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Abstract

The Wiener index of a graph G, denoted byW (G), is the sum of distances between
all pairs of vertices in G. In this paper, we consider the relation between the Wiener
index of a graph G and its line graph L(G). We show that if G is of minimum degree
at least two, then W (G) ≤ W (L(G)). We prove that for every non-negative integer
g0, there exists g > g0, such that there are infinitely many graphs G of girth g,
satisfying W (G) = W (L(G)). This partially answers a question raised by Dobrynin
and Mel’nikov [10] and encourages us to conjecture that the answer to a stronger
form of their question is affirmative.
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1 Introduction

In this paper all graphs are finite, simple and undirected. For a graph G, we

denote by V (G) and E(G) its vertex and edge sets, respectively. All paths and cycles

are simple, i.e., they contain no repeated vertices. A path Pn = x1x2 · · · xn is given
by the sequence of its consecutive vertices. A path whose endvertices are u and v is

called an uv-path. The length of a path P , denoted |P |, is the number of its edges.
A cycle of length k is denoted by Ck.

Given a graph G, its line graph L(G) is a graph such that

• The vertices of L(G) are the edges of G; and

• Two vertices of L(G) are adjacent if and only if their corresponding edges in G
share a common endvertex.

For a vertex v ∈ V (G), we denote by dG(v) the degree of v in G. For the sake of

simplicity we write d(v) if the graph G is clear from the context. For v, u ∈ V (G),

we denote by dG(u, v) (or simply d(u, v)), the length of a shortest path in G between

u and v. For e1, e2 ∈ E(G), we define dG(e1, e2) = dL(G)(e1, e2).

TheWiener index of a graph G, denoted byW (G), is the sum of distances between

all (unordered) pairs of vertices of G, i.e.,

W (G) =
∑

u,v∈V (G)

d(u, v).

The Wiener index is a graph invariant that belongs to the molecules structure-

descriptors called topological indices, which are used for the design of molecules

with desired properties [23]. For details and results on the Wiener index see in

[3, 8, 9, 18, 19, 22, 24, 25, 26] and the references cited therein.

The edge-Wiener index, We, was defined by Iranmanesh et al. [20] as the sum

of distances between all pairs of edges of the underlying (connected) graph. Since

the “distance between edges” can be defined in several non-equivalent ways, they

proposed several edge-Wiener indices, and presented some combinatorial relations

between them. Further results on edge-Wiener indices can be found in [21].

In this paper we consider a version of the edge-Wiener index, where the distance

between two edges of a graph G is defined as the distance of their corresponding
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vertices in L(G), and will be denote by W (L(G)). We emphasize that this index

coincides with the index We0 from [20].

The concept of line graph has various applications in physical chemistry [14, 17].

Recently there has been an interest in understanding the connection between W (G)

and W (L(G)) for a graph G. In particular, it is important to understand when a

graph G satisfies W (G) = W (L(G)). In sequel, we state some results related to those

presented in this paper. For more results on the topic see [6, 7, 11, 12, 14, 16].

Theorem 1.1 (Buckley [4]). For every tree T , W (L(T )) = W (T )− (n
2

)
.

Theorem 1.2 (Gutman [13]). If G is a connected graph with n vertices and q edges,

then

W (L(G)) ≥ W (G)− n(n− 1) + 1
2
q(q + 1).

Theorem 1.3 (Gutman, Pavlović [16]). If G is a connected unicyclic graph with n

vertices, then W (L(G)) ≤ W (G), with equality if and only if G is a cycle of length n.

In Section 2 it will be shown that, if G is of minimum degree at least two, then,

W (G) ≤ W (L(G)), with a strict inequality as soon as G is not a cycle.

For a graph G, it seems difficult to characterize when W (G) = W (L(G)). More-

over, it is not clear on which graph parameters or structural properties the difference

W (G)−W (L(G)) depends.

A connected graph G is isomorphic to L(G) if and only if G is a cycle. Thus, cycles

provide a trivial infinite family of graphs for whichW (G) = W (L(G)). That is, for ev-

ery positive number g there exists a graphG with girth g for whichW (G) = W (L(G)).

In connected bicyclic graphs all the three cases W (L(G)) < W (G), W (L(G)) =

W (G), and W (L(G)) > W (G) occur [16]. It is known that, the smallest bicyclic

graph with the property W (L(G)) = W (G) has 9 vertices and is unique. There are

already 26 ten-vertex bicyclic graphs with the same property [15]. In [10], Dobrynin

and Mel’nikov have constructed infinite family of graphs of girth three and four with

the property W (G) = W (L(G)), and asked the following:

Problem 1.1 (Dobrynin and Mel’nikov [10]). Is it true that for every integer g ≥ 5,
there exists a graph G �= Cg of girth g, for which W (G) = W (L(G))?
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The following is the main result of this paper, and provides a partial answer to

Problem 1.

Theorem 1.4. For every positive integer g0, there exists g ≥ g0 such that there are

infinitely many graphs G of girth g satisfying W (G) = W (L(G)).

Our result encourages us to state the following conjecture. The answer to it for

graphs of girth three and four is affirmative [10].

Conjecture 1.1. For every integer g ≥ 3, there exist infinitely many graphs G of

girth g satisfying W (G) = W (L(G)).

2 Graphs with minimum degree at least two

The following folk lemma is needed for the proof of Theorem 2.1, and states that

the distance between two edges can be bounded by the mean of the distances between

their endvertices. For the sake of completeness we include its proof.

Lemma 2.1. Let G be a graph and e = uv, e′ = u′v′ be two edges of G. Then the

following inequality holds:

d(e, e′) ≥ 1
4

[
d(u, u′) + d(u, v′) + d(v, u′) + d(v, v′)

]
.

Proof. Without loss of generality, we can assume that d(v, v′) = min{d(u, u′), d(u, v′),
d(v, u′), d(v, v′)}. We observe that the following holds:

d(v, u′) ≤ d(v, v′) + 1, d(u, u′) ≤ d(v, v′) + 2, and d(u, v′) ≤ d(v, v′) + 1.

Therefore,

1

4

(
d(u, u′) + d(u, v′) + d(v, u′) + d(v, v′)

)
≤ 1
4
(4 d(v, v′) + 4) = d(v, v′) + 1 = d(e, e′).

The last equality in the above expression holds by minimality of d(v, v′).

The following is the main result of this section.
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Theorem 2.1. Let G be a connected graph with δ(G) ≥ 2. Then,

W (G) ≤ W (L(G)).

Moreover, equality holds only for cycles.

Proof. If G is a cycle, then L(G) is isomorphic to G, and so, equality holds. Hence,

we may assume that G has at least one vertex of degree at least three. By Lemma 2.1,

we obtain a lower bound on W (L(G)):

W (L(G)) =
∑

e,e′∈E(G)

e�=e′

d(e, e′)

≥ 1
4

∑
e=uv∈E(G)

e′=u′v′∈E(G)
e�=e′

(
d(u, u′) + d(u, v′) + d(v, u′) + d(v, v′)

)

=
1

4

[ ∑
u,v∈V (G)
uv �∈E(G)

d(u)d(v)d(u, v) +
∑

u,v∈V (G)
uv∈E(G)

(
d(u)d(v)− 1

)
d(u, v)︸ ︷︷ ︸

=1

]
.

Thus, for the difference W (L(G))−W (G), we obtain the following lower bound:

W (L(G))−W (G) ≥ 1
4

[ ∑
u,v∈V (G)
uv �∈E(G)

d(u)d(v)d(u, v) +
∑

u,v∈V (G)
uv∈E(G)

(
d(u)d(v)− 1

)]
− (1)

∑
u,v∈V (G)

d(u, v)

=
1

4

[ ∑
u,v∈V (G)
uv �∈E(G)

(
d(u)d(v)− 4

)
d(u, v) +

∑
u,v∈V (G)
uv∈E(G)

(
d(u)d(v)− 5

)]
.

(2)

Let G2 be the graph induced by the vertices of degree two in G. Then,

∑
u,v∈V (G2)
uv �∈E(G2)

(
dG(u)dG(v)− 4

)
dG(u, v) = 0, and

∑
u,v∈V (G2)
uv∈E(G2)

(
dG(u)dG(v)− 5

)
= −|E(G2)|.

(3)

From (1) and (3), we obtain
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W (L(G))−W (G) ≥ 1
4

[ ∑
u,v∈V (G)

{u,v}�⊆V (G2)
uv �∈E(G)

(
dG(u)dG(v)− 4

)
dG(u, v)︸ ︷︷ ︸

≥1

+

∑
u,v∈V (G)

{u,v}�⊆V (G2)
uv∈E(G)

(
dG(u)dG(v)− 5︸ ︷︷ ︸

≥1

)
− |E(G2)|

]
.

As G has at least one vertex x of degree at least 3, the above sums are not empty.

Besides, we can ensure that |V (G2)| − 1 ≥ |E(G2)|: indeed, we know that |V (H)| ≥
|E(H)| for any graph H of maximum degree 2 with the equality holds only if H is
2-regular. However, there is in the present situation at least one vertex of degree two

adjacent to a vertex whose degree is strictly larger, as the graph G is connected and

G2 is a proper subgraph of it. So, G2 is not 2-regular, and so, |V (G2)| > |E(G2)|.
Consequently,

W (L(G))−W (G) ≥ 1
4

[ ∑
v∈V (G2)

dG(x, v)− |V (G2)|+ 1
]
≥ 1
4
.

This establishes the theorem.

3 Graphs whose Wiener index is equal to the

Wiener index of their line graphs

As the equality W (L(T )) = W (T ) − (
n
2

)
holds for trees [4], and the equality

W (L(C)) = W (C) holds for cycles, one can expect that there are some graphs G,

comprised of cycles and trees, with property W (L(G)) = W (G). In what follows, we

present one such class of graphs.

For positive integers k, p, q, we define the graph Φ(k, p, q) as follows (see Figure 1

for an illustration). The graph Φ(k, p, q) is simple and comprised of two cycles,
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C1 = u1 · · · u2k+1 and C2 = v1 · · · v2k+1, and two paths Pp = x1 · · · xp and Pq = y1 · · · yq
such that all introduced vertices are distinct except for vertices v1 = u1 = x1 and

y1 = v2k+1 = u2k+1.

Φ(k, p, q) L(Φ(k, p, q))

y1

y2

yq−1

x1

x2

xp−1

u2k+1 v2k+1

u2k v2k

vk+1

vk

v2

v1u1

uk

uk+1

u2

u2k−1 v2k−1

y1

y2

x1

x2

u2k+1 v2k+1

u2k v2k

vk

vk+2

vk+1

v2
v1u1

uk+1

uk+2

uk

u2

xp

yq

Figure 1: Graphs Φ(k, p, q) and L(Φ(k, p, q))

We are now interested in computing the differenceW (L(Φ(k, p, q)))−W (Φ(k, p, q)),
which is determined by the following technical result, and it will be used in the proof

of Theorem 3.2. As the proof is straightforward and rather technical, we present it

in the next section.

Theorem 3.1. For integers, k, p, q ≥ 1, let G = Φ(k, p, q) with girth g = 2k + 1.

Then,

W (L(G))−W (G) =
1

2
(g2 + (p− q)2 + 5(p+ q − 3)− 2g(p+ q − 3)).

We now turn to prove the main theorem of this paper.

Theorem 3.2. For every non-negative integer h, there exist infinitely many graphs

G of girth g = h2 + h+ 9 with W (L(G)) = W (G).
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Proof. Our candidates are Φ graphs defined above. First we prove the following claim:

Claim 1. Let a0, a1, k, such that W (L(Φ(k, a0, a1)) = W (Φ(k, a0, a1)) and a0 < a1.

Then, from a0 and a1, we can build an infinite strictly increasing sequence a0, a1, a2, . . .

of integers such that for every n ≥ 0, W (L(Φ(k, an, an+1))) = W (Φ(k, an, an+1)).

By Theorem 3.1, such a sequence can only exist if the following equation is verified

for all n:

Dn = W (L(Φ(k, an, an+1)))−W (Φ(k, an, an+1))

=
1

2
g2 − gan − gan+1 +

1

2
a2n − anan+1 +

1

2
a2n+1 + 3g +

5

2
(an + an+1)− 15

2
= 0,

where g = 2k + 1. Then,

Dn −Dn+1 = g(an+2 − an)− 1
2
(a2n+2 − a2n) + an+1(an+2 − an)− 5

2
(an+2 − an)

= (an+2 − an)(g − 1
2
(an+2 + an) + an+1 − 5

2
)

= 0.

As we want the sequence to be strictly increasing, it is enough to solve the following

recursive equation:

g − 1
2
(an+2 + an) + an+1 − 5

2
= 0. (4)

It is well known that a solution to (4) is of the form an = cn+pn, where cn = nx+y,

for x, y ∈ R, is the homogeneous solution, and pn = cn2, for c ∈ R, is the particular

solution. An easy calculation gives y = a0, x = (
5
2
+ a1 − g − a0) and c = g − 5

2
.

Hence,

an = (g − 5
2
)n2 + (

5

2
+ a1 − g − a0)n+ a0. (5)

Observe that for every n ≥ 0, an is an integer and an < an+1. As by assumption

a0 and a1 satisfy the equation D0 = 0, the claim follows. ♦

Let k, p, q be positive integers (with g = 2k+1). By Theorem 3.1,W (L(Φ(k, p, q)) =

W (Φ(k, p, q)) if

g = −3 + p+ q +
√
24− 11p− 11q + 4pq. (6)
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Setting p = 3 and q = h2 + 9 for some integer h, one obtains the equation

g = h2 + h + 9. Then, g is an odd positive integer. Consequently, for every h ∈ N

the parameters g = h2 + h + 9, k = 1
2
(g − 1), p = 3, and q = h2 + 9 satisfy

W (L(G)) = W (G). By Claim 1, for every such girth, we can compute an infinite

family of graphs G satisfying the same equation by setting a0 = 3 and a1 = h2 + 9.

Thus, the theorem is proved.

Clearly, the set of integer solutions of (6) is not complete (see Fig.2 for other

infinite families). However, the equation (5) does not have integer solutions for ev-

ery g, thus preventing us from producing an infinite family of graphs G satisfying

W (L(G)) = W (G) for all girths with the Φ family.

p q g 24− 11p− 11q + 4pq
3 h2 + 9 h2 + h+ 9 h2

4 20h2 + 4 20h2 + 10h+ 5 (10h)2

6 13h2 + 12h+ 6 13h2 + 25h+ 15 (13h+ 6)2

6 13h2 + 14h+ 7 13h2 + 27h+ 17 (13h+ 7)2

7 17h2 + 14h+ 6 17h2 + 31h+ 17 (17h+ 7)2

7 17h2 + 20h+ 9 17h2 + 37h+ 23 (17h+ 10)2

9 h2 + 3 h2 + 5h+ 9 (5h)2

10 29h2 + 2h+ 3 29h2 + 31h+ 11 (29h+ 1)2

10 29h2 + 56h+ 30 29h2 + 85h+ 65 (29h+ 28)2

12 37h2 + 30h+ 9 37h2 + 67h+ 31 (37h+ 15)2

12 37h2 + 44h+ 16 37h2 + 81h+ 45 (37h+ 22)2

13 41h2 + 4h+ 3 41h2 + 45h+ 12 (41h+ 2)2

13 41h2 + 78h+ 40 41h2 + 119h+ 86 (41h+ 39)2

16 53h2 + 44h+ 12 53h2 + 97h+ 41 (53h+ 22)2

16 53h2 + 62h+ 21 53h2 + 115h+ 59 (53h+ 31)2

18 61h2 + 116h+ 58 61h2 + 177h+ 123 (61h+ 58)2

18 61h2 + 128h+ 70 61h2 + 189h+ 141 (61h+ 64)2

Figure 2: Families of integer solutions

Theorem 1.4 is an immediate corollary of Theorem 3.2. For every positive in-

teger g0, we can choose a non-negative integer h such that g = h2 + h + 9 ≥ g0.

By Theorem 3.2, it follows that there are infinitely many graphs G of girth g with

W (L(G)) = W (G).
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4 Proof of Theorem 3.1

The proof of Theorem 3.1 follows from the following two lemmas. Their purpose is

to compute the exact value of W (G) and W (L(G)) for the Φ graphs.

Lemma 4.1. Let G be a graph Φ(k, p, q) where k, p, q ≥ 1. Then,

W (G)=W (Pp+q) + 4W (Pq+k) + 4W (Pp+k) + 2W (C2k+1) + 2W (P2k+1) + 2W (P2k)

− 16W (Pk−1)− 4W (Pq)− 4W (Pp)− p(p+ 1)− q(q + 1)− 2(8k2 + k − 2).

Proof. We consider several paths and cycles in G such that each pair of vertices of

G belongs to at least one of these subgraphs. See Figure 1 for the notation. In order

to make our proof more readable, we denote a shortest path between vertices a and

b with P (a, b). The subgraphs we consider are the following:

• The path P (xp, yq) = xpxp−1 · · · x1y1y2 · · · yq of length p+ q − 1.

• The paths P (xp, vk+1) = xpxp−1 · · · x2v1v2 · · · vk+1, P (xp, uk+1) = xpxp−1 · · ·
x2u1u2 · · · uk+1, P (xp, vk+2) = xpxp−1 · · · x1v2k+1v2k · · · vk+2 and P (xp, uk+2) =

xpxp−1 · · · x1u2k+1 u2k · · · uk+2 of length p+ k − 1.

• The paths P (yq, vk+1) = yqyq−1 · · · y2v2k+1v2k · · · vk+1, P (yq, uk+1) = yqyq−1 · · ·
y2u2k+1 u2k · · · uk+1, P (yq, vk) = yqyq−1 · · · y1v1v2 · · · vk and P (yq, uk) = yqyq−1

· · · y1u1u2 · · · uk of length q + k − 1.

• The paths P1(uk+1, vk+1) = uk+1uk · · · u2v1v2 · · · vk+1 and P2(uk+1, vk+1) = uk+1uk+2

· · · u2kv2k+1 v2k · · · vk+1 of length 2k have the same endvertices. Similarly, the

paths P (uk, vk+2) = ukuk−1 · · · u1v2k+1v2k · · · vk+2 and P (uk+2, vk) = uk+2 uk+3

· · · u2k+1v1v2 · · · vk are of length 2k − 1.

• The cycles Cu = u1u2 · · · u2k+1u1 and Cv = v1v2 · · · v2k+1v1 on 2k + 1 vertices.

The following pairs of vertices were considered more than once:

• Pairs of vertices on the paths P (x1, xp), P (y1, yq), P (v2, vk), P (u2, uk), P (vk+2, v2k)

and P (uk+2, u2k) are considered five times.
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• Pair (x1, y1) is on distance 1 and is considered nine times. Similarly pair
(uk+1, vk+1) is on distance 2k and is considered twice.

• Pairs (u1, uk+1), (v1, vk+1), (uk+1, u2k+1) and (vk+1, v2k+1) are on distance k.

Similarly pairs of vertices {(uk+1, a)|a ∈ P (u2, uk)∪P (uk+2, u2k)} and {(vk+1, a)|a ∈
P (v2, vk) ∪ P (vk+2, v2k)} are on distances 1, 2, . . . , k − 1. All of them are con-
sidered three times.

• Pairs of vertices {(x1, a)|a ∈ P (v2, vk)∪P (u2, uk)} and {(y1, a)|a ∈ P (v2k, vk+2)∪
P (u2k, uk+2)} are on distances 1, 2, . . . , k − 1 and are considered five times.

• Pairs of vertices {(x1, a)|a ∈ P (uk+2, u2k) ∪ P (vk+2, v2k)} and {(y1, a)|a ∈
P (u2, uk)∪P (v2, vk)} are on distances 2, 3, . . . , k and are considered three times.

• Pairs of vertices {(x1, a)|a ∈ P (y2, yq)} are on distances 2, 3, . . . , q and {(y1, a)|
a ∈ P (x2, xp)} are on distances 2, 3, . . . , p. They are considered three times.

As the Wiener index of a graph G is the sum of the distances between all pairs of

the vertices, we compute it as a sum of Wiener indices of all observed subgraphs and

subtract the distances between pairs of vertices which were observed more than once.

The distances are multiplied the appropriate number of times. The Wiener index of

the graph Φ(k, p, q) is

W (Φ(k, p, q)) = W (Pp+q) + 2W (Pq+k) + 2W (Pq+k) + 2W (Pp+k) + 2W (Pp+k)

+ 2W (C2k+1) + 2W (P2k+1) + 2W (P2k)− 16W (Pk−1)− 4W (Pq)

− 4W (Pp)− 8 · 1− 2k − 4 · 2 · k − 4 · 2(1 + 2 + · · ·+ k − 1)
− 4 · 4(1 + 2 + · · ·+ k − 1)− 4 · 2(2 + 3 + · · ·+ k)

− 2(2 + 3 + · · ·+ q)− 2(2 + 3 + · · ·+ p)

= W (Pp+q) + 4W (Pq+k) + 4W (Pp+k) + 2W (C2k+1) + 2W (P2k+1)

+ 2W (P2k)− 16W (Pk−1)− 4W (Pq)− 4W (Pp)− p2 − p− q2 − q

− 16k2 − 2k + 4.
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Lemma 4.2. Let G = Φ(k, p, q) where k, p, q ≥ 1. Then,

W (L(G)) = W (Pp+q−1) + 2W (Pq+k−1) + 2W (Pq+k) + 2W (Pp+k−1) + 2W (Pp+k)

+ 2W (C2k+1) + 2W (P2k) + 2W (P2k+1)− 16W (Pk)− 4W (Pq−1)

− 4W (Pp−1)− p(p− 1)− q(q − 1)− 4k(k + 1).

Proof. As done in the proof of the previous lemma, we consider paths and cycles in

L(Φ(k, p, q)) such that each pair of vertices L(φ(k, p, q)) belongs to at least one of

these subgraphs. The subgraphs we consider are the following:

• The path P (xp−1, yq−1) = xp−1xp−2 · · · x1v2k+1y1y2 · · · yq−1 of length p+ q − 2.

• The paths P (xp−1, vk) = xp−1xp−2 · · · x1v1v2 · · · vk, P (xp−1, uk) = xp−1xp−2 · · ·
x1u1 u2 · · · uk of length p + k − 2 and the paths P (xp−1, vk+1) = xp−1xp−2 · · ·
x1v2k+1v2k · · · vk+1, P (xp−1, uk+1) = xp−1 xp−2 · · · x1u2k+1u2k · · · uk+1 of length

p+ k − 1.

• The paths P (yq−1, vk+1) = yq−1yq−2 · · · y1v2kv2k−1 · · · vk+1, P (yq−1, uk+1) = yq−1yq−2

· · · y1u2ku2k−1 · · · uk+1 of length q + k − 2 and the paths P (yq−1, vk) = yq−1yq−2

· · · y1v2k+1 v1v2 · · · vk, P (yq−1, uk) = yq−1yq−2 · · · y1 u2k+1u1u2 · · · uk of length
q + k − 1.

• The paths P (uk, vk) = ukuk−1 · · · u1v1v2 · · · vk, P (uk+1, vk+1) = uk+1uk+2 · · ·
u2kv2k v2k−1 · · · vk+1 of length 2k − 1 and the paths P (uk, vk+1) = ukuk−1 · · ·
u1v2k+1v2k · · · vk+1, P (uk+1, vk) = uk+1uk+2 · · · u2k+1v1v2 · · · vk of length 2k.

• The cycles Cu = u1u2 · · · u2k+1u1 and Cv = v1v2 · · · v2k+1v1 on 2k + 1 vertices.

The pairs of vertices which were observed more than once are the following:

• Pairs of vertices on the paths P (x1, xp−1), P (y1, yq−1), P (v1, vk), P (u1, uk),

P (vk+1, v2k) and P (uk+1, u2k) are considered five times.

• Pairs of vertices {(v2k+1, a)|a ∈ P (u1, uk)∪P (v1, vk)∪P (uk+1, u2k)∪P (vk+1, v2k)}
are on distances 1, 2, . . . , k and are considered three times.
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• Pairs of vertices {(v2k+1, a)|a ∈ P (y1, yq−1)} are on distances 1, 2, . . . , q − 1
and are considered three times. Similarly pairs of vertices {(v2k+1, a)|a ∈
P (x1, xp−1)} are on distances 1, 2, . . . , p− 1 and are considered three times.

The Wiener index is calculated as a difference between a sum of Wiener indices of all

observed subgraphs and corresponding multiplication of distances between different

pairs of vertices which were observed more than once:

W (L(G)) = W (Pp+q−1) + 2W (Pq+k−1) + 2W (Pq+k) + 2W (Pp+k−1) + 2W (Pp+k)

+ 2W (C2k+1) + 2W (P2k) + 2W (P2k+1)− 16W (Pk)− 4W (Pq−1)

− 4W (Pp−1)− 4 · 2(1 + 2 + · · ·+ k)

− 2(1 + 2 + · · ·+ q − 1)− 2(1 + 2 + · · ·+ p− 1))
= W (Pp+q−1) + 2W (Pq+k−1) + 2W (Pq+k) + 2W (Pp+k−1) + 2W (Pp+k)

+ 2W (C2k+1) + 2W (P2k) + 2W (P2k+1)− 16W (Pk)− 4W (Pq−1)

− 4W (Pp−1)− p2 + p− q2 + q − 4k2 − 4k.

Proof of Theorem 3.1. By Lemmas 4.1 and 4.2, it follows that

W (L(G))−W (G) = W (Pp+q−1)−W (Pp+q) + 2(W (Pq+k−1)−W (Pq+k))

+ 2(W (Pp+k−1)−W (Pp+k)) + 4(W (Pq)−W (Pq−1))

+ 4(W (Pp)−W (Pp−1)) + 16(W (Pk−1)−W (Pk))

+ p+ q − 4k2 − 4k + p+ q + 16k2 + 2k − 4.
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The Wiener index of a path with n vertices being W (Pn) =
(
n+1
3

)
[2], we have

W (L(G))−W (G) =

(
p+ q

3

)
−
(
p+ q + 1

3

)
+ 2

((
q + k

3

)
−
(
q + k + 1

3

))

+ 2

((
p+ k

3

)
−
(
p+ k + 1

3

))
+ 4

((
q + 1

3

)
−
(
q

3

))

+ 4

((
p+ 1

3

)
−
(
p

3

))
+ 16

((
k

3

)
−
(
k + 1

3

))

+ 2(p+ q) + 12k2 − 2k − 4
= −

(
p+ q

2

)
− 2
(
q + k

2

)
− 2
(
p+ k

2

)
+ 4

(
q

2

)
+ 4

(
p

2

)

− 16
(
k

2

)
+ 2(p+ q) + 12k2 − 2k − 4

=
1

2
(−8 + 4k2 + 3p+ (p− q)2 + 3q − 4k(−4 + p+ q)).

If we set k = (g − 1)/2, we obtain the claimed formula

W (L(G))−W (G) =
1

2
(g2 + (p− q)2 + 5(p+ q − 3)− 2g(p+ q − 3)).

4.1 Wiener index and Combinatorial Nullstellensatz

We bring to the reader’s attention the fact that the polynomials given in Theo-

rem 3.2 can be easily obtained through polynomial interpolation with the help of a

computer. Indeed, the above proofs can be massively shortened and simplified if one

only needs to show that both W (G) and W (L(G)) are low-degree polynomials on the

variables k, p and q.

Once bounds on the degree of each variable in the polynomials W (L(Φ(k, p, q)))

andW (Φ(k, p, q)) have been derived, it is easy to define a (small) set of representatives

of the Φ family which are sufficient to define exactly the corresponding polynomials

using the Combinatorial Nullstellensatz [1] (less than 30 different graphs in the present

case).

This way, a computer can be made to answer very quickly the following question:

“given a graph family G depending on several parameters p1, . . . , pl, what is the
general formula of W (G(p1, . . . , pl)) − W (L(G(p1, . . . , pl)))?”. This is of great help
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when looking for graphs G satisfying the equation W (G) = W (L(G)), as it reduces

the problem to finding the integral zeros of a multivariate polynomial (which is not

by itself an easy question).

This approach has to be considered when trying to find more classes of graphs

satisfying the above constraint, especially when the Φ family used here can be modi-

fied in so many ways: one could like to attach paths to the cycles at different points,

set two different sizes for the cycles, or to attach trees instead of paths, etc.
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systems, Acta Appl. Math. 72 (2002) 247–294.

[10] A. A. Dobrynin and L. S. Mel’nikov, Some results on the Wiener index of iterated
line graphs, Electron. Notes Discrete Math. 22 (2005) 469–475.

[11] A. A. Dobrynin and L. S. Mel’nikov, Wiener index for graphs and their line
graphs with arbitrary large cyclomatic numbers, Appl. Math. Lett. 18 (2005)
307–312.

-697-



[12] A. A. Dobrynin and L. S. Mel’nikov, Wiener index, line graph and the cyclomatic
number, MATCH Commun. Math. Comput. Chem. 53 (2005) 209–214.

[13] I. Gutman. Distance of line graphs, Graph Theory Notes N. Y. 31 (1996) 49–52.

[14] I. Gutman and E. Estrada, Topological indices based on the line graph of the
molecular graph, J. Chem. Inf. and Comput. Sci. 36 (1996) 541–543.
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