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3FME, University of Ljubljana, Aškerčeva 6, SI-1000 Ljubljana, Slovenia

e-mails: igor.pesek@uni-mb.si, maja.rotovnik@imfm.uni-lj.si, vukicevic@pmfst.hr,

janez.zerovnik@imfm.uni-lj.si

(Received March 31, 2009)

ABSTRACT

The modified Wiener number on trees has been defined recently as a sum of modified

edge contributions, which are simply the number of shortest paths traversing the edge to

the power of 𝛼. We study digraphs with minimal value for one possible modification of

the Wiener number for directed graphs. For this generalization. For digraphs with unique

shortest paths we provide minimal digraphs for 𝛼 ≤ 0 and 𝛼 ≥ 1, and give some partial
results for 𝛼 ∈ (0, 1).

1 Introduction

The modified Wiener number on trees has been defined recently as a sum of modified

edge contributions, which are simply the number of shortest paths traversing the edge
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to the power of 𝛼 [7]. It is known that the extremal graphs for the modified Wiener

number are the star graph and the path. More precisely, for positive 𝛼, the star graph is

maximal and the path is minimal, and for negative 𝛼, the star graph is minimal and the

path is maximal. Wiener number [16] is probably the most popular topological invariant

in chemical graph theory [11, 12]. For our discussion it is relevant to mention that the

Wiener number of a tree can be computed as a sum of edge contributions. On trees,

the edge contribution is simply the number of shortest paths traversing it. On general

graphs, the edge contribution is equivalent to the sum of shortest paths contributions.

If there are more than one shortest path between two vertices, then the contribution

is usually assumed to be split evenly among all shortest paths, see for example [10].

While there are several studies on the Wiener number of weighted graphs, there seems

to be no generalization(s) to directed graphs (or, digraphs). In the undirected case, the

Wiener number is usually defined as the sum of all distances, hence analogous natural

definition for directed graphs is again the sum of all distances. Of course, each ordered

pair of vertices has to be taken into account. In analogy to the undirected case we

propose some possible modifications of the Wiener number for directed graphs. One of

the generalizations appears to be equivalent to the cost of certain optical network and the

directed graphs with extremal Wiener number appear to be optimal networks [1].

The rest of this paper is organized as follows. In the first section we define the problem,

then we present some properties of extremal cases and finally give some results for directed

graphs with cycles.

2 Modifications of the Wiener number of undirected

graphs

A large number of modifications and extensions of the Wiener number was considered

in the chemical literature; an extensive bibliography on this matter can be found in the

reviews [4, 5]. One of the newest such modifications was put forward by Nikolić, Trinajstić

and Randić [9]. This idea was generalized in [7] where a class of modified Wiener indices

was defined, with the original Wiener number and the Nikolić-Trinajstić-Randić index as

special cases.
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Usually, the Wiener number of a graph is defined as the sum of all distances in a

graph.

𝑊 (𝐺) =
∑

𝑢,𝑣∈𝑉 (𝐺)

𝑑𝐺 (𝑢, 𝑣) .

In the paper [6] by Gutman et al., the following modification is proposed:

𝑊𝛼 (𝐺) =
∑

𝑢,𝑣∈𝑉 (𝐺)

𝑑𝐺 (𝑢, 𝑣)
𝛼 , 𝛼 ∕= 0.

It was already known to Wiener that on a tree, the invariant can also be computed by

summing up the edge contributions, where the contribution of each edge 𝑒 = 𝑢𝑣 is the

number of vertices closer to the vertex 𝑢 times the number of vertices closer to the vertex

𝑣. Formally,

𝑊 (𝐺) =
∑

𝑢𝑣∈𝐸(𝐺)

𝑛𝐺 (𝑢, 𝑣)𝑛𝐺 (𝑣, 𝑢) .

where 𝑛𝐺 (𝑢, 𝑣) is the number of vertices closer to vertex 𝑢 than to vertex 𝑣 and 𝑛𝐺 (𝑣, 𝑢)

is the number of vertices closer to vertex 𝑣 than to vertex 𝑢.

The modified Wiener indices [14, 8, 15, 13, 3] are defined as

𝑊𝛼 (𝐺) =
∑

𝑢𝑣∈𝐸(𝐺)

𝑛𝐺 (𝑢, 𝑣)
𝛼 𝑛𝐺 (𝑣, 𝑢)

𝛼 .

On trees, the last expression is equivalent to
∑

𝑒∈𝐸(𝐺) 𝜔(𝑒)
𝛼, where 𝜔(𝑒) is the edge weight

that equals the number of shortest paths in 𝐺 that traverse 𝑒.

Here we propose a generalization of this concept to directed graphs and give some pre-

liminary results on digraphs with minimal value of the invariant which we call 𝐶𝑜𝑠𝑡𝛼 due

to analogy with an optimization problem in design of communication networks on optical

fibres [1]. One of the most popular applications of graph theory in computer science is the

design of interconnection networks. A desirable network is usually optimal with respect

to the value of one (or more) graph invariants, for example it has small diameter, small

average distance, small routing costs, or allows uniform distribution of traffic, etc. As the

Wiener number can be seen as the total communication load of a graph it is natural that
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it has already been considered in this context [2, 18]. Here we mention close relationship

to the Oriented network design problem that arises in the design of optical networks. In

such networks, the traffic requests are routed along a set of containers of fixed capacity,

where each container connects two nodes of the network. The cost of the network is de-

fined as the sum of arc contributions where the arc contribution is a certain power (𝑤(𝑒)𝛼,

0 < 𝛼 < 1) of the number of paths (of the routing) traversing the arc. While the problem

given in [1] asks simply for optimal networks, it may also be of interest to find extremal

cases for given number of nodes and given number of arcs.

3 Basic definitions

A directed graph or shortly digraph 𝐺 is given by a set of vertices 𝑉 = 𝑉 (𝐺) and a set of

ordered pairs of vertices 𝐸 = 𝐸(𝐺) called directed edges or arcs. The number of nodes of

𝐺 is denoted by 𝑛 = 𝑛(𝐺) and the number of arcs is denoted by 𝑚 = 𝑚(𝐺). A (directed)

path in 𝐺 is a sequence of vertices 𝑣0, 𝑣1, . . . , 𝑣𝑖, . . . , 𝑣𝑛 such that 𝑣𝑖−1𝑣𝑖 is an arc of

𝐺 for all 𝑖. 𝐺 is strongly connected if there is a directed path from 𝑢 to 𝑣 for any pair

of vertices 𝑢, 𝑣. The distance 𝑑(𝑢, 𝑣) is the length of a shortest path from 𝑢 to 𝑣. In

digraphs, in general 𝑑(𝑢, 𝑣) = 𝑑(𝑣, 𝑢) does not hold. We will assume that the graphs are

strongly connected, i.e. 𝑑(𝑢, 𝑣) < ∞ and 𝑑(𝑣, 𝑢) < ∞ for all pairs 𝑢, 𝑣.

Furthermore, we will also assume that the graphs have the USP property (USP stands

for unique shortest paths), i.e. each two vertices are connected by a unique shortest path.

In other words, in all graphs studied here there will be exactly one shortest path between

any pair of vertices. We assume that the reader is familiar with basic notions of graph

theory, see for example [17].

If we approach the problem as an optimization problem, we need to define the cost of a

graph:

𝐶𝑜𝑠𝑡𝛼 (𝐺) =
∑

𝑤𝛼 (𝑒) ,

where the sum runs over all edges of 𝐺, 𝑤𝛼(𝑒) = [𝑤(𝑒)]
𝛼 and 𝑤(𝑒) stands for the number

of shortest paths that use 𝑒.
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4 Extremal cases

In this section we will examine extremal cases when 𝛼 < 0 and 𝛼 > 1. Let us define 𝑇𝑛

as graph depicted on Figure 1.

Figure 1: Graph 𝑇𝑛

4.1 Cases when 𝛼 → ∞

Lemma 1. Let 𝐺𝑛 ∕= 𝐾𝑛 be any USP-graph with 𝑛 vertices. Then,

lim
𝛼→∞

𝐶𝑜𝑠𝑡𝛼 (𝐺𝑛) =∞.

Proof. Note that there are 𝑛 (𝑛− 1) shortest paths and less then 𝑛 (𝑛− 1) edges. Hence,
there is at least one edge 𝑒 such that 𝑤 (𝑒) ≥ 2.

Therefore, in other words:

Proposition 2. 𝐾𝑛 is the cheapest USP-graph with 𝑛 vertices according to the function

𝐶𝑜𝑠𝑡𝛼 when 𝛼 tends to infinity.

Lemma 3. Let 𝐺𝑛 ∕= 𝑇𝑛 be any USP-graph with 𝑛 > 3 vertices. Then, there is no edge

such that 𝑤 (𝑒) ≥ (𝑛− 1) ⋅ (𝑛− 2) + 1.

Proof. Suppose to the contrary that there is such edge 𝑢1𝑢2. Denote remaining vertices

by 𝑣1, ..., 𝑣𝑛−2. Note that the shortest paths from 𝑢2 to 𝑢1; from 𝑣𝑖 to 𝑢1, 𝑖 = 1, ..., 𝑛− 2;
and from 𝑢2 to 𝑣𝑖, 𝑖 = 1, ..., 𝑛−2 can not contain edge 𝑢1𝑢2. Hence, all other shortest paths
contain this edge. It follows that no two vertices 𝑣𝑖 and 𝑣𝑗 are adjacent, 𝑖, 𝑗 = 1, ..., 𝑛− 2.
Also, it follows that there are no arcs 𝑢1𝑣𝑖 and 𝑣𝑖𝑢2, 𝑖 = 1, ..., 𝑛 − 2. Since each 𝑣𝑖

has in-degree and out-degree at least one, it follows that 𝑣𝑖𝑢1 and 𝑢2𝑣𝑖 are arcs for each

𝑖 = 1, ..., 𝑛 − 2. Finally, 𝑢2𝑢1 has to be arc of 𝐺𝑛, because 𝑛 is 𝑈𝑆𝑃 -graph, but then

𝐺𝑛 = 𝑇𝑛, which is a contradiction.
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It directly follows:

Proposition 4. 𝑇𝑛 is the most expensive USP-graph with 𝑛 vertices according to the

function 𝐶𝑜𝑠𝑡𝛼 when 𝛼 tends to infinity. More formally,

lim
𝛼→∞

𝐶𝑜𝑠𝑡𝛼 (𝐺𝑛)

𝐶𝑜𝑠𝑡𝛼 (𝑇𝑛)
= 0

for each USP-graph 𝐺𝑛 with 𝑛 vertices.

4.2 Cases when 𝛼 = 1

Note that 𝐶𝑜𝑠𝑡1 is the number of edges covered by shortest paths. It can be easily seen

that:

Proposition 5. For each USP-graph 𝐺𝑛 ∕= 𝐾𝑛, 𝐶𝑛 with 𝑛 vertices, we have: 𝐶𝑜𝑠𝑡1 (𝐾𝑛) <

𝐶𝑜𝑠𝑡1 (𝐺𝑛) < 𝐶𝑜𝑠𝑡1 (𝐶𝑛).

Proof. Denote by 𝑙 (𝑢, 𝑣) length of the shortest path from 𝑢 to 𝑣. We have:

𝐶𝑜𝑠𝑡1 (𝐺𝑛) =
∑

𝑢,𝑣∈𝑉 (𝐺𝑛)

𝑙 (𝑢, 𝑣) >
∑

𝑢,𝑣∈𝑉 (𝐺𝑛)

1 = 𝐶𝑜𝑠𝑡1 (𝐾𝑛) .

𝐶𝑜𝑠𝑡1 (𝐺𝑛) =
∑

𝑢,𝑣∈𝑉 (𝐺𝑛)

𝑙 (𝑢, 𝑣) =
1

2

∑
𝑢,𝑣∈𝑉 (𝐺𝑛)

(𝑙 (𝑢, 𝑣) + 𝑙 (𝑣, 𝑢))

<
1

2

∑
𝑢,𝑣∈𝑉 (𝐺𝑛)

𝑛 =
1

2
𝑛 ⋅ 𝑛 ⋅ (𝑛− 1) = 𝐶𝑜𝑠𝑡1 (𝐶𝑛) .

This proves the proposition.

4.3 Cases when 𝛼 ≤ 0

Proposition 6. 𝐾𝑛 is the most expensive USP-graph with 𝑛 vertices according to the

function 𝐶𝑜𝑠𝑡𝛼, for each 𝛼 ≤ 0.

Proof. Let 𝐺𝑛 ∕= 𝐾𝑛 be any USP-graph with 𝑛 vertices. Then,

𝐶𝑜𝑠𝑡𝛼 (𝐺𝑛) =
∑

𝑒∈𝐸(𝐺𝑛)

𝑤𝛼 (𝑒) ≤
∑

𝑒∈𝐸(𝐺𝑛)

1 =

= ∣𝐸 (𝐺𝑛)∣ < 𝑛 ⋅ (𝑛− 1) = 𝐶𝑜𝑠𝑡𝛼 (𝐾𝑛) .
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Proposition 7. 𝐶𝑛 is the cheapest USP-graph with 𝑛 vertices according to the function

𝐶𝑜𝑠𝑡𝛼 for each 𝛼 ≤ 0.

Proof. For 𝛼 = 0, 𝑤(𝑒)𝛼 = 1, therefore 𝐶𝑜𝑠𝑡𝛼(𝐶𝑛) = 𝑛 and 𝐶𝑜𝑠𝑡𝛼(𝐺𝑛) ≥ ∣𝑉 (𝐺)∣ = 𝑛.

Let us consider the case when 𝛼 < 0. Denote edges of digraph 𝐺𝑛 with 𝑒1, ..., 𝑒𝑘 and the

number of times edge 𝑒𝑖 is part of the shortest path with 𝑥1, ..., 𝑥𝑘. Denote 𝑥 = 𝑥1+...+𝑥𝑘.

It holds 𝑥𝛼1 + ...+𝑥
𝛼
𝑘 ≥ 𝑘 ⋅ (𝑥

𝑘

)𝛼
, because of the concavity. Note that 𝑘 is minimized when

𝐺𝑛 is cycle and 𝑥 is maximized in the same case. Hence,
𝑥
𝑘
is also maximized for the

cycles and and then 𝑘 ⋅ (𝑥
𝑘

)𝛼
is minimized for the cycle.

5 Results for digraphs with 0 < 𝛼 < 1

For a later reference let us define

𝑓𝛼(𝑥) = (𝑥+ 1) ⋅
(
1

2
𝑥(2𝑛− 1− 𝑥)

)𝛼

Furthermore, let

𝐶𝑜𝑠𝑡𝛼 (𝑅, 𝑟, 𝑘)

denote the cost of communication in graph 𝑅 where each pair of vertices of 𝑅 has a path

and a distinguished vertex 𝑟 ∈ 𝑅 has additional 𝑘 paths to each of other vertices in 𝑅.

Lemma 8. Let 𝐺 be a graph depicted on Figure 2 with 𝑛 vertices, a segment 𝑅 with 𝑛−𝑘

vertices and a loop of length 𝑘+ 1 rooted at the vertex 𝑟 of 𝑅. Then the cost of the graph

𝐺 is

𝐶𝑜𝑠𝑡𝛼 (𝐺) = 𝐶𝑜𝑠𝑡𝛼 (𝑅, 𝑟, 𝑘) + (𝑘 + 1)

(
1

2
𝑘(2𝑛− 𝑘 − 1)

)𝛼

=

= 𝐶𝑜𝑠𝑡𝛼 (𝑅, 𝑟, 𝑘) + 𝑓𝛼 (𝑘) .

Proof. Let 𝑒 be an arbitrary arc on the cycle. There are 𝑘 + 1 paths of length 1, 𝑘 + 1

paths of length 2, . . . and 𝑘 + 1 paths of length 𝑘 around the cycle that connect nodes of

the cycle. The edge 𝑒 appears on exactly one path of length one, two paths of length 2

. . . and 𝑘 paths of length 𝑘. In total, the edge is used by 𝑘(𝑘+1)
2
paths.

Each vertex in the segment 𝑅 has to communicate with each of the vertices on the cycle

and similarly each vertex on the cycle has to communicate with segment 𝑅; we can split
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Figure 2: Graph with the cycle of length 𝑘 + 1

this communication in two parts. First part is the path between vertex 𝑟 and vertices on

the cycle, each such pair gives another shortest path that uses 𝑒. So the number of paths

on the edge equals to
(
𝑘(𝑛− 𝑘 − 1) + 𝑘(𝑘+1)

2

)𝛼

=
(
1
2
𝑘(2𝑛− 𝑘 − 1))𝛼, and the cost of the

cycle of length 𝑘 + 1 is 𝑓𝛼(𝑘) = (𝑘 + 1)
(
1
2
𝑘(2𝑛− 𝑘 − 1))𝛼.

Second part is cost from all vertices in the segment 𝑅 to vertex 𝑟. Since we have to

communicate in both directions with vertices on the cycle, we need 𝑘 paths from 𝑟 to any

other vertex of 𝑅. Finally, the paths between pairs of vertices of 𝑅 have to be taken into

account, and a set of shortest paths between each pair of vertices is needed to realize this.

Clearly, the paths inside 𝑅 contribute to weights of edges of 𝐺 exactly 𝐶𝑜𝑠𝑡𝛼 (𝑅, 𝑟, 𝑘) .

Lemma 9. Let 𝐺 and 𝐺′ be graphs depicted on Figure 3 with n vertices, and two segments

𝑅1 and 𝑅2. Let the two segments together have 𝑛− 𝑘 vertices. Then

𝐶𝑜𝑠𝑡𝛼 (𝐺) ≥ 𝐶𝑜𝑠𝑡𝛼 (𝐺
′) .

Figure 3: Two segments attached to a cycle
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Proof. The cost of the network 𝐺′ is given by 𝐶𝑜𝑠𝑡𝛼(𝐺
′) = 𝐶𝑜𝑠𝑡𝛼(𝑅) + 𝑓𝛼(𝑘) =

𝐶𝑜𝑠𝑡𝛼(𝑅1) + 𝐶𝑜𝑠𝑡𝛼(𝑅2) + 𝑓𝛼(𝑘), where the 𝐶𝑜𝑠𝑡𝛼(𝑅) can be seen as a sum of arc con-

tributions of the two segments, 𝐶𝑜𝑠𝑡𝛼(𝑅1) + 𝐶𝑜𝑠𝑡𝛼(𝑅2). Clearly, all the paths between

vertices of the two segments avoid the loop in 𝐺′, hence their cost is included in 𝐶𝑜𝑠𝑡𝛼(𝑅).

On the other hand, in 𝐺 any pair of vertices from different segments needs, in addition,

one turn around the loop for the two shortest paths in both directions, 𝐶(𝑅1, 𝑅2) =

∣𝑛(𝑅1)∣∣𝑛(𝑅2)∣ > 0. Hence the arcs on the loop have additional weight 𝐶(𝑅1, 𝑅2), and as

𝜔′(𝑒)𝛼 < 𝜔(𝑒)𝛼 = (𝜔′(𝑒) + 𝐶(𝑅1, 𝑅2))
𝛼
,

the cost of the loop 𝐿 in the graph𝐺 is larger than the cost of the loop in 𝐺′. Consequently,

𝐶𝑜𝑠𝑡𝛼(𝐺) = 𝐶𝑜𝑠𝑡𝛼(𝑅1) + 𝐶𝑜𝑠𝑡𝛼(𝑅2) + 𝐶𝑜𝑠𝑡𝛼(𝐿)

> 𝐶𝑜𝑠𝑡𝛼(𝐺
′) = 𝐶𝑜𝑠𝑡𝛼(𝑅1) + 𝐶𝑜𝑠𝑡𝛼(𝑅2) + 𝑓𝛼(𝑘).

Lemma 10. Let 𝐺 = 𝐺(𝑘1, 𝑘2) be a graph depicted on Figure 4 with 𝑛 vertices, a segment

𝑅 with 𝑛 − 𝑘 vertices and two loops rooted at the vertex 𝑟 of 𝑅 of lengths 𝑘1 + 1, 𝑘2 + 1

and 𝑘 = 𝑘1 + 𝑘2. Then

𝐶𝑜𝑠𝑡𝛼(𝐺) = 𝐶𝑜𝑠𝑡𝛼(𝑅, 𝑟, 𝑘) + 𝑓𝛼(𝑘1) + 𝑓𝛼(𝑘2).

Proof . Goes along the same lines as the proof of Lemma 8. We omit the details.

Let 𝐺(𝑅, 𝑥, 𝑘) be the graph with a segment 𝑅 on 𝑛 − 𝑘 vertices, and with two cycles of

lengths 𝑥 + 1 and 𝑘 − 𝑥 + 1 attached to a fixed vertex 𝑟 of 𝑅 (see Figure 4). We will

assume that 𝑥+ 1 is the length of the shorter cycle, i.e 𝑥 < 𝑘 − 𝑥.

Lemma 11. Let 𝑅 be any digraph, let 𝑘 ≥ 4 and let 1 ≤ 𝑥1 ≤ 𝑘− 𝑥1 ≤ 𝑘− 1 < 𝑛
2
. Then

𝐶𝑜𝑠𝑡𝛼 (𝐺 (𝑅, 𝑥1, 𝑘)) ≥ 𝐶𝑜𝑠𝑡𝛼 (𝐺 (𝑅, 𝑥1 + 1, 𝑘)) ,

for every 𝛼 ∈ (0, 1].

Proof. Denote edges as on the Figure 4 and the number of shortest paths passing through

the edge 𝑒 on the shorter cycle by 𝑐 (𝑅, 𝑘, 𝑥, 𝑒) and let 𝑐 (𝑅, 𝑘, 𝑥, 𝑓) be the number of

-735-



shortest paths passing through the edge 𝑓 on the longer cycle. Denote by 𝑠 = 𝑛− 𝑘 the

number of vertices in 𝑅 and let 𝑥2 = 𝑥1 + 1.

Note that the contribution of each edge in 𝐸 (𝑅) is the same in both cases, hence:

𝐶𝑜𝑠𝑡𝛼 (𝐺 (𝑅, 𝑥1, 𝑘))− 𝐶𝑜𝑠𝑡𝛼 (𝐺 (𝑅, 𝑥2, 𝑘)) =

=

𝑥1+1∑
𝑖=1

(𝑐 (𝑅, 𝑘, 𝑥1, 𝑒𝑖))
𝛼 +

𝑘−𝑥1+1∑
𝑖=1

(𝑐 (𝑅, 𝑘, 𝑥1, 𝑓𝑖))
𝛼

−
𝑥2+1∑
𝑖=1

(𝑐 (𝑅, 𝑘, 𝑥2, 𝑒𝑖))
𝛼 −

𝑘−𝑥2+1∑
𝑖=1

(𝑐 (𝑅, 𝑘, 𝑥2, 𝑓𝑖))
𝛼 . (1)

Further, note that:

𝑐 (𝑅, 𝑘, 𝑥1, 𝑒𝑖) = (𝑠+ 𝑘 − 𝑥1) ⋅ 𝑥1 + 𝑥1 ⋅ (𝑥1 − 1)
2

,

where the first summand corresponds to the paths that have

1. one end-vertex in the cycle of length 𝑥1 + 1

2. other end-vertex in the cycle of length 𝑘 − 𝑥1 + 1 or in 𝑅∖ {𝑟}

and the second summand corresponds to the number of paths that have both end-vertices

on the cycle of length 𝑥1 + 1 with the exception of 𝑟.

Analogously:

𝑐 (𝑅, 𝑘, 𝑥2, 𝑒𝑖) = (𝑠+ 𝑘 − 𝑥2) ⋅ 𝑥2 + 𝑥2 ⋅ (𝑥2 − 1)
2

;

𝑐 (𝑅, 𝑘, 𝑥1, 𝑓𝑖) = (𝑠+ 𝑥1) ⋅ (𝑘 − 𝑥1) +
(𝑘 − 𝑥1) ⋅ (𝑘 − 𝑥1 − 1)

2
;

𝑐 (𝑅, 𝑘, 𝑥2, 𝑓𝑖) = (𝑠+ 𝑥2) ⋅ (𝑘 − 𝑥2) +
(𝑘 − 𝑥2) ⋅ (𝑘 − 𝑥2 − 1)

2
.

Substituting this in (1), one gets:
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𝐶𝑜𝑠𝑡𝛼 (𝐺 (𝑅, 𝑥1, 𝑘))− 𝐶𝑜𝑠𝑡𝛼 (𝐺 (𝑅, 𝑥2, 𝑘)) =

=

[
(𝑠+ 𝑘 − 𝑥1) ⋅ 𝑥1 + 𝑥1 ⋅ (𝑥1 − 1)

2

]𝛼
⋅ (𝑥1 + 1)

+

[
(𝑠+ 𝑥1) ⋅ (𝑘 − 𝑥1) +

(𝑘 − 𝑥1) ⋅ (𝑘 − 𝑥1 − 1)
2

]𝛼
⋅ (𝑘 − 𝑥1 + 1)

−
[
(𝑠+ 𝑘 − 𝑥2) ⋅ 𝑥2 + 𝑥2 ⋅ (𝑥2 − 1)

2

]𝛼
⋅ (𝑥2 + 1)

−
[
(𝑠+ 𝑥2) ⋅ (𝑘 − 𝑥2) +

(𝑘 − 𝑥2) ⋅ (𝑘 − 𝑥2 − 1)
2

]𝛼
⋅ (𝑘 − 𝑥2 + 1) =

= 𝑓𝛼(𝑥1) + 𝑓𝛼(𝑘 − 𝑥1)− 𝑓𝛼(𝑥2)− 𝑓𝛼(𝑘 − 𝑥2)

We have to prove that

𝑓𝛼(𝑥1) + 𝑓𝛼(𝑘 − 𝑥1) > 𝑓𝛼(𝑥2) + 𝑓𝛼(𝑘 − 𝑥2).

It is sufficient to show that 𝑓𝛼(𝑥) is increasing convex function for all 𝑥 ∈ (1, 𝑛
2
).

To prove that we have to calculate first and second derivative of 𝑓𝛼(𝑥) :

𝑓 ′
𝛼(𝑥) = 2

−𝛼 (𝑥 (2𝑛− 𝑥− 1))𝛼
(
1 +

𝛼 (2𝑛− 2𝑥− 1) (1 + 𝑥)

𝑥 (2𝑛− 𝑥− 1)
)

𝑓 ′′
𝛼(𝑥) = 2

−𝛼𝛼 (𝑥 (2𝑛− 𝑥− 1))𝛼
(
4𝑛2(𝑥− 1) + 𝑛 (4− 8𝑥2)

𝑥2 (1− 2𝑛+ 𝑥)2

+
𝛼(𝑥+ 1) (1− 2𝑛+ 2𝑥)2 + (1 + 𝑥)(2𝑥2 − 1)

𝑥2 (1− 2𝑛+ 𝑥)2

)
.

Both derivatives are positive for 𝑥 ∈ (1, 𝑛
2
), hence lemma is proved.

Remark: the statement of Lemma 11 does not hold for some examples with 𝑘 > 𝑛
2
(𝑛 = 7,

𝑘 = 6, 𝑥1 = 2, 𝑥2 = 4, 𝛼 = 0.01). It seems obvious that the bound for 𝑘 depends on 𝛼,

but we were not able to find an explicit relationship.

Lemma 12. Let 𝐺(𝑥, 𝛼) = (1
2
𝑥 (2𝑛− 𝑥− 1))𝛼. Then for 0 < 𝛼1 < 𝛼2 and 1 ≤ 𝑥1 < 𝑥2 ≤

𝑛− 1, 𝐺(𝑥1,𝛼2)
𝐺(𝑥2,𝛼2)

< 𝐺(𝑥1,𝛼1)
𝐺(𝑥2,𝛼1)

.

Proof. Note that for 1 ≤ 𝑥1 < 𝑥2 ≤ 𝑛 − 1 we have 𝑥1 (2𝑛− 𝑥1 − 1) < 𝑥2 (2𝑛− 𝑥2 − 1),
so

𝐶 =
𝑥1 (2𝑛− 𝑥1 − 1)
𝑥2 (2𝑛− 𝑥2 − 1) < 1
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Figure 4: Graph with two cycles rooted at 𝑟

Figure 5: Dividing the cycle

and for 0 < 𝛼1 < 𝛼2,

𝐶𝛼2 < 𝐶𝛼1 .

As 𝐺(𝑥1,𝛼2)
𝐺(𝑥2,𝛼2)

= 𝐶𝛼2 and 𝐺(𝑥1,𝛼1)
𝐺(𝑥2,𝛼1)

= 𝐶𝛼1 , the claim follows.

Proposition 13. Let the function 𝐹 (𝛼) be defined as

𝐹 (𝛼) = 𝐶𝑜𝑠𝑡𝛼 (𝐺
′)− 𝐶𝑜𝑠𝑡𝛼 (𝐺) , (2)

where the graphs 𝐺 and 𝐺′ are depicted on Figure 2 and on Figure 5. Then 𝐹 (𝛼) = 0 has

exactly one root on [0, 1].

Proof. Recall from Lemma 8 that 𝐶𝑜𝑠𝑡𝛼(𝐺) = 𝐶𝑜𝑠𝑡𝛼 (𝑅, 𝑟, 𝑘) + 𝑓𝛼 (𝑘) and from Lemma

10 that 𝐶𝑜𝑠𝑡𝛼(𝐺
′) = 𝐶𝑜𝑠𝑡𝛼 (𝑅, 𝑟, 𝑘) + 𝑓𝛼 (𝑘1) + 𝑓𝛼(𝑘2). Hence using 𝑘 = 𝑘1 + 𝑘2 we can

write

𝐹 (𝛼) = 𝑓𝛼(𝑘1) + 𝑓𝛼(𝑘2)− 𝑓𝛼(𝑘) . (3)
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Observe

𝐹 (0) = 𝑘1 + 1 + 𝑘 − 𝑘1 + 1− 𝑘 − 1 = 1 > 0

and, because (𝑘 − 𝑘1) and 𝑘1 are positive and (4 + 3𝑘 − 4𝑛) is negative as 𝑛 ≥ 𝑘 + 1,

𝐹 (1) =
1

2
(𝑘 − 𝑘1)𝑘1(4 + 3𝑘 − 4𝑛) < 0.

Function 𝐹 (𝛼) is continuous and its values at the ends of interval have different sign,

therefore there must exist at least one 𝛼, for which 𝐹 (𝛼) = 0. Let us denote it as 𝛼0. So

we know that for 𝛼0 it holds

𝑓𝛼0(𝑘) = 𝑓𝛼0(𝑘1) + 𝑓𝛼0(𝑘2). (4)

We will show that 𝑓𝛼(𝑘) < 𝑓𝛼(𝑘1) + 𝑓𝛼(𝑘2) for 𝛼 < 𝛼0 and 𝑓𝛼(𝑘) > 𝑓𝛼(𝑘1) + 𝑓𝛼(𝑘2) for

𝛼 > 𝛼0.

Let us rewrite 𝑓𝛼(𝑘) as

𝑓𝛼(𝑘) = (𝑘 + 1)𝐺(𝑘, 𝛼), (5)

where 𝐺(𝑥, 𝛼) = (1
2
𝑥 (2𝑛− 𝑥− 1))𝛼.

Substituting (5) in (4) we have

(𝑘 + 1)𝐺(𝑘, 𝛼0) = (𝑘1 + 1)𝐺(𝑘1, 𝛼0) + (𝑘2 + 1)𝐺(𝑘2, 𝛼0).

Dividing the last equation by 𝐺(𝑘, 𝛼0) one gets

𝑘 + 1 = (𝑘1 + 1)
𝐺(𝑘1, 𝛼0)

𝐺(𝑘, 𝛼0)
+ (𝑘2 + 1)

𝐺(𝑘2, 𝛼0)

𝐺(𝑘, 𝛼0)
.

Let 𝛼 > 𝛼0. Then from Lemma 12 we know
𝐺(𝑘1,𝛼)
𝐺(𝑘,𝛼)

< 𝐺(𝑘1,𝛼0)
𝐺(𝑘,𝛼0)

and 𝐺(𝑘2,𝛼)
𝐺(𝑘,𝛼)

< 𝐺(𝑘2,𝛼0)
𝐺(𝑘,𝛼0)

,

therefore

𝑘 + 1 > (𝑘1 + 1)
𝐺(𝑘1, 𝛼)

𝐺(𝑘, 𝛼)
+ (𝑘2 + 1)

𝐺(𝑘2, 𝛼)

𝐺(𝑘, 𝛼)

and, multiplying by 𝐺(𝑘, 𝛼),

𝑓𝛼(𝑘) > 𝑓𝛼(𝑘1) + 𝑓𝛼(𝑘2).

Hence 𝐹 (𝛼) ∕= 0 for all 𝛼 > 𝛼0.

Analogously, 𝑓𝛼(𝑘) < 𝑓𝛼(𝑘1) + 𝑓𝛼(𝑘2), and therefore 𝐹 (𝛼) ∕= 0 for all 𝛼 < 𝛼0.
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Theorem 14. Let 𝐺 be a graph depicted on Figure 2 with 𝑛 vertices, a segment 𝑅 with

𝑛 − 𝑘 vertices and a loop of length 𝑘 + 1 rooted at the vertex 𝑟 of 𝑅. Let 𝐺′ be a graph

depicted on Figure 5 which is obtained from 𝐺 by replacing the arc opposite to the vertex

𝑟 with two arcs meeting at 𝑟. There is a constant 0 < 𝛼2 < 1 such that

𝐶𝑜𝑠𝑡𝛼 (𝐺) < 𝐶𝑜𝑠𝑡𝛼 (𝐺
′) for all 𝛼, 0 ≤ 𝛼 < 𝛼2 and

𝐶𝑜𝑠𝑡𝛼 (𝐺) > 𝐶𝑜𝑠𝑡𝛼 (𝐺
′) for all 𝛼, 𝛼2 < 𝛼 ≤ 1.

Proof. By Proposition 13 𝐹 (𝛼) = 𝐶𝑜𝑠𝑡𝛼(𝐺
′)−𝐶𝑜𝑠𝑡𝛼(𝐺) has exactly one root on interval

[0,1], 𝐹 (𝛼2) = 0. Furthermore, for 0 ≤ 𝛼 < 𝛼2, 𝐹 (𝛼) > 0 and for 𝛼2 < 𝛼 ≤ 1,
𝐹 (𝛼) < 0.

6 Conclusion

For 𝛼 ≤ 0 we have provided a complete answer about digraphs with minimal value of
the proposed invariant by showing that the cycle 𝐶𝑛 is minimal among USP-graphs, i.e

graphs with unique shortest paths.

For positive 𝛼, the question is more involved. While it was proven that 𝐾𝑛 is the minimal

USP-graph for 𝛼 ≥ 1, our results for 𝛼 ∈ (0, 1) only give some intuition about possible
extremal digraphs. It remains an open problem to find the minimal digraphs for these

values of 𝛼.

Furthermore, it would be of interest to study the extremal general digraphs without

somewhat artificial assumption that the shortest paths must be unique.
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