MATCH Communications in Mathematical and in Computer Chemistry

ISSN 0340 - 6253

Erratum to 'The trees on $n \ge 9$ vertices with the first to seventeenth greatest Wiener indices are chemical trees'*

Muhuo Liu^{1,2}, Bolian Liu², Qian Li¹

 ¹ Department of Applied Mathematics, South China Agricultural University, Guangzhou, P. R. China, 510642
 ² School of Mathematic Science, South China Normal University,

Guangzhou, P. R. China, 510631

(Received April 22, 2009)

Abstract: Deng once determined the trees on $n \ge 9$ vertices with the first to seventeenth greatest Wiener indices [H. Y. Deng, The trees on $n \ge 9$ vertices with the first to seventeenth greastest Wiener indices are chemical trees, MATCH Comm. Math. Comput. Chem. 57(2007) 393-402]. Unfortunately, some mistakes are found in Deng's paper. This paper will present a correct order of the first to fifteenth greatest Wiener indices for trees on $n \ge 28$.

1 Introduction

Throughout this paper, we only concern with connected, undirected simple graphs. Let N(u) be the first neighbor vertex set of u, then d(u) = |N(u)| is called the degree of u. As usual, P_n and S_n denote the path and star of order n, respectively.

The distance $d_G(u, v)$ between the vertices u and v of the graph G is equal to the length of (number of edges in) the shortest path that connects u and v. There are two important

^{*}The first author is supported by the fund of South China Agricultural University (No. 4900-k08225); The second author is the corresponding author who is supported by NNSF of China (No. 10771080) and SRFDP of China (No. 20070574006). E-mail address: liubl@scnu.edu.cn

graph-based structure-descriptors, called Wiener index and hyper-Wiener index, based on distances in a graph. The Wiener index W(G) is denoted by [1]

$$W(G) = \sum_{\{u,v\}\subseteq V(G)} d_G(u,v),$$

and the hyper-Wiener index WW(G) is defined as [2]

$$WW(G) = \frac{1}{2}W(G) + \frac{1}{2}\sum_{\{u,v\}\subseteq V(G)} d_G(u,v)^2.$$

The Wiener index and hyper-Wiener index are much studied in the chemical literatures because of their important applications in chemistry. Recently, the Wiener index and hyper-Wiener index gained much popularity. More and more mathematicians and chemists became interested in them and devoted themselves to the study. The mathematical properties of Wiener index and hyper-Wiener index with their applications in chemistry can be referred to [3-10] and the references cited therein.

We now introduce some more key notations. Recall that a vertex u of a tree T is called a *branching point* of T if $d(u) \ge 3$. Furthermore, u is said to be an *out-branching point* if at most one of the components of T - u is not a path; otherwise, u is an *in-branching point* of T.

Let $T(n; n_1, n_2, ..., n_m)$ denote the starlike tree of order n obtained by inserting $n_1 - 1$, ..., $n_m - 1$ vertices into m edges of the star S_{m+1} of order m + 1 respectively, where $n_1 + \cdots + n_m = n - 1$. Note that any tree with only one branching point is a starlike tree.

If T is a tree of order n with exactly two branching points u_1 and u_2 , with $d(u_1) = r$ and $d(u_2) = t$. The orders of r-1 components, which are paths, of $T-u_1$ are $p_1, ..., p_{r-1}$, the order of the component which is not a path of $T-u_1$ is $p_r = n - p_1 - \cdots - p_{r-1} - 1$. The orders of t-1 components, which are paths, of $T-u_2$ are $q_1, ..., q_{t-1}$, the order of the component which is not a path of $T-u_2$ is $q_t = n - q_1 - \cdots - q_{t-1} - 1$. We denote this tree by $T(n; p_1, ..., p_{r-1}; q_1, ..., q_{t-1})$, where $r \leq t, p_1 \geq \cdots \geq p_{r-1}$ and $q_1 \geq \cdots \geq q_{t-1}$.

Gutman first obtained the trees on n vertices with the smallest and greatest hyper-Wiener index (i.e., the star and path) in [11]. Very recently, the trees with the seven smallest and the fifteen greatest hyper-Wiener indices were determined in [12], respectively. Also, among all connected graphs of order n (n > 2k), the first up to (k + 1)-th smallest Wiener indices and the first up to (k + 1)-th smallest hyper-Wiener indices are determined in [13], respectively. Gutman et al. also considered the similar order of Wiener index among the starlike trees in [14]. After then, the first up to fifteenth smallest Wiener indices among trees of order n were identified in [15]. Recently, Deng considered the order of greatest Wiener indices among trees and he once obtained

Theorem A [16] Suppose $n \ge 9$ and T is a tree of order n. Then, $W(T(n; n-3, 1, 1)) > W(T(n; n-4, 2, 1)) > W(T(n; 1, 1; 1, 1)) > W(T(n; n-5, 3, 1)) > W(T(n; n-4, 1, 1, 1)) \ge W(T(n; 1, 1; 2, 1)) > W(T(n; n-6, 4, 1)) > W(T(n; n-5, 2, 2)) > W(T(n; 1, 1; 3, 1)) > W(T(n; 2, 1; 2, 1)) > W(T(n; 1, 1; 1, 1, 1)) > W(T(n; n-7, 5, 1)) > W(T(n; 1, 1; 4, 1)) > W(T(n; n-5, 2, 1, 1)) \ge W(T(n; 1, 1; 2, 2)) \ge W(T(n; 2, 1; 3, 1)) > W(T_D) \ge W(T),$ where T_D is shown in Fig. 1.

Fig. 1. The tree T_D .

Unfortunately, as the following example shown, Theorem A is not correct. In the sequel, $\binom{n+1}{3}$ is written as C_{n+1}^3 .

Example 1.1. By an elementary computation (or the application of Lemma 2.4), it follows that $W(T(n; 1, 1; n - 6, 1)) = C_{n+1}^3 - 5n + 27$ and $W(T_D) = C_{n+1}^3 - 5n + 21$. Thus, $W(T(n; 1, 1; n - 6, 1)) > W(T_D)$, a contradiction to Theorem A.

Thus, we give a correct order of the greatest Wiener indices of trees in this paper, namely

Theorem 1.1 Suppose $n \ge 28$ and T is a tree of order n. Then, $W(P_n) > W(T(n; n - 3, 1, 1)) > W(T(n; n - 4, 2, 1)) > W(T(n; 1, 1; 1, 1)) > W(T(n; n - 5, 3, 1)) > W(T(n; n - 4, 1, 1, 1)) = W(T(n; 1, 1; 2, 1)) > W(T(n; n - 6, 4, 1)) > W(T(n; n - 5, 2, 2)) > W(T(n; 1, 1; 1, 1, 1)) = W(T(n; 1, 1; 3, 1)) > W(T(n; 2, 1; 2, 1)) > W(T(n; 1, 1; 1, 1, 1)) > W(T(n; n - 7, 5, 1)) = W(T(n; 1, 1; n - 6, 1)) = W(T(n; 1, 1; 4, 1)) > W(T(n; n - 5, 2, 1, 1)) = W(T(n; 1, 1; 2, 1)) > W(T_D) > W(T).$

Remark. By comparing with Theorem A and Theorem 1.1, two trees, say T(n; 1, 1; n - 5, 1) and T(n; 1, 1; n - 6, 1), are left out in [16].

2 The proof of Theorem 1.1

Given a simple and undirected graph G = (V, E). Let G - u (resp. G - uv) denote the graph obtained from G by deleting the vertex $u \in V(G)$ (resp. the edge $uv \in E(G)$). Similarly, G + uv is a graph yielded from G by adding an edge $uv \notin E(G)$, where $u, v \in V(G)$.

Fig. 2. The graphs $G_{k,l}$ and $G_{k-1,l+1}$.

Suppose v is a vertex of graph G. As shown in Fig. 2, let $G_{k,l}$ $(l \ge k \ge 1)$ be the graph obtained from G by attaching two new paths P: $v(=v_0)v_1v_2\cdots v_k$ and Q: $v(=u_0)u_1u_2\cdots u_l$ of length k and l, respectively, at v, where $v_1, v_2, ..., v_k$ and $u_1, u_2, ..., u_l$ are distinct new vertices. Let $G_{k-1,l+1} = G_{k,l} - v_{k-1}v_k + u_lv_k$.

Lemma 2.1 Suppose G is a connected graph on $n \ge 2$ vertices, or an isolated vertex. If $l \ge k \ge 1$, then $W(G_{k,l}) \le W(G_{k-1,l+1})$, the equality holds if and only if G is an isolated vertex.

Proof. It is easy to see that

w

$$W(G_{k-1,l+1}) - W(G_{k,l}) = \sum_{w \in V(G_{k-1,l+1})} d_{G_{k-1,l+1}}(w, v_k) - \sum_{w \in V(G_{k,l})} d_{G_{k,l}}(w, v_k).$$
(1)

Let $V_1 = V(G) \setminus \{v\}$, then $V(G_{k,l}) \setminus V_1 = V(G_{k-1,l+1}) \setminus V_1$. Let $V_2 = V(G_{k,l}) \setminus V_1$. Clearly,

$$\sum_{w \in V(G_{k,l})} d_{G_{k,l}}(w, v_k) = \sum_{w \in V_1} d_{G_{k,l}}(w, v_k) + \sum_{w \in V_2} d_{G_{k,l}}(w, v_k).$$
(2)

$$\sum_{w \in V(G_{k-1,l+1})} d_{G_{k-1,l+1}}(w, v_k) = \sum_{w \in V_1} d_{G_{k-1,l+1}}(w, v_k) + \sum_{w \in V_2} d_{G_{k-1,l+1}}(w, v_k).$$
(3)

Note that the subgraph of $G_{k,l}$ induced by V_2 is a path of length k+l, which is isomorphic to the subgraph of $G_{k-1,l+1}$ induced by V_2 , thus

$$\sum_{w \in V_2} d_{G_{k,l}}(w, v_k) = \sum_{w \in V_2} d_{G_{k-1,l+1}}(w, v_k).$$
(4)

Therefore, by combining equalities (1)-(4), we have

$$W(G_{k-1,l+1}) - W(G_{k,l}) = \sum_{w \in V_1} d_{G_{k-1,l+1}}(w, v_k) - \sum_{w \in V_1} d_{G_{k,l}}(w, v_k)$$
$$= \sum_{w \in V_1} (d_{G_{k-1,l+1}}(w, v_k) - d_{G_{k,l}}(w, v_k)).$$
(5)

If G is an isolated vertex, then $V_1 = \emptyset$. By equality (5), it follows that $W(G_{k-1,l+1}) = W(G_{k,l})$. If G is not an isolated vertex, since $l \ge k$, then $d_{G_{k-1,l+1}}(w, v_k) > d_{G_{k,l}}(w, v_k)$ holds for every $w \in V_1$. Thus, the result follows from equality (5).

$$\underbrace{ \begin{matrix} u_0 \\ G^{v_1} & v_2 \\ M_{t,t+s} \end{matrix}_{t+s} \\ Fig. 3. The graphs M_{t,t+s} and M_{t+1,t+s}. \end{matrix}_{u_0} \underbrace{ \begin{matrix} u_0 \\ G^{v_1} & v_2 \\ M_{t+1,t+s} \end{matrix}_{t+s} \\ M_{t+1,t+s} \\ M_{$$

Suppose v_1 is a vertex of graph G, and $v_2, ..., v_{t+s}, u_0$ are distinct new vertices (not in G). Let G' be the graph obtained from G by attaching a new path $P: v_1v_2\cdots v_{t+s}$. Let $M_{t,t+s} = G' + v_tu_0$ and $M_{t+i,t+s} = G' + v_{t+i}u_0$, where $1 \le i \le s$. For instance, $M_{t,t+s}$ and $M_{t+1,t+s}$ are depicted in Fig. 3.

Lemma 2.2 Suppose G is a connected graph on $n \ge 2$ vertices, or an isolated vertex. If $t \ge s \ge 1$, then $W(M_{t,t+s}) \le W(M_{t+1,t+s})$. Moreover, the equality holds if and only if t = s and G is an isolated vertex.

Proof. For convenience, sometimes we write $M_{t,t+s}$ as M, and $M_{t+1,t+s}$ as M' in the proof of this lemma. Let $V_1 = V(G) \setminus \{v_1\}$, then $V(M_{t,t+s}) \setminus V_1 = V(M_{t+1,t+s}) \setminus V_1$. Let $V_2 = V(M_{t,t+s}) \setminus V_1$. Thus,

$$W(M_{t+1,t+s}) - W(M_{t,t+s}) = \sum_{w \in V(M')} d_{M'}(w, u_0) - \sum_{w \in V(M)} d_M(w, u_0)$$
$$= \sum_{w \in V_1} (d_{M'}(w, u_0) - d_M(w, u_0)) + \sum_{w \in V_2} d_{M'}(w, u_0) - \sum_{w \in V_2} d_M(w, u_0).$$
(6)

Note that $d_{M'}(w, u_0) > d_M(w, u_0)$ holds for every $w \in V_1$, and

$$\sum_{w \in V_2} d_{M'}(w, u_0) - \sum_{w \in V_2} d_M(w, u_0) = t + 1 - (s + 1) = t - s \ge 0$$

Thus, the result follows by equality (6).

From Lemma 2.2, it immediately follows that

Proposition 2.1 Suppose G is a connected graph on $n \ge 2$ vertices, or an isolated vertex. If $t \ge s \ge 1$, then $W(M_{t,t+s}) \le W(M_{t+i,t+s})$, where $1 \le i \le s$.

Fig. 4. The trees T, T_A , T_B and T_C .

For convenience, we introduce a transfer operation: $T \to T_A \to T_B \to T_C$, as shown in Fig. 4, where T is a tree of order n, u is an out-branching point of T, d(u) = m, and all the components T_1, T_2, \dots, T_m of T - u except T_1 are paths.

Lemma 2.3 [12,16] Let u be an out-branching point of a tree T of order n, d(u) = m $(m \ge 3)$, and let all components $T_1, T_2, ..., T_m$ of T - u except T_1 be paths. Then,

$$W(T) \le W(T_A) \le W(T_B) < W(T_C),$$

and $W(T) = W(T_A)$ (or $W(T_B)$) if and only if $T = T_A$ (or T_B).

Proof. By Lemma 2.1, it is easy to see that $W(T) \leq W(T_A)$ with the equality holding if and only if $T = T_A$. Moreover, Lemma 2.1 implies that $W(T_B) < W(T_C)$. Next we shall prove that $W(T_A) \leq W(T_B)$ with the equality holding if and only if $T_A = T_B$.

Let T_u denote the component of $T_A - y$, which contains u. Set $V_1 = V(T_u) \cup \{y\}$. Then, $V(T_A) \setminus V_1 = V(T_B) \setminus V_1$. Let $V_2 = V(T_A) \setminus V_1$. It is easy to see that

$$\sum_{\{w,v\}\subseteq V(T_B)} d_{T_B}(w,v) - \sum_{\{w,v\}\subseteq V(T_A)} d_{T_A}(w,v)$$

$$= \sum_{w\in V(T_B)} d_{T_B}(w,z) - \sum_{w\in V(T_A)} d_{T_A}(w,z)$$

$$= \sum_{w\in V_1} d_{T_B}(w,z) - \sum_{w\in V_1} d_{T_A}(w,z) + \sum_{w\in V_2} (d_{T_B}(w,z) - d_{T_A}(w,z)).$$
(7)

Note that $\sum_{w \in V_1} d_{T_B}(w, z) \ge \sum_{w \in V_1} d_{T_A}(w, z)$, and $d_{T_B}(w, z) \ge d_{T_A}(w, z)$ holds for every $w \in V_2$, then the conclusion follows from equality (7).

Lemma 2.4 [16,17] Let T be a tree of order n, $u_1, u_2, ..., u_k$ be the all branching points of T, $d(u_i) = m_i$ (i = 1, 2, ..., k), $T_{i1}, T_{i2}, ..., T_{im}$, be the components of $T - u_i$, and the order of T_{ij} is equal to n_{ij} $(j = 1, 2, ..., m_i; i = 1, 2, ..., k)$. Then,

$$W(T) = C_{n+1}^3 - \sum_{i=1}^k \sum_{1 \le p < q < r \le m_i} n_{ip} n_{iq} n_{ir},$$

where $n_{i1} + n_{i2} + \dots + n_{im_i} = n - 1, i = 1, 2, \dots, k$.

By Lemma 2.4, we have

$$\begin{split} &W(P_n)=C_{n+1}^3,\\ &W(T(n;n-3,1,1))=C_{n+1}^3-n+3,\\ &W(T(n;n-4,2,1))=C_{n+1}^3-2n+8,\\ &W(T(n;1,1;1,1))=C_{n+1}^3-2n+6,\\ &W(T(n;n-5,3,1))=C_{n+1}^3-3n+15,\\ &W(T(n;n-4,1,1,1))=W(T(n;1,1;2,1))=C_{n+1}^3-3n+11,\\ &W(T(n;n-6,4,1))=C_{n+1}^3-4n+24,\\ &W(T(n;n-5,2,2))=C_{n+1}^3-4n+20,\\ &W(T(n;1,1;n-5,1))=W(T(n;1,1;3,1))=C_{n+1}^3-4n+18,\\ &W(T(n;2,1;2,1))=C_{n+1}^3-4n+16,\\ &W(T(n;1,1;1,1,1))=C_{n+1}^3-4n+14,\\ &W(T(n;n-7,5,1))=W(T(n;1,1;4,1))=C_{n+1}^3-5n+27,\\ &W(T(n;n-5,2,1,1))=W(T(n;2,1;3,1))=W(T(n;1,1;2,2))=C_{n+1}^3-5n+23,\\ &W(T_D)=C_{n+1}^3-5n+21.\\ \end{split}$$

Thus, we have

Lemma 2.5 If $n \ge 28$, then $W(P_n) > W(T(n; n - 3, 1, 1)) > W(T(n; n - 4, 2, 1)) > W(T(n; 1, 1; 1, 1)) > W(T(n; n - 5, 3, 1)) > W(T(n; n - 4, 1, 1, 1)) = W(T(n; 1, 1; 2, 1)) > W(T(n; n - 6, 4, 1)) > W(T(n; n - 5, 2, 2)) > W(T(n; 1, 1; n - 5, 1)) = W(T(n; 1, 1; 3, 1)) > W(T(n; 2, 1; 2, 1)) > W(T(n; 1, 1; 1, 1, 1)) > W(T(n; n - 7, 5, 1)) > W(T(n; 1, 1; 1, 1, 1)) > W(T(n; 2, 1; 3, 1)) > W(T(n; 1, 1; 1, 1, 1)) > W(T(n; 2, 1; 3, 1)) > W(T(n; 1, 1; 1, 1, 1)) > W(T(n; 2, 1; 3, 1)) = W(T(n; 1, 1; 1, 1, 1)) > W(T(n; 2, 1; 3, 1)) = W(T(n; 1, 1; 1, 1, 1)) > W(T(n; 2, 1; 3, 1)) = W(T(n; 1, 1; 2, 1)) > W(T(n; 1, 1; 1, 1, 1)) > W(T(n; 2, 1; 3, 1)) = W(T(n; 1, 1; 2, 1)) > W(T(n; 2, 1; 3, 1)) = W(T(n; 1, 1; 2, 1)) > W(T_n).$

By Lemma 2.4, it also follows that

$$\begin{split} &W(T(n;2,1;1,1,1)) = C_{n+1}^3 - 5n + 19, \\ &W(T(n;1,1;n-6,2)) = W(T(n;n-6,3,1,1)) = W(T(n;1,1;3,2)) = C_{n+1}^3 - 7n + 39, \\ &W(T(n;n-6,1;1,1,1)) = C_{n+1}^3 - 7n + 35, \\ &W(T(n;n-7,1;1,1,1)) = C_{n+1}^3 - 8n + 46, \\ &W(T(n;1,1;n-7,2)) = C_{n+1}^3 - 9n + 59, \\ &W(T(n;n-8,6,1)) = C_{n+1}^3 - 6n + 48, \\ &W(T(n;1,1;n-7,1)) = W(T(n;1,1;5,1)) = C_{n+1}^3 - 6n + 38, \\ &W(T(n;n-6,3,2)) = C_{n+1}^3 - 6n + 36, \\ &W(T(n;2,1;n-6,1)) = W(T(n;2,1;4,1)) = C_{n+1}^3 - 6n + 32, \\ &W(T(n;3,1;3,1)) = C_{n+1}^3 - 6n + 28, \\ &W(T(n;n-5,1,1,1,1)) = W(T(n;1,1;2,1,1)) = C_{n+1}^3 - 6n + 26. \end{split}$$

The next lemma can be obtained directly from the above equalities.

Lemma 2.6 If $n \ge 28$, then (1) $W(T_D) > W(T(n;2,1;1,1,1)) > W(T(n;1,1;n-6,2)) = W(T(n;n-6,3,1,1)) = W(T(n;1,1;3,2)) > W(T(n;n-6,1;1,1,1)) > W(T(n;n-7,1;1,1,1)) > W(T(n;1,1;n-7,2)); (2) W(T_D) > W(T(n;n-8,6,1)) > W(T(n;1,1;n-7,1)) = W(T(n;1,1;5,1)) > W(T(n;n-6,3,2)) > W(T(n;2,1;n-6,1)) = W(T(n;2,1;4,1)) > W(T(n;3,1;3,1)) > W(T(n;2,1;2,2)) > W(T(n;n-5,1,1,1,1)) = W(T(n;1,1;2,1,1)).$

Lemma 2.7 If $n \ge 28$ and T is a tree with exactly one branching point of degree $m \ge 5$, then $W(T) \le W(T(n; n - 5, 1, 1, 1, 1)) < W(T_D)$.

Proof. By hypothesis, $T = T(n; n_1, n_2, ..., n_m)$. Without loss of generality, assume $n_1 \ge n_2 \ge \cdots \ge n_m$. We prove the lemma by induction on m.

If m = 5, by Lemma 2.1 and Lemma 2.6 it follows that $W(T) = W(T(n; n_1, n_2, n_3, n_4, n_5)) \le W(T(n; n_1 + n_5 - 1, n_2, n_3, n_4, 1)) \le W(T(n; n_1 + n_4 + n_5 - 2, n_2, n_3, 1, 1)) \le W(T(n; n_1 + n_3 + n_4 + n_5 - 3, n_2, 1, 1, 1)) \le W(T(n; n - 5, 1, 1, 1, 1)) < W(T_D)$. Thus, this lemma holds for m = 5.

If $m \ge 6$, by Lemma 2.1, Lemma 2.6 and the induction hypothesis it follows that $W(T) = W(T(n; n_1, n_2, ..., n_m)) < W(T(n; n_1 + n_m, n_2, ..., n_{m-1})) \le W(T(n; n - 5, 1, 1, 1, 1, 1)) < W(T_D).$

This completes the proof of this lemma.

Lemma 2.8 Suppose $n \ge 28$, and T is a tree with only one branching point. If $T \notin \{T(n; n-3, 1, 1), T(n; n-4, 2, 1), T(n; n-5, 3, 1), T(n; n-4, 1, 1, 1), T(n; n-6, 4, 1), T(n; n-5, 2, 2), T(n; n-7, 5, 1), T(n; n-5, 2, 1, 1)\}$, then $W(T) < W(T_D)$.

Proof. Suppose the degree of the unique branching point is m, then $T = T(n; n_1, ..., n_m)$. Without loss of generality, assume $n_1 \ge \cdots \ge n_m$. If $m \ge 5$, then the conclusion follows from Lemma 2.7. We consider the next two cases.

Case 1. m = 3.

If $n_3 \ge 2$, since $T \ne T(n; n-5, 2, 2)$, then $n_1 \ge n_2 \ge 3$. By Lemma 2.1 and Lemma 2.6 it follows that $W(T(n; n_1, n_2, n_3)) \le W(T(n; n_1 + n_3 - 2, n_2, 2)) \le W(T(n; n-6, 3, 2)) < W(T_D)$.

If $n_3 = 1$, since $T \notin \{T(n; n - 3, 1, 1), T(n; n - 4, 2, 1), T(n; n - 5, 3, 1), T(n; n - 6, 4, 1), T(n; n - 7, 5, 1)\}$, then $n_1 \ge n_2 \ge 6$. By Lemma 2.1 and Lemma 2.6 it follows that $W(T) \le W(T(n; n - 8, 6, 1)) < W(T_D)$.

Case 2. m = 4. Since $T \neq T(n; n - 4, 1, 1, 1)$, then $n_2 \geq 2$. Two subcases occur.

Subcase 1. $n_3 \ge 2$. Note that $n_1 \ge 3$ (by $n \ge 28$) and $n_2 \ge n_3 \ge 2$, by Lemma 2.1 and Lemma 2.6 it follows that $W(T(n; n_1, n_2, n_3, n_4)) \le W(T(n; n_1 + n_4 - 1, n_2, n_3, 1)) < W(T(n; n_1 + n_4 - 1, n_2 + n_3 - 1, 1, 1)) \le W(T(n; n - 6, 3, 1, 1)) < W(T_D).$

Subcase 2. $n_3 = 1$. Then, $n_4 = 1$. Since $T \neq T(n; n - 5, 2, 1, 1)$, then $n_1 \ge n_2 \ge 3$, by Lemma 2.1 and Lemma 2.6 it follows that $W(T) = W(T(n; n_1, n_2, 1, 1)) \le W(T(n; n - 6, 3, 1, 1)) < W(T_D)$.

This completes the proof of this lemma.

Lemma 2.9 Suppose $n \ge 28$, and $T = T(n; p_1, ..., p_{r-1}; q_1, ..., q_{t-1})$. If $t \ge 5$, then $W(T) < W(T(n; n-5, 1, 1, 1, 1)) < W(T_D)$.

Proof. By Lemma 2.3, Lemmas 2.6-2.7 it follows that $W(T) < W(T(n; q_1, ..., q_{t-1}, n - q_1 - \cdots - q_{t-1} - 1)) \le W(T(n; n - 5, 1, 1, 1, 1)) < W(T_D).$

Lemma 2.10 Suppose $n \ge 28$, and $T = T(n; p_1, ..., p_{r-1}; q_1, ..., q_{t-1})$. If t = r = 4, then $W(T) < W(T_D)$.

Proof. By hypothesis, $T = T(n; p_1, p_2, p_3; q_1, q_2, q_3)$. Without loss of generality, suppose that $q_1 + q_2 + q_3 \ge p_1 + p_2 + p_3$. We consider the next cases.

Case 1. $q_1 + q_2 + q_3 \ge 5$. By Lemma 2.1 we have $W(T) < W(T(n; q_1, q_2, q_3, n - q_1 - q_2 - q_3 - 1)) \le W(T(n; q_1 + q_3 - 1, q_2, 1, n - q_1 - q_2 - q_3 - 1)) \le W(T(n; q_1 + q_2 + q_3 - 2, 1, 1, n - q_1 - q_2 - q_3 - 1))$. Note that $q_1 + q_2 + q_3 - 2 \ge 3$ and $n - q_1 - q_2 - q_3 - 1 > p_1 + p_2 + p_3 \ge 3$, then $W(T(n; q_1 + q_2 + q_3 - 2, 1, 1, n - q_1 - q_2 - q_3 - 1)) \le W(T(n; n - 6, 3, 1, 1)) < W(T_D)$ follows from Lemma 2.1 and Lemma 2.6.

Case 2. $q_1 + q_2 + q_3 = 4$. This implies that $T = T(n; p_1, p_2, p_3; 2, 1, 1)$. By Lemma 2.3 and Lemma 2.6 it follows that $W(T) = W(T(n; p_1, p_2, p_3; 2, 1, 1)) < W(T(n; 1, 1; 2, 1, 1)) < W(T_D)$.

Case 3. $q_1 + q_2 + q_3 = 3$. Then, $p_1 + p_2 + p_3 = 3$. By Lemma 2.1 and Lemma 2.6 it follows that $W(T) = W(T(n; 1, 1, 1; 1, 1, 1)) < W(T(n; 2, 1; 1, 1, 1)) < W(T_D)$.

Lemma 2.11 Suppose $n \ge 28$, and $T = T(n; p_1, ..., p_{r-1}; q_1, ..., q_{t-1})$ with t = 4, r = 3. If $T \ne T(n; 1, 1; 1, 1, 1)$, then $W(T) < W(T_D)$.

Proof. By hypothesis, $T = T(n; p_1, p_2; q_1, q_2, q_3)$. Two cases occur as follows.

Case 1. $q_1 + q_2 + q_3 \ge 5$. By Lemma 2.1, we have $W(T) < W(T(n; q_1, q_2, q_3, n - q_1 - q_2 - q_3 - 1)) \le W(T(n; q_1 + q_3 - 1, q_2, 1, n - q_1 - q_2 - q_3 - 1)) \le W(T(n; q_1 + q_2 + q_3 - 2, 1, 1, n - q_1 - q_2 - q_3 - 1))$. Note that $n - q_1 - q_2 - q_3 - 1 \ge p_1 + p_2 + 1 \ge 3$ and $q_1 + q_2 + q_3 - 2 \ge 3$, by Lemma 2.1 and Lemma 2.6 it follows that $W(T(n; q_1 + q_2 + q_3 - 2, 1, 1, n - q_1 - q_2 - q_3 - 1)) \le W(T(n; n - 6, 3, 1, 1)) < W(T_D)$.

Case 2. $q_1 + q_2 + q_3 = 4$. This implies that $T = T(n; p_1, p_2; 2, 1, 1)$. By Lemma 2.3 and Lemma 2.6 it follows that $W(T(n; p_1, p_2; 2, 1, 1)) \le W(T(n; 1, 1; 2, 1, 1)) < W(T_D)$.

Case 3. $q_1 + q_2 + q_3 = 3$. Since $T \neq T(n; 1, 1; 1, 1, 1)$, then $3 \le p_1 + p_2 \le n - 5$. We divide the proof into four subcases.

Subcase 1. $3 \le p_1 + p_2 \le 6$. By Lemma 2.1, it follows that $W(T) \le W(T(n; p_2 + p_1 - 1, 1; 1, 1, 1))$. Recall that $n \ge 28$, by Propositions 2.1 and Lemma 2.6 we have $W(T(n; p_2 + p_1 - 1, 1; 1, 1, 1)) \le W(T(n; 2, 1; 1, 1, 1)) < W(T_D)$.

Subcase 2. $7 \le p_1 + p_2 \le n - 7$. This implies that $n - p_1 - p_2 - 1 \ge 6$. By Lemma 2.1 and Lemma 2.6 it follows that $W(T) < W(T(n; p_1, p_2, n - p_1 - p_2 - 1)) \le$ $W(T(n; p_2 + p_1 - 1, 1, n - p_1 - p_2 - 1)) \le W(T(n; n - 8, 6, 1)) < W(T_D).$

Subcase 3. $p_1 + p_2 = n - 6$. By Lemma 2.1 and Lemma 2.6 it follows that $W(T) \le W(T(n; n - 7, 1; 1, 1, 1)) < W(T_D)$.

By combining the above arguments, the result follows.

Lemma 2.12 Suppose $n \ge 28$, and $T = T(n; p_1, ..., p_{r-1}; q_1, ..., q_{t-1})$ with t = 3, r = 3. If $T \notin \{T(n; 1, 1; 1, 1), T(n; 1, 1; 2, 1), T(n; 1, 1; n-5, 1), T(n; 1, 1; 3, 1), T(n; 2, 1; 2, 1), T(n; 1, 1; n-6, 1), T(n; 1, 1; 4, 1), T(n; 2, 1; 3, 1), T(n; 1, 1; 2, 2)\}$, then $W(T) < W(T_D)$.

Proof. By hypothesis, $T = T(n; p_1, p_2; q_1, q_2)$. Without loss of generality, suppose $q_1 + q_2 \ge p_1 + p_2$. Since $T \notin \{T(n; 1, 1; 1, 1), T(n; 1, 1; 2, 1), T(n; 2, 1; 2, 1)\}$, then $4 \le q_1 + q_2 \le n - 4$. We consider the next cases.

Case 1. $q_1 + q_2 = 4$. Since $T \neq T(n; 1, 1; 3, 1)$ and $T \neq T(n; 1, 1; 2, 2)$, then $3 \leq p_1 + p_2 \leq 4$. Two subcases occur as follows.

Subcase 1. $p_1 + p_2 = 3$. Since $T \neq T(n; 2, 1; 3, 1)$, then T = T(n; 2, 1; 2, 2). By Lemma 2.6, $W(T(n; 2, 1; 2, 2)) < W(T_D)$.

Subcase 2. $p_1+p_2 = 4$. By Lemma 2.1 and Lemma 2.6, we have $W(T) \le W(T(n; p_1, p_2; 3, 1)) \le W(T(n; 3, 1; 3, 1)) < W(T_D)$.

Case 2. $q_1 + q_2 = 5$. Two subcases occur as follows.

Subcase 1. $q_1 = 3$, $q_2 = 2$. By Lemma 2.3 and Lemma 2.6, we have $W(T) = W(T(n; p_1, p_2; 3, 2)) \le W(T(n; 1, 1; 3, 2)) < W(T_D)$.

Subcase 2. $q_1 = 4$, $q_2 = 1$. Since $T \neq T(n; 1, 1; 4, 1)$, then $3 \leq p_1 + p_2 \leq 5$. By Lemma 2.1, Proposition 2.1 and Lemma 2.6, we have $W(T) = W(T(n; p_1, p_2; 4, 1)) \leq W(T(n; p_1 + p_2 - 1, 1; 4, 1)) \leq W(T(n; 2, 1; 4, 1)) < W(T_D)$.

Case 3. $q_1 + q_2 = 6$. By Lemma 2.1, Lemma 2.3 and Lemma 2.6, it follows that $W(T) \leq W(T(n; p_1, p_2; 5, 1)) \leq W(T(n; 1, 1; 5, 1)) < W(T_D)$.

Case 4. $7 \le q_1 + q_2 \le n - 7$. Then, $n - q_1 - q_2 - 1 \ge 6$. By Lemma 2.1 and Lemma 2.6 it follows that $W(T) < W(T(n; q_1, q_2, n - q_1 - q_2 - 1)) \le W(T(n; q_1 + q_2 - 1, 1, n - q_1 - q_2 - 1)) \le W(T(n; n - 8, 6, 1)) < W(T_D)$.

Case 5. $q_1 + q_2 = n - 6$. By Lemma 2.1, Lemma 2.3 and Lemma 2.6 it follows that $W(T) \le W(T(n; p_1, p_2; n - 7, 1)) \le W(T(n; 1, 1; n - 7, 1)) < W(T_D)$.

Case 6. $q_1 + q_2 = n - 5$. Two subcases occur as follows.

Subcase 1. $q_2 = 1$. Then, $q_1 = n - 6$. Since $T \neq T(n; 1, 1; n - 6, 1)$, then T = T(n; 2, 1; n - 6, 1). By Lemma 2.6, we have $W(T) = W(T(n; 2, 1; n - 6, 1)) < W(T_D)$.

Subcase 2. $q_2 \ge 2$. By Lemma 2.1, Lemma 2.3 and Lemma 2.6 it follows that $W(T) \le W(T(n; p_1, p_2; n-7, 2)) \le W(T(n; 1, 1; n-7, 2)) < W(T_D)$.

Case 7. $q_1 + q_2 = n - 4$. This implies that $p_1 = p_2 = 1$. Since $T \neq T(n; 1, 1; n - 5, 1)$, then $q_1 \ge q_2 \ge 2$. By Lemma 2.1 and Lemma 2.6, we have $W(T) = W(T(n; 1, 1; q_1, q_2)) \le W(T(n; 1, 1; n - 6, 2)) < W(T_D)$.

This completes the proof.

Lemma 2.13 Suppose $n \ge 28$, and T is a tree of order n with exactly three branching points. If $T \ne T_D$, then $W(T) < W(T_D)$.

Proof. Let u_1 , u_2 , u_3 be the three branching points of T. Let u_1 be an in-branching point and u_2 , u_3 be two out-branching points. Now suppose $d(u_1) = m$, T_1 , ..., T_m be the components of $T - u_1$ and let them be paths except T_{m-1} , T_m , where the order of T_i is n_i for $1 \le i \le m$. By the definition of T it follows that $u_2 \in V(T_{m-1})$ and $u_3 \in V(T_m)$, which implies that $n_{m-1} \ge 3$ and $n_m \ge 3$. Without loss of generality, we suppose $n_{m-1} \ge n_m$. The next cases should be taken into account.

Case 1. $n_1+n_2+\cdots+n_{m-2} \ge 2$. Note that $n_{m-1} \ge n_m \ge 3$, by Lemma 2.1 and Lemma 2.6 it follows that $W(T) < W(T(n; n_{m-1}, n_m, n_1 + \cdots + n_{m-2})) \le W(T(n; n - 6, 3, 2)) < W(T_D)$.

Case 2. $n_1 + n_2 + \cdots + n_{m-2} = 1$. Then, m = 3 and $n_1 = 1$. Four subcases occur.

Subcase 1. $n_3 \ge 6$. Thus, $n_2 \ge 6$. By Lemma 2.1 and Lemma 2.6 it follows that $W(T) < W(T(n; n_2, n_3, 1)) \le W(T(n; n - 8, 6, 1)) < W(T_D)$.

Subcase 2. $n_3 = 5$. Then, $n_2 = n - n_1 - n_3 - 1 = n - 7$. By Lemma 2.3 and Lemma 2.6 it follows that $W(T) < W(T(n; 1, 1; n - 7, 1)) < W(T_D)$.

Subcase 3. $n_3 = 4$. Then, $n_2 = n - n_1 - n_3 - 1 = n - 6$. By Lemma 2.3 it follows that $W(T) \leq W(T_E)$, where T_E is shown in Fig. 5. By Lemma 2.4, we have $W(T_E) = C_{n+1}^3 - 6n + 30$. Thus, $W(T_E) < W(T_D)$.

Subcase 4. $n_3 = 3$. Since $T \neq T_D$, by Lemma 2.3 it follows that $W(T) < W(T_D)$. The result follows by combining the above arguments. **Lemma 2.14** Suppose $n \ge 28$, and T is a tree of order n with k branching points. If $k \ge 3$ and $T \ne T_D$, then $W(T) < W(T_D)$.

Proof. We prove the lemma by induction on k. By Lemma 2.13, it is true for k = 3.

Let $k \ge 4$, and T be a tree of order n with k branching points. Then T must have an out-branching point, and by Lemma 2.3, $W(T) < W(T_C)$, where T_C has k - 1 branching points. Thus, $W(T_C) \le W(T_D)$ follows from the induction hypothesis and Lemma 2.13. This completes the proof.

The proof of Theorem 1.1. If T has exactly one branching point, then the result follows from Lemma 2.8. If T has exactly two branching points, by symmetry we may suppose that $T = T(n; p_1, ..., p_{r-1}; q_1, ..., q_{t-1})$, where $r \leq t$, $p_1 \geq \cdots \geq p_{r-1}$ and $q_1 \geq \cdots \geq q_{t-1}$. Then result follows from Lemmas 2.9-2.12. If T has exactly k ($k \geq 3$) branching points, then result follows from Lemmas 2.13-2.14.

By combining the above arguments, Theorem 1.1 follows.

Acknowledgements

The authors are grateful to Professor Hanyuan Deng for his valuable comments and suggestions, which led to an improvement of the original manuscript.

References

- H. Wiener, Structrual determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17-20.
- [2] M. Randić, Novel molecular descriptor for structure-property studies, Chem. Phys. Lett. 211 (1993) 478-483.
- [3] D. E. Needham, I. C. Wei, P. G. Seybold, Molecula modeling of the physical properties of the alkames, J. Am. Chem. Soc. 110 (1988) 4186-4194.
- [4] G. Rücker, C. Rücker, On the topological indices, boiling points, and cycloalkanes, J. Chem. Inf. Comput. Sci. 39 (1999) 788-802.
- [5] A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: theory and applications, Acta. Appl. Math. 66 (2001) 211-249.

- [6] I. Gutman, Y. N. Yeh, S. L. Lee, J. C. Chen, Wiener numbers of dendrimers, MATCH Comm. Math. Comput. Chem. 30 (1994) 103-115.
- [7] B. C. Entringer, Distance in graphs: Trees, J. Combin. Math. Combin. Comput. 24 (1997) 65-84.
- [8] S. Klavžar, P. Zigert, I. Gutman, An algorithm for the calculation of the hyper-Wiener index of benzenoid hydrocarbons, *Comput. Chem.* 24 (2000) 229-233.
- [9] X. Li, A. F. Jalbout, Bond order weighted hyper-Wiener index, J. Mol. Structure (Theochem) 634 (2003) 121-125.
- [10] M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi, The hyper-Wiener index of graph operations, *Math. Appl.* 56 (2008) 1402-1407.
- [11] I. Gutman, A property of the Wiener number and its modifications, *Indian J. Chem.* 36A (1997) 128-132.
- [12] M. H. Liu, B. L. Liu, Trees with the seven smallest and fifteen greatest hyper-Wiener indices, MATCH Comm. Math. Comput. Chem. 63 (2010) 151-170.
- [13] M. H. Liu, X. Z. Tan, The first to (k + 1)-th smallest Wiener (hyper-Wiener) indices of connected graphs, *Kragujevac J. Math.* preprinted.
- [14] I. Gutman, J. Rada, O. Araujo, The Wiener index of starlike trees and a related partial order, MATCH Commun. Math. Comput. Chem. 42 (2000) 145-154.
- [15] X. Guo, H. Dong, Ordering trees by their Wiener indices, J. Xiamen Univ. (Nat. Sci.) 44 (2005) 297-298.
- [16] H. Y. Deng, The trees on $n \ge 9$ vertices with the first to seventeenth greastest Wiener indices are chemical trees, *MATCH Comm. Math. Comput. Chem.* 57 (2007) 393-402.
- [17] J. K. Doyle, J. E. Graver, Mean distance in a graph, Discrete Math. 7 (1977) 147-154.