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Abstract

The Wiener index is a distance-based topological index defined as the sum of distances

between all pairs of vertices in a graph. Fibonacenes are a class of unbranched catacondensed

benzenoid hydrocarbons having zig-zag structure. We deal mainly with so-called collective

properties of the Wiener index, i. e. the main results don’t reflect the property of Wiener index

of any particular fibonacene, but a collective property of sets of such graphs. In particular, some

results on degeneracy classes of the Wiener index of fibonacenes are presented.

1. Introduction

In this paper we are concerned with finite undirected connected graphs. The vertex

and edge sets of G are denoted by V (G) and E(G), respectively. If u and v are vertices

of G, then the number of edges in the shortest path connecting them is said to be their

distance and is denoted by d(u, v).

The Wiener index is a well-known distance-based topological index introduced as

structural descriptor for acyclic organic molecules [28]. It is defined as the sum of distances

between all unordered pairs of vertices of a graph G:

W (G) =
∑

{u,v}⊆V (G)

d(u, v).
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The Wiener index is extensively used in theoretical chemistry for the design of quanti-

tative structure–property relations (mainly with physico-chemical properties) and quanti-

tative structure–activity relations including biological activities of the respective chemical

compounds. Since benzenoid hydrocarbons are attracting the great interest of theoretical

chemists, the theory of the Wiener index of the respective molecular graphs have been

intensively developed in the last three decades. The bibliography on the Wiener index

and its applications can be found in books [4, 12, 26, 27] and reviews [3, 9, 10, 22, 24]. In

this paper we study the Wiener index for hexagonal chains having zig-zag structure.

2. Fibonacenes

A hexagonal system is a connected plane graph in which every inner face is bounded

by hexagon. An inner face with its hexagonal bound is called a hexagonal ring (or simply

ring). Two hexagonal rings are either disjoint or have exactly one common edge (adjacent

rings), and no three rings share a common edge. A vertex of a hexagonal system belongs

to at most three hexagonal rings. A hexagonal system is called catacondensed if it does

not possess three hexagonal rings sharing a common vertex. A ring having exactly one

adjacent ring is called terminal . A catacondensed hexagonal system having exactly two

terminal rings is called a hexagonal chain. A ring adjacent to exactly two other rings

has two vertices of degree 2. If these two vertices are adjacent, then the ring is angularly

annelated, if these two vertices are not adjacent, then it is linearly annelated. A fibonacene

is a hexagonal chain without linearly annelated hexagonal rings. Examples of fibonacenes

are shown in Fig. 1. The name of these chains comes from the fact that the number

of perfect matchings of any fibonacene relates with the Fibonacci numbers. Detailed

information about properties of fibonacenes can be found in [1, 16, 17].

Throughout this article h always denotes the number of hexagonal rings. A molecular

graph representing any fibonacene with h rings has 4h+2 vertices and 5h+1 edges. The

edge set may be divided into three subsets with respect of degree of incident vertices: h+4

edges connect two vertices of degree two, 2h − 3 edges connect two vertices of degree 3,

and 2h edges connect vertices of degree 2 and 3.

Denote by Fh and Sh the set of all fibonacenes and all symmetrical fibonacenes with
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Figure 1. Fibonacenes with five rings and a large fibonacene.

h rings, respectively. The numbers of fibonacenes in these sets are [1]

|Fh| =
{

2h−4 + 2(h−5)/2, if h is odd
2h−4 + 2(h−4)/2, if h is even,

|Sh| =
{

2(h−3)/2, if h is odd
2(h−2)/2, if h is even.

Among the fibonacenes with a fixed number of rings two are extremal with regard

to their Wiener indices: the helicene Hh and the zig-zag fibonacene Zh (see examples in

Fig. 1). If all hexagonal rings are regular, then the helicene has the spiral structure while

all rings of the zig-zag fibonacene lie on a straight line. Their Wiener indices have the

minimal and the maximal values, respectively [2, 13]:

Wmin = W (Hh) =
1

3

(
8h3 + 72h2 − 26h+ 27

)
,

Wmax = W (Zh) =
1

3

(
16h3 + 24h2 + 62h− 21

)
.

Denote by Ws the average value of Wmin and Wmax, i. e.

Ws =
1

2
(Wmin +Wmax) = 4h3 + 16h2 + 6h+ 1.

Further, these three W -values will be considered only for graphs with h rings. The sum

of values of the Wiener index for a subset of fibonacenes G ⊆ Fh will be denoted by

W (G) =∑
G∈G W (G). Denote by Val(G) the set of W -values for fibonacenes of G ⊆ Fh,

Val(G) = {W (G) |G ∈ G}.
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3. Branching graph

The concept of branching graphs has been introduced for characterization the branch-

ings in hexagonal systems [19]. The branching graph, B(G), of a hexagonal system G

is called a subgraph induced by all vertices of degree 3 in G. Since a fibonacene has

no three linearly annelated hexagonal rings, its branching graph is an acyclic connected

graph (branching tree). As an illustration, consider fibonacene G shown in Fig. 2a. Bold

edges form its branching tree B(G). Every vertex of a branching tree has degree 1, 2 or 3.

The numbers of vertices and edges of B(G) are 2h− 2 and 2h− 3, respectively.

G
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Figure 2. Branching tree B(G) and a code r(G) for fibonacene G ∈ F8.

A fibonacene’s edge is called cut-edge if it belongs to two rings (cut a paper model

of a fibonacene along this edge produces two fibonacenes). Obviously, all cut-edges of a

fibonacene belong to its branching tree (cut-edges are depicted by bold lines in Fig. 2b).

Denote by C(G) the set of all cut-edges of a fibonacene G ∈ Fh except cut-edges belonging

to the first and the last hexagons. Then |C(G)| = h−3. Every cut-edge of C(G) is adjacent

with two non-cut-edges. The set C(G) can be presented as disjoint union of two subsets,

C(G) = U(G) ∪ Z(G), where an edge of U(G) is incident with a vertex of degree 3 in

B(G) whereas the both end-vertices of an edge of Z(G) have degree 2. For the branching

tree B(G) in Fig. 2c, three edges of U(G) and two edges of Z(G) are shown by bold and

dotted lines, respectively. For example, Z = ∅ for the helicene and U = ∅ for the zig-zag

fibonacene. Let z = |Z(G)| and u = |U(G)|.
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4. Representation of fibonacenes

Since fibonacenes have zig-zag structure, there is an obvious way to represent their

structures as binary codes. We associate a binary code with the branching tree of a

fibonacene G ∈ Fh as shown in Fig. 2c. Every cut-edge of U(G) corresponds to 1 in the

code while every cut-edge of Z(G) corresponds to 0. The length of fibonacenes’ codes is

h − 3. A fibonacene with non-trivial symmetry has symmetrical code. For instance, the

helicene H7 and the zig-zag fibonacene Z7 have the following codes: (1111) and (0000).

Two binary codes (11000) and (00011) induce the same fibonacene. Denote by r(G)

a code corresponding to a fibonacene G. We will assume that r(G) is equal to one of

possible codes of G. For further considerations, it is not important how to choose r(G).

A fibonacene induced by a code r will be denoted by G(r). Binary representation is useful

for computer generation of fibonacenes.

5. Calculating formulas for the Wiener index

In this section, we derive two calculating formulas for the Wiener index based on cut-

edges of fibonacenes. Denote by V3(G) the set of all vertices of degree 3 in a graph G.

Let W33(G) be the sum of distances between vertices of degree 3 in G,

W33(G) =
∑

{u,v}⊆V3(G)

d(u, v).

There is a simple relation between the quantity W33 and the Wiener index of catacon-

densed hexagonal systems [11].

Proposition 1. For an arbitrary catacondensed hexagonal system G with h rings ,

W (G) = 4W33(G) + 3(8h2 + 2h− 1).

Since all shortest paths between vertices of degree 3 in a fibonacene G ∈ Fh form its

branching tree B(G), we can write

W (G) = 4W (B(G)) + 3(8h2 + 2h− 1).

Every vertex v of degree 3 in a branching tree B(G) has one neighbor u of degree 1.

The structures of a fibonacene G and its branching tree B(G) are shown in Fig. 3a. To

calculate the Wiener index of a branching tree, it is convenient to apply the Doyle–Graver

method [14]. Denote by n1 and n2 the number of vertices in two subtrees T1 and T2.
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Proposition 2. Let B be a branching tree with n vertices. Then

W (B) =

(
n+ 1

3

)
−

∑
v∈V3(B)

n1n2.

Consider an edge e = (u, v) ∈ U(G) for G ∈ Fh shown in Fig. 3a. After cutting along

this edge, one can obtain two fibonacenes with h1(e) and h2(e) rings, h1(e) + h2(e) = h.

Then n1 = 2(h1(e)− 1) and n2 = 2(h2(e)− 1). Since there is a bijection between vertices

of degree 3 and edges of U(G), we can write that the sum of Doyle–Graver formula goes

over all edges of U(G). Applying Propositions 1 and 2, we have

W (G) = 4

(
2h− 1

3

)
− 4

∑
e∈U(G)

2(h1(e)− 1) · 2(h2(e)− 1) + 3(8h2 + 2h− 1).
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Figure 3. Calculating the Wiener index.

After simplification, one obtains the first formula:

W (G) = Wmax + 16u(h− 1)− 16
∑

e∈U(G)

h1(e)h2(e). (1)

To derive the second formula, we apply a method developed in [23]. Consider fibo-

nacenes G1, G2 ∈ Fh and a graph transformation G1 → G2 shown in Fig. 3b. Here F1 and

F2 are arbitrary fibonacenes. This transformation consists of the rotation of the subgraph

F2 around the edge e, where e ∈ U(G1) and e ∈ Z(G2). Let h1(e) = h(F1) + 1 and
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h2(e) = h(F2)+1. Then the Wiener indices of the graphs G1 and G2 satisfy the following

equation [23]:

W (G1) = W (G2)− 16 (h1(e)− 1)(h2(e)− 1).

It is easy to see that every fibonacene G ∈ Fh may be obtained from the helicene

Hh by a sequence of such operations, so that every respective edge of Hh is used only

once. All transformations are induced by the edge set Z(G). By inverse operations,

every fibonacene can be transformed to the helicene. Applying the above equality to all

transformations, we get the second formula:

W (G) = Wmin − 16 z(h− 1) + 16
∑

e∈Z(G)

h1(e)h2(e). (2)

The obtained formulas (1) and (2) are based on two sets of cut-edges of fibonacenes

and have similar forms.

6. Linked fibonacenes

Let G,G′ ∈ Fh and C(G) = {e1, e2, ..., eh−3}, C(G′) = {e′1, e′2, ..., e′h−3}. Two fi-

bonacenes G and G′ are called linked if there are sequential numberings of their cut-edges

such that ei ∈ U(G) and e′i ∈ Z(G′) or ei ∈ Z(G) and e′i ∈ U(G′) for every i = 1, 2, ..., h−3.

In other words, two i-th cut-edges can not belong to the set U(G) or Z(G) simultaneously.

Denote by G the linked graph for a fibonacene G. It is clear that G = G. If G1 and G2 are

linked graphs then r(G2) is the bitwise negation of r(G1), i. e. r(G2) = r(G1). Examples

of linked fibonacenes and their codes are shown in Fig. 4a.

Proposition 3. For a fibonacene G ∈ Fh,

W (G) +W (G) = Wmin +Wmax = 8h3 + 32h2 + 12h+ 2.

Proof . Apply formula (1) to a fibonacene G and formula (2) to its linked graph G. It

is easy to see that u(G) = z(G) and the sums of formulas (1) and (2) are also equal. �

A fibonacene G is called self-linked if G ∼= G (see Fig. 4b). The set of self-linked

fibonacenes with h hexagonal rings will be denoted by Lh. If G is a self-linked fibonacene,

then |U(G)| = |Z(G)|. It is clear that self-linked fibonacenes exist if the number of rings

h is odd (h−3 is even). Any symmetrical fibonacene is non-self-linked. Since the first half

of a self-linked fibonacene defines the second one, the number of self-linked fibonacenes
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Figure 4. Linked and self-linked fibonacenes.

is |Lh| = 2(h−3)/2/2 = 2(h−5)/2. The following result shows that the Wiener indices of all

self-linked fibonacenes coincide.

Corollary 4. For a self-linked fibonacene G ∈ Fh,

W (G) = 4h3 + 16h2 + 6h+ 1 = Ws.

A set of fibonacenes G is called complete if for every fibonacene G ∈ G the set always

contains its linked graph G. If G1, G2 ⊆ Fh are arbitrary complete sets then G1 ∪ G2,

G1 ∩ G2 and G1 \ G2 are also complete sets in Fh. Cardinalities of a complete set and its

subset of all self-linked graphs have the same parity.

Corollary 5. For a complete set of fibonacenes G ⊆ Fh,

W (G) =
∑
G∈G

W (G) = Ws · |G|.

Proof. The proof follows from the equalities

∑
G∈G

W (G) =
1

2

(∑
G∈G

W (G) +
∑
G∈G

W (G)

)
=
∑
G∈G

(
W (G) +W (G)

)
/2 = Ws · |G|. �

It is clear that the sets of all symmetrical fibonacenes Sh, all self-linked fibonacenes

Lh, and all fibonacenes Fh are complete.

Corollary 6. For the average value Wavr of fibonacenes of Fh,

Wavr =
W (Fh)

|Fh| = Ws = 4h3 + 16h2 + 6h+ 1.
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This fact have been established by a different way of reasoning in [7]. The equality

Wavr = Ws shows that the Wiener index of any self-linked fibonacene coincides with

the average value of the index among all fibonacenes with h rings, i. e. every self-linked

fibonacene is an ”average“ graph of Fh with respect to the Wiener index.

Corollary 7. Let G1,G2 be two complete sets of fibonacenes with h rings. Then

W (G1)/W (G2) = | G1|/| G2|. In particular, W (G1) = W (G2) if and only if | G1| = | G2|.

Applying this result to the set of symmetrical fibonacenes Sh and to the set of self-

linked fibonacenes Lh with odd number of rings, we have W (Sh) = 2W (Lh).

7. Degeneracy of the Wiener index

The set of W -values of hexagonal systems has been subject of detailed investigation

since a good ability of an invariant to distinguish between non-isomorphic graphs is im-

portant for applications. The discriminating ability of the Wiener index for hexagonal

systems was studied in [5, 6, 15, 20, 25].

By a degeneracy class we will mean a subset of Fh consisting of all graphs with the same

Wiener index. A trivial degeneracy class contains the unique graph. The cardinality of

the set Fh grows as 2h, while the number of values of Val(Fh) grows only as h3. Therefore,

for each value of Val(Fh), the average cardinality of the corresponding degeneracy class

has exponential growth. It is well-known that W (G1) ≡ W (G2) (mod 8) for arbitrary

catacondensed hexagonal systems G1, G2 with the same number of rings and W -values of

graphs of this class are always odd [13]. The following congruences restrict the possible

values of the Wiener index for fibonacenes.

Proposition 8. For any fibonacenes G1, G2 ∈ Fh,

1) W (G1) ≡ W (G2) (mod 16) for even h,

2) W (G1) ≡ W (G2) (mod 32) for odd h.

If G1, G2 are symmetrical fibonacenes with h rings then

3) W (G1) ≡ W (G2) (mod 64) for odd h.

Proof. All relations follow, for example, from formula (1). Since h = h1 + h2, any

product h1h2 is always even for odd h. If G is a symmetrical fibonacene, then u is always

even and every product h1h2 occurs two times in the sum of formula (1). �

The number of possible values of the Wiener index is (Wmax−Wmin)/16+1 =
(
h−1
3

)
+1

for even h and (Wmax −Wmin)/32 + 1 = 1
2

(
h−1
3

)
+ 1 for odd h. The sets of non-realizable
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values, [Wmin,Wmin + 16, ...,Wmax] \ Val(Fh) or [Wmin,Wmin + 32, ...,Wmax] \ Val(Fh), are

non-empty for every h ≥ 6.

In studying of topological index degeneracy, a typical problem is to find finite or

infinite sets of graphs having the same values of an index. For this purpose, suitable

transformations of graphs can be applied. We point out on a simple transformation for

fibonacenes. First, return to the transformation shown in Fig. 3b. For such graphs,

W (G) 	= W (H) if the subgraphs F1 and F2 are non-empty. Suppose that all cut-edges

of C(G) have sequentially numbering, m = |C(B)|. Consider two cut-edges of G in

symmetrical positions with respect to the central edge(s).

Proposition 9. Let G ∈ Fh and edges ek ∈ Z(G), em−k+1 ∈ U(G) or ek ∈ U(G),

em−k+1 ∈ Z(G) for fixed k ∈ {1, 2, ...,m}. Let a fibonacene H be obtained from G such

that ek ∈ U(H), em−k+1 ∈ Z(H) or ek ∈ Z(H), em−k+1 ∈ U(H). Then W (G) = W (H).

Proof. If two cut-edges of U(G) are in symmetrical positions, then these edges make

equal contributions to the sum of formula (1). �

Fibonacenes G1, G2 ∈ Fh are called Ws-linked if W (G1) = W (G2) = Ws and G1, G2

are linked but non-self-linked graphs, i. e. G 	∼= G. The numbers of Ws-linked graphs for

small number of hexagonal rings are shown in Table 1.

Proposition 10. Ws-linked fibonacenes exist for every odd h ≥ 13.

Proof. Suppose that r and r are codes of Ws-linked fibonacenes with h − 4 rings.

Let r1 = (01r01), r2 = (10 r10). Then G1 = G(r1) and G2 = G(r2) are linked but

non-self-linked graphs. Since r and r contain the equal numbers of units, u(G1) = u(G2).

Cut-edges corresponding to two new units in r1 and r2 make equal contributions to the

sum of formula (1). Denote by h1(e)h2(e) the contribution of an edge e in one of the

initial graph with h − 4 rings. Then this edge makes the following contribution to the

corresponding graph with h ring: (h1(e) + 2)(h2(e) + 2) = h1(e)h2(e) + 2h + 4. This

implies that W (G1) = W (G2) = Ws (see Proposition 3). The suitable initial graphs

have been found for h = 13, 15 by computing (r = (0001101100), Ws = 11571 and

r = (001010110100), Ws = 17191). �

Proposition 11. Ws-linked fibonacenes don’t exist for h ≡ 0 (mod 4).

Proof. Suppose that G,G′ ∈ Fh are Ws-linked fibonacenes and h ≡ 0 (mod 4). Using
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formula (1) for these graphs, we have

[u(G)− u(G′) ] (h− 1) =
∑

e∈U(G)

h1(e)h2(e)−
∑

e∈U(G′)

h1(e)h2(e).

Since h is even and u(G)+u(G′) = h− 3, the left hand side of the above equation is odd.

For the linked graphs G and G′, the numbering of cut-edges of U(G) ∪ U(G′) covers all

positions 1,2,...,h−3. If a cut edge e is in odd position, then h1(e)h2(e) is even, otherwise

Table 1. Degeneracy classes of fibonacenes in Fh.

h — the number of rings of fibonacenes;
Self — the number of self-linked fibonacenes;
Ws — the number of Ws-linked fibonacenes;
Max — the maximal cardinality of degeneracy classes;
Ncl — the number of degeneracy classes;
Ntr — the number of non-trivial degeneracy classes;
Noc — the number of non-trivial degeneracy classes with odd cardinality;
Nec — the number of non-trivial degeneracy classes with even cardinality,

Ntr = Noc+Nec.

h |Fh| Self Ws Max Ncl Ntr Noc Nec

4 2 0 0 1 2 0 0 0
5 3 1 0 1 3 0 0 0
6 6 0 0 1 6 0 0 0
7 10 2 0 2 9 1 0 1
8 20 0 0 2 18 2 0 2
9 36 4 0 4 21 11 2 9

10 72 0 2 4 47 19 2 17
11 136 8 0 8 49 35 18 17
12 272 0 0 10 102 68 22 46
13 528 16 4 20 91 73 34 39
14 1056 0 4 20 209 165 76 89
15 2080 32 16 48 155 133 66 67
16 4160 0 0 47 350 314 140 174
17 8256 64 54 118 241 221 94 127
18 16512 0 80 125 547 501 214 287
19 32896 128 184 312 359 339 144 195
20 65792 0 0 312 800 758 334 424
21 131328 256 626 882 505 483 208 275
22 262656 0 430 888 1133 1083 500 583
23 524800 512 1928 2440 699 667 308 359
24 1049600 0 0 2670 1542 1472 658 814
25 2098176 1024 6720 7744 923 889 462 427
26 4196352 0 7788 7813 2029 1969 880 1089
27 8390656 2048 23344 25392 1193 1157 568 589
28 16781312 0 0 24781 2614 2554 1224 1330
29 33558528 4096 74682 78778 1519 1487 730 757
30 67117056 0 57586 80778 3297 3229 1538 1691
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h1(e)h2(e) is odd. Because of h ≡ 0 (mod 4), the number of even positions is even (h− 3

is odd). Therefore, the right hand side of the equation is always even. The obtained

contradiction implies inequalities W (G) 	= W (G′) 	= Ws. �

This result demonstrates that there are no fibonacenes of Fh having Wiener index Ws

when h ≡ 0 (mod 4).

The existence of Ws-linked fibonacenes with even number of rings h ≡ 2 (mod 4) is

supported by computing (see Table 1) and it is a conjecture for large numbers of rings.

In practice, it is quite difficult to get information about degeneracy classes for graphs

with arbitrary number of vertices or rings. Computer calculations are the main tool of in-

vestigations of this kind. Some general properties of the degeneracy classes of fibonacenes

are collected in the following proposition.

Proposition 12. For degeneracy classes of fibonacenes Fh,

(1). If h ≥ 7 is odd, then self-linked and Ws-linked fibonacenes form one degeneracy

class. Its cardinality equals or more than 2(h−5)/2 (equality for h ≤ 11).

(2). If h ≥ 10 is even, then Ws-linked fibonacenes form one degeneracy class when

h ≡ 2 (mod 4). The cardinality of this class is even. If h ≡ 0 (mod 4) then Ws is a

non-realizable value of the Wiener index (conjecture for large h).

(3). If fibonacenes (except of graphs of points (1) and (2)) form a degeneracy class,

then their linked graphs also form a degeneracy class with the same cardinality. The

numbers of non-trivial degeneracy classes with odd or even cardinality are always even.

(4). There are trivial degeneracy classes (helicene, zig-zag fibonacene and others).

A graphical illustration of this proposition is presented in Fig. 5. Table 1 shows some

data of degeneracy classes for fibonacenes with up to 30 rings.

8. Expanding of the Wiener index

Let Z2 = {0, 1}. For binary vectors x = (x1, x1, ..., xn) and y = (y1, y1, ..., yn), define

two operations: x+y = (x1+ y1, x2+ y2, ..., xn+ yn), where 0+0 = 0 and 0+1 = 1+0 =

1 + 1 = 1, and λ · x = (λ · x1, λ · x2, ..., λ · xn) for λ ∈ Z2, where 0 · 0 = 0 · 1 = 1 · 0 = 0

and 1 · 1 = 1. Denote by ei the binary vector ei = (0, 0, ..., 0,
i

1, 00..., 0) of length h− 3 for

positive integer h ≥ 4. These vectors form the standard basis for the vector space B of

dimension h− 3 over Z2.
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Figure 5. Degeneracy classes of fibonacenes Fh.

In this section, we will consider fibonacenes’ codes as vectors. Then a code r(G) of

fibonacene G ∈ Fh, h ≥ 4, can be expressed as a linear combination of the basis vectors

ei, i = 1, 2, ..., h− 3:

r(G) = λ1 e1 + λ2 e2 + ...+ λh−3 eh−3,

where λ1, λ2, ..., λh−3 ∈ Z2. For example, fibonacene’s code r(G) = (00101) has the

following expanding:

r(G) = (00101) = 0 · e1 + 0 · e2 + 1 · e3 + 0 · e4 + 1 · e5.

In order to get expanding for codes of the helicene Hh or for the zig-zag fibonacene

Zh, one can assume λi = 1 or λi = 0 for all i = 1, 2, ..., h− 3, respectively.

Denote by Fi the basis fibonacene of Fh corresponding to the basis vector ei. Since

positions of non-zero elements of vectors ei and eh−2−i are symmetrical, Fi
∼= Fh−2−i for

every i = 1, 2, ..., h− 3. Let Wi = W (Fi).

Proposition 13. If G ∈ Fh and r(G) = λ1 e1 + λ2 e2 + ...+ λh−3 eh−3, then

W (G) = λ1W1 + λ2W2 + ...+ λh−3Wh−3 − (u− 1)Wmax,

where u = λ1 + λ2 + ...+ λh−3 = |U(G)|.
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Proof. Applying formula (1) to every fibonacene Fi, we have

W (F1) = Wmax + 16(h− 1)− 16h11 h12

W (F2) = Wmax + 16(h− 1)− 16h21 h22
...

W (Fh−3) = Wmax + 16(h− 1)− 16hh−3,1 hh−3,2.

Multiplying the i-th equation by λi for every i = 1, 2, ..., h − 3 and then summing the

obtained equations, we get

h−3∑
i=1

λiWi = (u− 1)Wmax +Wmax + 16u(h− 1)− 16
∑

ei∈U(G)

hi1 hi2.

By formula (1), the last three terms in the right hand part of the above equation give the

Wiener index of G. �
Assuming λi = 1 for all i = 1, 2, ..., h − 3, one can calculate the sum of the Wiener

indices for all basis graphs Fi.

Corollary 14. For basis fibonacenes F1, F2, ..., Fh−3 ∈ Fh, h ≥ 4,

W1 +W2 + ...+Wh−3 = Wmin + (h− 4)Wmax

=
1

3
(h− 3)(16h3 + 16h2 + 86h− 37).

Proof. Since equalities λ1 = λ2 = ... = λh−3 = 1 are possible for the helicene only, one

can use formula (1) for Hh with u(Hh) = h− 3. �

Proposition 13 can be applied for the calculating the Wiener indices for subsets of

fibonacenes. Let Sh,2k be the set of all symmetrical fibonacenes G with the odd number of

rings h and with the numbers of cut-edges u(G) = 2k, where 1 ≤ k ≤ (h−3)/2. Since the

first half of fibonacene’s code completely defines the second part, n = |Sh,2k| =
(
(h−3)/2

k

)
.

Proposition 15. For symmetrical fibonacenes of Sh,2k with odd h and u = 2k,

W (Sh,2k) =

(
(h− 5)/2

k − 1

)
(W1 +W2 + ...+Wh−3)−

(
(h− 3)/2

k

)
(2k − 1)Wmax.

Proof. Applying Proposition 13 to every graph G1, G2, ..., Gn ∈ Sh,2k, we have

W (G1) = λ1W1 + λ2W2 + ...+ λh−3Wh−3 − (2k − 1)Wmax

W (G2) = λ1W1 + λ2W2 + ...+ λh−3Wh−3 − (2k − 1)Wmax
...

W (Gn) = λ1W1 + λ2W2 + ...+ λh−3Wh−3 − (2k − 1)Wmax.
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It is easy to see that the value λi = 1 occurs
(
(h−3)/2−1

k−1

)
times in the above equalities for

every i = 1, 2, ..., h− 3. The proof is completed by summing these equalities. �

The expression of Proposition 15 can be rewritten in the form

W (Sh,2k) =
1

3k!2k
(h− 3)(h− 5)(h− 7)(h− 9) · ... · (h− 2k − 1)φ(h, k),

where φ(h, k) = 3Wmax− 16k(h− 1)(h− 2). For small k, we have the following equalities:

W (Sh,2) = (h− 3)(16h3 + 8h2 + 110h− 53)/6,

W (Sh,4) = (h− 3)(h− 5)(16h3 − 8h2 + 158h− 85)/24,

W (Sh,6) = (h− 3)(h− 5)(h− 7)(16h3 − 24h2 + 206h− 117)/144.

As an illustration, consider symmetrical fibonacenes of S11,4. This set contains 6 graphs

with codes (11000011), (10100101), (10011001), (01100110), (01011010), (00111100) and

W (S11,4) = 7583 + 7455 + 7391 + 7263 + 7199 + 7071 = 43962. Using Proposition 15, we

get W (S11,4) = 3 · 64376− 6 · 3 · 8287 = 43962.

9. Wiener index for induced fibonacenes

In this section, we consider fibonacenes induced by subsets of arbitrary vectors from the

space B (vectors may induce isomorphic graphs). Vectors x and y are called orthogonal ,

x⊥y, if x · y =
∑n

i=1 xi · yi = 0. Two vector sets X,Y ⊂ B are called orthogonal if each

vector in X is orthogonal to each vector in Y. For vectors X = {x1,x2, ...,xr}, the set of
all linear combinations {λ1x1 + λ2x2 + ... + λrxr |λ1, λ2, ...., λr ∈ Z2} is called the linear

hull of X and denoted by H(X). The linear hull is always a vector subspace.

Since binary vectors r and r induce a fibonacene and its linked graph, r⊥ r. Using

vectors r and r, one can construct two orthogonal sets of fibonacenes. Namely, if r =

ei1+ei2+...+eik and r = eik+1
+eik+2

+...+eih−3
, then the linear hullsH(ei1 , ei2 , ..., eik) and

H(eik+1
, eik+2

, ..., eih−3
) are orthogonal. Consider a set of basis vectors E = {ei1 , ei2 , ..., eik}

and the corresponding subspace H(E) with cardinality n = |H(E)| = 2k, 1 ≤ k ≤ h− 3.

Let W (X) =
∑

r∈XW (G(r)) for a set of vectors X.

Proposition 16. For the sum of Wiener indices of fibonacenes induced by H(E),

W (H(E)) = 2k−1(Wi1 +Wi2 + ...+Wik)− 2k−1(k − 2)Wmax.

Proof. Applying Proposition 13 to graphs induced by all vectors r1, r2, ..., rn ∈ H(E), we

can write equations for their Wiener indices:
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W (G(r1)) = λi1Wi1 + λi2Wi2 + ...+ λikWik − (u1 − 1)Wmax

W (G(r2)) = λi1Wi1 + λi2Wi2 + ...+ λikWik − (u2 − 1)Wmax
...

W (G(rn)) = λi1Wi1 + λi2Wi2 + ...+ λikWik − (un − 1)Wmax.

The value λim = 1 occurs 2k−1 times in the above equations for every m = 1, 2, ..., k.

Next, u1 + u2 + ... + un = 1
(
k
1

)
+ 2
(
k
2

)
+ ... + k

(
k
k

)
= k2k−1. To complete the proof, it is

sufficient to sum all equations. �

Let E1 = {ei1 , ei2 , ..., eik}, E2 = {eik+1
, eik+2

, ..., eih−3
} and E1∩E2 = ∅, k = (h−3)/2.

Then H1 = H(E1) and H2 = H(E2) are orthogonal sets with equal cardinalities.

Corollary 17. For fibonacenes with h rings induced by vectors of H1 and H2, h ≥ 5,

W (H1) +W (H2) = 2(h−5)/2 (W1 +W2 + ...+Wh−3 − (h− 7)Wmax) .

Consider vector sets E1 = {(1000), (0001)} and E2 = {(0100), (0010)}, h = 7. Then

H1 = {(0000), (1000), (0001), (1001)} and H2 = {(0000), (0100), (0010), (0110)}. By

computer calculations, W (H1) = 2359 + 2295 + 2295 + 2231 = 9180 and W (H2) =

2359 + 2263 + 2263 + 2167 = 9052. From Corollary 17, we have W (H1) + W (H2) =

2(W1 +W2 +W3 +W4) = 2(2295 + 2263 + 2263 + 2295) = 18232.

If a set E contains all basis vectors, H(E) = B.

Corollary 18. For fibonacenes with h rings induced by all vectors of B,

W (B) = 2h−3
(
4h3 + 16h2 + 6h+ 1

)
= |B|Ws.

Proof . By Propositions 16 and Corollary 14, we have

W (B) = 2h−4(h− 3)(16h3 + 16h2 + 86h− 37)/3

− 2k−4(k − 5)(16h3 + 24h2 + 62h− 21)/3

= 2h−4(8h3 + 32h2 + 12h+ 2) = 2h−3(4h3 + 16h2 + 6h+ 1). �

Corollary 18 follows also from a fact that the set of fibonacenes induced by all vectors

of B is complete.

Let Xh,k be the set of vectors of length h − 3 with k units, |Xh,k | =
(
h−3
k

)
. For

example, Xh,1 induces all basis fibonacenes and the helicene is induced by Xh,h−3.

Proposition 19. For the Wiener index of fibonacenes induced by Xh,k,

W (Xh,k) =

(
h− 4

k − 1

)
(W1 +W2 + ...+Wh−3)−

(
h− 3

k

)
(k − 1)Wmax.
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Proof. Applying Proposition 13 to graphs r(G1), r(G2), ..., r(Gn), we get

W (r(G1)) = λ1W1 + λ2W2 + ...+ λh−3Wh−3 − (k − 1)Wmax

W (r(G2)) = λ1W1 + λ2W2 + ...+ λh−3Wh−3 − (k − 1)Wmax
...

W (r(Gn)) = λ1W1 + λ2W2 + ...+ λh−3Wh−3 − (k − 1)Wmax.

The value λi = 1 occurs
(
h−4
k−1

)
times in the above equations for every i = 1, 2, ..., h− 3. �

The equality of the above proposition can be written in the form

W (Xh,k) =
1

3k!
(h− 3)(h− 4)(h− 5)(h− 6) · ... · (h− k − 2)φ(h, k),

where φ(h, k) = 3Wmax − 8k(h− 1)(h− 2). For small k, we have the following equalities:

W (Xh,2) = (h− 3)(h− 4)(16h3 + 8h2 + 110h− 53)/6,

W (Xh,3) = (h− 3)(h− 4)(h− 5)(16h3 + 134h− 69)/18,

W (Xh,4) = (h− 3)(h− 4)(h− 5)(h− 6)(16h3 − 8h2 + 158h− 85)/72.

Consider set X7,2 = {(1100), (1010), (1001), (0110), (0101), (0011)}. Then W (X7,2) =

2199 + 2199 + 2231 + 2167 + 2199 + 2199 = 13194. By the above formula for k = 2, we

have W (X7,2) = (4 · 3 · 6597)/6 = 13194.

From Proposition 15 and 19, we can obtain a relation between the Wiener indices

of symmetrical fibonacenes Sh,2k ⊆ Fh and fibonacenes induced by the vector set Xh,2k:

3W (Xh,2k) = (h− 4)(h− 6) · ... · (h− 2k − 2)W (Sh,2k).

Let X = {r1, r2, ..., rh−3} ⊆ B and r2, r3, ..., rh−3 be obtained from the vector r1 of

length h− 3 by cyclic shifts of its units. These vectors induce h− 3 fibonacenes with the

same numbers of cut-edges u = u(G(r1)) = ... = u(G(rh−3)). Suppose that the value of

W (X) is known and we are interesting in the following question: how to find the number

of cut-edges u in the induced graphs?

Proposition 20. For the number of cut-edges of fibonacenes G(r1), G(r2), ..., G(rh−3),

u =
1

16

(
h− 1

3

)−1(
(h− 3)Wmax −W (X)

)
.

Proof. Applying Proposition 13 to graph G(ri) for every i = 1, 2, ..., h − 3 and then

summing all equalities, we have

W (X) = u(W1 +W2 + ...+Wh−3)− (h− 3)(u− 1)Wmax.

After simplification, we obtain the number of cut-edges in the induced graphs. �
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As an illustration, consider vector r1 = (001011). Then r2 = (100101), r3 = (110010),

r4 = (011001), r5 = (101100), and r6 = (010110). Computer calculating of the Wiener

indices gives W (X) = 25602. By Proposition 20, we can write

u =
1

16
· 1

56

(
6 · 4715− 25602

)
=

1

896

(
28290− 25602

)
= 3.

Remark 1. It is well known that the Wiener index of a tree T with n vertices can be

calculated through eigenvalues λ1 ≥ ... ≥ λn−1 of Laplacian matrix of T [21]:

W (T ) =
1

n

(
1

λ1

+
1

λ2

+ · · ·+ 1

λn−1

)
.

This implies that Laplacian eigenvalues of a branching tree define the Wiener index of

the corresponding fibonacene G with h rings, W (G) = f(h, λ1, . . . , λn−1).

Remark 2. There are explicit relations between the Wiener index and some topo-

logical indices of fibonacenes G ∈ Fh. For the Schultz molecular topological index [7],

MTI(G) = 5W (G)− (12h2 − 14h+5). It is easy to verify that for the Szeged index [18],

Sz(G) = 3W (G)− (16h3 + 24h2 + 158h− 36)/6. This implies that the Wiener index and

these indices have the similar collective properties.

Acknowledgement. The author would like to thank the referee for many helpful sug-
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