deng once determined the trees on n > 9 vertices with the first to seven-
teenth greatest Wiener indices [H. Y. Deng, The trees on n > 9 vertices with the first to
seventeenth greastest Wiener indices are chemical trees, MATCH Comm. Math. Comput.
Chem. 57(2007) 393-402]. Unfortunately, some mistakes are found in Deng’s paper. This
paper will present a correct order of the first to fifteenth greatest Wiener indices for trees
on n > 28.

1 Introduction

Throughout this paper, we only concern with connected, undirected simple graphs. Let
N(u) be the first neighbor vertex set of u, then d(u) = |N(u)| is called the degree of w.
As usual, P, and S,, denote the path and star of order n, respectively.

The distance dg(u, v) between the vertices u and v of the graph G is equal to the length

of (number of edges in) the shortest path that connects u and v. There are two important
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graph-based structure-descriptors, called Wiener index and hyper-Wiener index, based on

distances in a graph. The Wiener index W(G) is denoted by [1]

WG = Y da(uv),

{uv}CV(G)
and the hyper- Wiener index WW (G) is defined as [2]
WIW(E) = W@ -5 Y dgluv).
2 2 {uw}CV(G)
The Wiener index and hyper-Wiener index are much studied in the chemical literatures be-
cause of their important applications in chemistry. Recently, the Wiener index and hyper-
Wiener index gained much popularity. More and more mathematicians and chemists
became interested in them and devoted themselves to the study. The mathematical prop-
erties of Wiener index and hyper-Wiener index with their applications in chemistry can
be referred to [3-10] and the references cited therein.

We now introduce some more key notations. Recall that a vertex u of a tree T is called
a branching point of T if d(u) > 3. Furthermore, u is said to be an out-branching point
if at most one of the components of 7' — w is not a path; otherwise, u is an in-branching
point of T'.

Let T'(n; n1,na, ..., n,y,) denote the starlike tree of order n obtained by inserting nqy — 1,
woey My — 1 vertices into m edges of the star S,,1 of order m + 1 respectively, where
ni+---+mn, =n—1. Note that any tree with only one branching point is a starlike tree.

If T is a tree of order n with exactly two branching points u; and us, with d(u,) =r

and d(uy) = t. The orders of r — 1 components, which are paths, of T —u; are py, ..., py—1,

the order of the component which is not a path of T'—uy isp, =n—p; — -+ —p,_1 — L.
The orders of t — 1 components, which are paths, of T'— uy are ¢, ..., ¢;_1, the order of
the component which is not a path of T'—wus is ¢ =n—q — -+ — q—1 — 1. We denote

this tree by T(n; p1, ooy Pr—1;q1, s @t—1), Wwhere r < ¢, py > -+ >p.gand g > -+ > q_1.

Gutman first obtained the trees on n vertices with the smallest and greatest hyper-
Wiener index (i.e., the star and path) in [11]. Very recently, the trees with the seven
smallest and the fifteen greatest hyper-Wiener indices were determined in [12], respec-
tively. Also, among all connected graphs of order n (n > 2k), the first up to (k + 1)-th
smallest Wiener indices and the first up to (k + 1)-th smallest hyper-Wiener indices are
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determined in [13], respectively. Gutman et al. also considered the similar order of Wiener
index among the starlike trees in [14]. After then, the first up to fifteenth smallest Wiener
indices among trees of order n were identified in [15]. Recently, Deng considered the order

of greatest Wiener indices among trees and he once obtained

Theorem A [16] Suppose n > 9 and T is a tree of order n. Then, W(T'(n;n—3,1,1)) >
W(T(n;n—4,2,1)) > W(T(n;1,1;1,1)) > W(T(n;n—5,3,1)) > W(T(n;n—4,1,1,1)) >
W(T(n;1,1;2,1)) > W(T'(n;n —6,4,1)) > W(T'(n;n —5,2,2)) > W(T'(n;1,1;3,1))
W(T(n;2,1;2,1)) > W(T'(n;1,1;1,1,1)) > W(T'(n;n — 7,5,1)) > W(T'(n;1,1;4,1))
W(T(n;n —5,2,1,1)) > W(T(n;1,1;2,2)) > W(T(n;2,1;3,1)) > W(Tp) > W(T

VoV

N

)

where T is shown in Fig. 1.

Fig. 1. The tree Tp.

Unfortunately, as the following example shown, Theorem A is not correct. In the

41 . :
sequel, ("11) is written as C3 ;.

Example 1.1. By an elementary computation (or the application of Lemma 2.4), it
follows that W(T'(n;1,1;n—6,1)) = C3_, —5n+27 and W(Tp) = C3,, — 5n+21. Thus,
W(T(n;1,1;n —6,1)) > W(Ip), a contradiction to Theorem A.

Thus, we give a correct order of the greatest Wiener indices of trees in this paper, namely

Theorem 1.1 Suppose n > 28 and T is a tree of order n. Then, W(P,)
3,1,1)) > W(T(n;n—4,2,1)) > W(T(n;1,1;1,1)) > W(T(n;n —5,3,1)
4,1,1,1)) = W(T(n;1,1;2,1)) > W(T(n;n—6,4,1)) > W(T'(n;n—5,2,2)
n—51)) = W(T(n;1,1;3,1)) > W(T(n;2,1;2,1)) > W(T(n; 1,1;1,1,1)
7,5,1)) > W(T(n;1,1;n—6,1)) = W(T'(n;1,1;4,1)) > W(T'(n;n—5,2,1,1)) = W(T(n; 1,
1,2,2)) = W(T(n;2,1;3,1)) > W(Tp) > W(T).

)
)

= Z =

Remark. By comparing with Theorem A and Theorem 1.1, two trees, say T'(n;1,1;n —

5,1) and T'(n;1,1;n — 6, 1), are left out in [16].
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2 The proof of Theorem 1.1

Given a simple and undirected graph G = (V, E). Let G — u (resp. G — wv) denote the
graph obtained from G by deleting the vertex u € V(G) (resp. the edge uwv € E(G)).
Similarly, G + uv is a graph yielded from G by adding an edge uv ¢ E(G), where u,v €
V(G).

Uk
/ Vk—1
vy, (I
Uy Up—1 U @/ Up U1 Uy Uk
Gy Gr_141

Fig. 2. The graphs Gj; and Gj_141.

Suppose v is a vertex of graph G. As shown in Fig. 2, let Gy; (I > k > 1) be
the graph obtained from G by attaching two new paths P: v(= wvp)vive--- v and Q:
v(= up)ujuy- - - uy of length k and [, respectively, at v, where vy, va, ..., vy and uy, ua, ...,

w; are distinct new vertices. Let Gy_1 41 = Gry — vp—10) + vy

Lemma 2.1 Suppose G is a connected graph on n > 2 vertices, or an isolated vertex. If
1>k >1, then W(Gyy) < W(Gg-1,41), the equality holds if and only if G is an isolated

vertex.

Proof. It is easy to see that
W(Gk—l,l+1) - W(Gk',l) = Z de 1,0+1 U} vk Z del W, Vg (1)
wEV(Gr-1,141) weV(Gr)
Let Vi = V(G) \ {v}, then V(Gyr) \ Vi = V(Gr—1,41) \ V1. Let Vo = V(Gy;) \ V1. Clearly,

Z de.z (w7 vk) = Z de.l (w7 vk) + Z de.z (w7 Uk)' (2)

weV (G,1) weVy weVa

Z de 1,041 w Uk Z de 1,041 w vk + Z de 1,041 w Uk) (3)

weV (Gr_1,141) weVy weVa
Note that the subgraph of G} induced by V5 is a path of length %+, which is isomorphic
to the subgraph of Gj_y 11 induced by V5, thus

Z de,l (w7 Uk) = Z de—l,H»l (w7 vk) (4)

weVa weVa
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Therefore, by combining equalities (1)-(4), we have

I/V(Gk—l.lJrl) le Z de 1041 w Vk) — Z de,l(w7vk)

weVy weVy

=D ey (w,v) = da (w0, 08)). (5)

weVy
If G is an isolated vertex, then V; = @. By equality (5), it follows that W(Gy_1,41) =

W(Gy,). If G is not an isolated vertex, since I > k, then dg,_, ., (w,v) > dg, ,(w,vx)

holds for every w € V;. Thus, the result follows from equality (5). |
7[110—< JLU
@Tﬂz U U Ui @T}z UL U Ui
A[t,tJrs ]\JtJrl,H»s

Fig. 3. The graphs M; ;. and My 5.

Suppose v; is a vertex of graph G, and vy, ..., vy, U are distinct new vertices (not in
G). Let G’ be the graph obtained from G by attaching a new path P: vivg--- vy, Let
My = G+ vug and My s = G' + vigug, where 1 <4 < s. For instance, M, 4, and

M1 4+ are depicted in Fig. 3.

Lemma 2.2 Suppose G is a connected graph on n > 2 wvertices, or an isolated vertex. If
t > s >1, then W(Myyys) < W(Mysa,4s). Moreover, the equality holds if and only if

t = s and G is an isolated vertex.

Proof. For convenience, sometimes we write M, s as M, and M;1,15 as M’ in the
proof of this lemma. Let Vi = V(G) \ {v1}, then V(M ;15) \ Vi = V(Myy1445) \ Vi. Let
Vo = V(My44s) \ V. Thus,

W(A/[t+1.t+s) ]\ffers = Z dM’ w Uo Z dM w Uo

weV(M') weV (M)

= > (dar(w,u0) — dus(w,u0)) + Y dar(w,u0) = Y das(w, ug). (6)

weV] weVsn weVs

Note that dyp(w,ug) > dyr(w, ug) holds for every w € V4, and

Zd]w/(’w7U0)— Zd}u(ﬂ)ﬂto) :t+1—(8+1):t—820

weVa weVs
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Thus, the result follows by equality (6). |

From Lemma 2.2, it immediately follows that

Proposition 2.1 Suppose G is a connected graph onn > 2 vertices, or an isolated vertez.

Ift > s> 1, then W(Ms) < W(Mysiyss), where 1 <i <s.

1
T T, Ta
Z

Fig. 4. The trees T, Ty, Ts and T¢.

For convenience, we introduce a transfer operation: T' — Ty — T — T¢, as shown
in Fig. 4, where T' is a tree of order n, u is an out-branching point of T, d(u) = m, and

all the components Ti, Ty, ... T,, of T — u except T} are paths.

Lemma 2.3 [12,16] Let u be an out-branching point of a tree T of order n, d(u) = m
(m > 3), and let all components Ty, Ty, ..., T,, of T —u except Ty be paths. Then,

W(T) < W(Ta) < W(Tp) < W(To),

and W(T') = W(T4) (or W(Tp)) if and only if T = T4 (or Tg).
Proof. By Lemma 2.1, it is easy to see that W (T) < W(T4) with the equality holding if
and only if T'= T4. Moreover, Lemma 2.1 implies that W (T) < W(T¢). Next we shall
prove that W(T4) < W(Tg) with the equality holding if and only if T4 = Tp.

Let T, denote the component of T4 — y, which contains u. Set V; = V(T,) U {y}.
Then, V(Tx) \ Vi = V(Tp) \ Vi. Let Vo = V(T4) \ V1. It is easy to see that

Z dry (w,v) — Z dr, (w,v)

{ww}CV(TB) {w,w}CV(Ta)
Z dry (w, z) Z dr, (w,
weV(Tg) weV(Ty)
= Z dr,(w, z) — Z dr,(w,z) + Z (dr, (w, z) — dr, (w, 2)). (7)
weVy weVy weVa

Note that Y,y dry(w, 2) > 3, ey, dry (w, 2), and dry, (w, 2) > dr, (w, 2) holds for every

w € Vs, then the conclusion follows from equality (7). |
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Lemma 2.4 [16,17] Let T be a tree of order n, uq, us, ..., uy, be the all branching points
of T, d(u;) =my; (1 =1,2,..,k), Tnn, Tia, ..., Tim, be the components of T — u;, and the
order of T;; is equal to n;; (j =1,2,...,m;; i =1,2,..., k). Then,
k
T =C3,, - Z Z NipNigMNir s
i=1 1<p<q<r<m;
where ny + g+ -+ Ny, = — 1,1 =1,2, .. k.
By Lemma 2.4, we have
W(F,) = Cﬁﬂ-
W(T(n;n—3,1,1))=C2,, —n+3,
W(T(n;n—4,2,1)) =C3,, —2n+38,
W(T(n;1,1;1,1)) = C3,, — 2n +6,
W(T(n;n—5,3,1)) =C3,, — 3n+ 15,
W(T(n;n—4,1,1,1)) = W(T(n;1,1;2,1)) = C3,, — 3n+ 11,
W(T(n;n—6,4,1)) =C3, | —4n+ 24,
W(T(n;n—5,2,2)) =C3, | —4n + 20,
W(T(n;1,1;n —5,1)) = W(T(n;1,1;3,1)) = C3, | — dn + 18,
W(T(n;2,1;2,1)) = C2,, — 4n + 16,
W(T(n;1,1;1,1,1)) = C3, — 4n + 14,
W(T(n;n—7,5,1)) =C3,, — 5n+ 35,
W(T(n;1,1;n —6,1)) = W(T(n; 1,1;4,1)) = C3, | — 5n + 27,
W(T(n;n—5,2,1,1)) = W(T(n;2,1;3,1)) = W(T(n;1,1;2,2)) = C3, | — 5n + 23,
W(Tp) = Cﬁﬂ —5n+21.
Thus, we have
Lemma 2.5 If n > 28, then W(P,) > W(T(n;n —3,1,1)) > W(T(n;n — 4,2,1)) >
W(T(n;1,1;1,1)) > W(T(n;n—5,3,1)) > W(T(n;n—4,1,1,1)) = W(T'(n;1,1;2,1)) >
W(T(n;n—6,4,1)) > W(T(n;n—5,2,2)) > W(T'(n;1,1;n—5,1)) = W(T'(n;1,1;3,1)) >
W(T(n;2,1;2,1)) > W(T(n;1,1;1,1,1)) > W(T(n;n — 7,5,1)) > W(T(n;1,1;n —
6,1)) =W (T(n;1,1;4,1)) > W(T(n;n—5,2,1,1)) = W (T(n;2,1;3,1)) = W(T(n;1,1; 2,
2)) > W(Tp).

By Lemma 2.4, it also follows that
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W(T(n;2,1;1,1,1)) = C3,, — 5n + 19,

T(n;1,1;n—6,2)) = W(T(n;n—06,3,1,1)) = W(T'(n;1,1;3,2)) = C3,, — Tn+39,
T(nin—6,1;1,1,1)) = C3,, — Tn+ 35,

T(n;n—7,1;1,1,1)) = C2, | — 8n + 46,

T(n;1,1;n—7,2)) = C3., —9n + 59,

(T(
(T(
(T(
(T(
(T(
(T(n;n —8,6,1)) = C3,, — 6n + 48,
(T(
(7
(T(
(T(
(T(

S == 8=

T(n;1,1;n—7,1)) =W(T(n;1,1;5,1)) = C3., — 6n + 38,
T(n;n —6,3,2)) = C3,, — 6n + 36,

T(n;2,1;n — 6,1)) = W(T(n;2,1;4,1)) = C3,, — 6n + 32,
W(T(n;3,1;3,1)) = C3,, — 6n + 30,

W(T(n;2,1;2,2)) = C3,, — 6n+ 28,

W(T(n;n—5,1,1,1,1)) = W(T(n;1,1;2,1,1)) = C2 ., — 6n + 26.

I =

The next lemma can be obtained directly from the above equalities.
Lemma 2.6 If n > 28, then (1) W(Tp) > W(T'(n;2,1;1,1,1)) > W(T(n;1,1;n —
6,2)) = W(T(n;n—6,3,1,1)) = W(T(n; 1,1;3,2)) > W(T(n;n—6,1;1,1,1)) > W(T(n;n
—7.1,1,1,1)) > W(T(n; 1, 1,n—7,2)); (2) W(Tp) > W(T(n;n—8,6,1)) > W(T(n; 1, 1;n
—7.1)) =W(T(n;1,1;5,1)) > W(T(n;n—6,3,2)) > W(T(n;2,1;n—6,1)) = W(T(n;2,1;
4,1)) > W(T(n;3,1;3,1)) > W(T(n;2,1;2,2)) > W(T(n;n—>5,1,1,1,1)) = W(T(n; 1, 1;
2,1,1)).

Lemma 2.7 Ifn > 28 and T is a tree with exactly one branching point of degree m > 5,
then W(T) < W(T(n;n —5,1,1,1,1)) < W(Tp).

Proof. By hypothesis, T = T(n;ni,na,...,ny). Without loss of generality, assume
ny > Mng > -+ > ny,. We prove the lemma by induction on m.

If m = 5, by Lemma 2.1 and Lemma 2.6 it follows that W(T') = W (T (n; ny, na, ns, na,
ns)) < W(T(n;ny + ns — 1,ng,nz,ng, 1)) < W(T(n;ny + ng + ns — 2,n9,n3,1,1)) <
W(T(n;ny +ns+ng+ns—3,n2,1,1,1)) <W(T(n;n—5,1,1,1,1)) < W(Tp). Thus, this
lemma holds for m = 5.

If m > 6, by Lemma 2.1, Lemma 2.6 and the induction hypothesis it follows that
W(T) =W(T(n;n1,n9,...,0m)) < W(T(n;n1 + N, N2y ooy Ny—1)) < W(T(n;n—5,1,1,1,
1)) < W(Tp).

This completes the proof of this lemma. |
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Lemma 2.8 Suppose n > 28, and T is a tree with only one branching point. If T &
{T(n;n=3,1,1),T(n;n—4,2,1),T(n;n—>5,3,1), T(n;n—4,1,1,1), T(n;n—6,4,1), T (n; n—
5,2,2),T(n;n—7,5,1),T(n;n —5,2,1,1)}, then W(T) < W(Ip).

Proof. Suppose the degree of the unique branching point is m, then T = T'(n; nq, ..., ).
Without loss of generality, assume ny > --- > n,,. If m > 5, then the conclusion follows
from Lemma 2.7. We consider the next two cases.

Case 1. m = 3.

If ng > 2, since T # T'(n;n—>5,2,2), then ny > ny > 3. By Lemma 2.1 and Lemma 2.6
it follows that W (T (n;ny,na,n3)) < W(T(n;ny +ns —2,n9,2)) < W(T'(n;n —6,3,2)) <
W (Tp).

If ng = 1, since T ¢ {T(n;n — 3,1,1),T(n;n — 4,2,1),T(n;n — 5,3,1),T(n;n —
6,4,1),T(n;n—7,5,1)}, then ny > ny > 6. By Lemma 2.1 and Lemma 2.6 it follows that
W(T) <W(T(n;n—8,6,1)) < W(Tp).

Case 2. m = 4. Since T # T(n;n —4,1,1,1), then ny > 2. Two subcases occur.

Subcase 1. n3z > 2. Note that n; > 3 (by n > 28) and ny > n3z > 2, by Lemma 2.1
and Lemma 2.6 it follows that W (T (n;ny, na, ng,na)) < W(T(n;ny + ng — 1,n9,n3,1)) <
W(T(n;ny +nq—1,ng+ng—1,1,1)) <W(T(n;n—6,3,1,1)) < W(Tp).

Subcase 2. ng = 1. Then, ng = 1. Since T' # T'(n;n — 5,2,1,1), then n; > ny > 3, by
Lemma 2.1 and Lemma 2.6 it follows that W (1) = W (T'(n;n1,ne,1,1)) < W(T'(n;n —
6,3,1,1)) < W(Tp).

This completes the proof of this lemma. |

Lemma 2.9 Suppose n > 28, and T = T(n;p1, ..., Pr—1; Gy -, Gt—1). If t > 5, then
W(T) <W(T(n;n—5,1,1,1,1)) < W(Tp).

Proof. By Lemma 2.3, Lemmas 2.6-2.7 it follows that W(T') < W(T'(n;q1, ..., ¢—1,n —
G = =g — 1) SW(T(sn —5,1,1,1,1)) < W(Tp). i

Lemma 2.10 Suppose n > 28, and T = T(n;p1, oy Dr—15q1, s Gt—1). If t =1 =4, then
W(T) < W(Tp).

Proof. By hypothesis, T' = T'(n; p1, p2, P3; ¢1, ¢2, g3). Without loss of generality, suppose
that ¢; + ¢2 + g3 > p1 + p2 + p3. We consider the next cases.
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Case 1. ¢1+@2+¢s > 5. By Lemma 2.1 we have W(T') < W(T'(n; q1, q2, g3, n— 1 — G —
3=1)) SW(T(q+g—-1,¢,Ln—q—g—g—1) <W(T(q+gp+e—21,1n—
@1 —q2—g3—1)). Note that g1 +q@2+gs—2=3and n—q—@z—g3—1 > p1+p2+p3 2 3,
then W(T(n;q1+q2+q3—2, 1, 1,n—q —qa—qs— 1)) < W(T(n;n—6,3,1,1)) < W(Tp)
follows from Lemma 2.1 and Lemma 2.6.

Case 2. q1 + @2 + g3 = 4. This implies that T = T'(n; p1, pa, p3; 2,1,1). By Lemma 2.3
and Lemma 2.6 it follows that W (T') = W (T (n; p1,p2, p3; 2,1,1)) < W(T(n;1,1;2,1,1)) <
W(Tp).

Case 3. ¢1 + q2 + g3 = 3. Then, p; + p» + p3 = 3. By Lemma 2.1 and Lemma 2.6 it
follows that W (T) = W(T(n;1,1,1;1,1,1)) < W(T(n;2,1;1,1,1)) < W(Tp). |

Lemma 2.11 Suppose n > 28, and T = T(n;p1, ..., Dr—1;q1, -y Gi—1) Wwith t =4, r=3. If
T #T(n;1,1;1,1,1), then W(T) < W(Tp).

Proof. By hypothesis, T' = T'(n; p1, p2; ¢1, g2, ¢3). Two cases occur as follows.

Case 1. ¢1+q2+¢3 > 5. By Lemma 2.1, we have W(T') < W(T'(n; q1, ¢2, g3, n—q1 — g2 —
=) <WITMma+te-—1Leln—qa-—@-—¢—1) <WThat+e+ea—21,1n-
n1—q2—qs—1)). Note that n—q1 —g2—qs—1 > p1+pa+1 > 3and 1+ +¢s—2 > 3, by
Lemma 2.1 and Lemma 2.6 it follows that W(T'(n; ¢1 +¢2+¢5—2,1, 1, n—q1 — g2 —q3—1)) <
W (T(n;n —6,3,1,1)) < W(Tp).

Case 2. q1 + @2+ g3 = 4. This implies that T = T'(n; p1,p9;2,1,1). By Lemma 2.3 and
Lemma 2.6 it follows that W(T'(n; p1,p2;2,1,1)) < W(T(n;1,1;2,1,1)) < W(Tp).

Case 3. ¢1 +q+¢q3 =3. Since T # T'(n;1,1;1,1,1), then 3 < p; +ps <n —5. We
divide the proof into four subcases.

Subcase 1. 3 < p; + po < 6. By Lemma 2.1, it follows that W(T) < W(T'(n;ps +
p1 — 1,1;1,1,1)). Recall that n > 28, by Propositions 2.1 and Lemma 2.6 we have
W(T(n;p2+p1—1,1;1,1,1)) < W(T(n;2,1;1,1,1)) < W(Tp).

Subcase 2. 7 < p; + py < n — 7. This implies that n — p; —ps — 1 > 6. By
Lemma 2.1 and Lemma 2.6 it follows that W(T') < W(T'(n;p1,pa,n —p1 — p2 — 1)) <
W(T(n;p2+p1— 1L, 1L,n—p—py— 1)) <W(T(n;n —8,6,1)) < W(Tp).

Subcase 3. p; + p2 = n — 6. By Lemma 2.1 and Lemma 2.6 it follows that W(T') <
W(T(n;n—17,1;1,1,1)) < W(Tp).
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Subcase 4. p; + p» = n — 5. By Lemma 2.1 and Lemma 2.6 it follows that W(T') <
W(T(n;n—6,1;1,1,1)) < W(Tp).

By combining the above arguments, the result follows. |
Lemma 2.12 Suppose n > 28, and T = T(n;p1, ..., Pr—1;q1, -y Ge—1) with t =3, r=3. If
T¢{T(n;1,1;1,1),T(n;1,1;2,1),T(n; 1,1;n—5,1),T(n; 1,1;3,1),T(n;2,1;2,1), T(n; 1, 1;
n—6,1),T(n;1,1;4,1), T(n; 2,1;3,1), T(n; 1,1;2,2)}, then W(T) < W(Tp).

Proof. By hypothesis, T' = T'(n; p1,p2; ¢1,¢2). Without loss of generality, suppose ¢; +
G2 > p1+po. Since T € {T(n;1,1;1,1),T(n;1,1;2,1),T(n;2,1;2,1)}, then 4 < ¢ + @2 <
n — 4. We consider the next cases.

Case 1. ¢1 + g = 4. Since T # T(n;1,1;3,1) and T # T(n;1,1;2,2), then 3

IN

p1 + po < 4. Two subcases occur as follows.

Subcase 1. p; +pe = 3. Since T # T'(n;2,1;3,1), then T' = T'(n; 2, 1;2,2). By Lemma
2.6, W(T(n;2,1;2,2)) < W(Tp).

Subcase 2. p;+ps = 4. By Lemma 2.1 and Lemma 2.6, we have W(T') < W/(T'(n; p1, pa;
3,1)) <W(T(n;3,1;3,1)) < W(Tp).

Case 2. ¢; + ¢ = 5. Two subcases occur as follows.

Subcase 1. ¢ = 3, ¢ = 2. By Lemma 2.3 and Lemma 2.6, we have W(T) =
W(T'(n;p1,p2:3,2)) < W(T'(n;1,1;3,2)) < W(Tp).

Subcase 2. ¢ = 4, ¢o = 1. Since T # T(n;1,1;4,1), then 3 < p; +ps < 5. By
Lemma 2.1, Proposition 2.1 and Lemma 2.6, we have W(T') = W(T'(n;p1,p2;4,1)) <
W(T(n;p1 +p2 — 1,154, 1)) <W(T'(n;2,1;4,1)) < W(Tp).

Case 3. ¢q1 + g2 = 6. By Lemma 2.1, Lemma 2.3 and Lemma 2.6, it follows that
W(T) < W(T(n;p1,p2;5,1)) < W(T(n;1,1;5,1)) < W(Tp).

Cased. T< q1+q <n—7. Then, n—q —g2—1 > 6. By Lemma 2.1 and Lemma 2.6 it
follows that W(T') < W(T'(n; q1, ¢2,n—q1—qa2—1)) < W(T(n; 1+¢—1,1,n—q1—q2—1)) <
W(T(n;n—8,6,1)) < W(Tp).

Case 5. q1 + ¢2 = n — 6. By Lemma 2.1, Lemma 2.3 and Lemma 2.6 it follows that
W(T) < W(T(n;p1,p2;n—7,1)) <W(T(n;1,1;n —7,1)) < W(Ip).

Case 6. ¢1 + g2 =n — 5. Two subcases occur as follows.

Subcase 1. ¢ = 1. Then, ¢ = n — 6. Since T' # T(n;1,1;n — 6,1), then T =
T(n;2,1;n —6,1). By Lemma 2.6, we have W(T') = W(T(n;2,1;n —6,1)) < W(Tp).
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Subcase 2. ¢ > 2. By Lemma 2.1, Lemma 2.3 and Lemma 2.6 it follows that
W(T) <W(T(n;p1,pasn—17,2)) <W(T(n;1,1;n—7,2)) < W(Tp).

Case 7. ¢1 + g2 = n — 4. This implies that p; = p, = 1. Since T' # T'(n; 1,1;n —5,1),
then ¢; > g2 > 2. By Lemma 2.1 and Lemma 2.6, we have W(T') = W(T'(n;1,1; ¢1,¢q2)) <
W(T(n;1,1;n—6,2)) < W(Tp).

This completes the proof.

s

Fig. 5. The tree Tg.

Lemma 2.13 Suppose n > 28, and T is a tree of order n with exactly three branching

points. If T # Tp, then W(T) < W(Tp).

Proof. Let uy, us, ug be the three branching points of 7. Let u; be an in-branching
point and s, u3 be two out-branching points. Now suppose d(u1) = m, T, ..., T,, be the
components of T'— wu; and let them be paths except T,,,_1, T,, where the order of T} is n;
for 1 <i < m. By the definition of T it follows that uy € V(T,,-1) and ug € V(T,,,), which
implies that n,,_; > 3 and n,, > 3. Without loss of generality, we suppose 1,1 > ny.
The next cases should be taken into account.

Case 1. ny+ng+---+n,,_2 > 2. Note that n,,,_y; > n,, > 3, by Lemma 2.1 and Lemma
2.6 it follows that W(T) < W(T (n;npm—1, Ny, 0y + -+ + Nyo)) < W(T(n;n —6,3,2)) <
W(Tp).

Case 2. ny +ng+-+-+n,_o=1. Then, m = 3 and n; = 1. Four subcases occur.

Subcase 1. ng > 6. Thus, ny > 6. By Lemma 2.1 and Lemma 2.6 it follows that
W(T) < W(T(n;nz,n3, 1)) < W(T(n;n—8,6,1)) < W(Tp).

Subcase 2. ng = 5. Then, ng =n—n; —ng—1=n—"7. By Lemma 2.3 and Lemma
2.6 it follows that W/(T) < W(T'(n;1,1;n —7,1)) < W(Tp).

Subcase 3. ng = 4. Then, np = n—n; —ng —1 = n —6. By Lemma 2.3 it
follows that W(T') < W(Tg), where Tk is shown in Fig. 5. By Lemma 2.4, we have
W(Tg) = C3,, — 6n+ 30. Thus, W(ITg) < W(Ip).

Subcase 4. n3 = 3. Since T' # Tp, by Lemma 2.3 it follows that W (1) < W (Ip).

The result follows by combining the above arguments. |
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Lemma 2.14 Suppose n > 28, and T is a tree of order n with k branching points. If
k>3 and T # Tp, then W(T') < W(Ip).

Proof. We prove the lemma by induction on k. By Lemma 2.13, it is true for k£ = 3.
Let k > 4, and T be a tree of order n with k branching points. Then 7" must have an

out-branching point, and by Lemma 2.3, W(T') < W(T¢), where T has k — 1 branching

points. Thus, W(T¢) < W(Ip) follows from the induction hypothesis and Lemma 2.13.

This completes the proof. |

The proof of Theorem 1.1. If 7" has exactly one branching point, then the result follows
from Lemma 2.8. If 7" has exactly two branching points, by symmetry we may suppose
that T =T(n; p1, ..., Pr—1;q1, - Gt—1), where r < ¢, p; > -+ > poyand ¢ > -+ > g4
Then result follows from Lemmas 2.9-2.12. If T has exactly k (k > 3) branching points,
then result follows from Lemmas 2.13-2.14.

By combining the above arguments, Theorem 1.1 follows. |
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