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Abstract

TheWiener index of a connected graph is the sum of topological distances

between all pairs of vertices. Wang in [28] gave a mistaken result on the

maximumWiener index of trees with given degree sequence. In this paper

we investigate the maximum Wiener index of trees with given degree

sequences and the extremal trees which attain the maximum value.

1 Introduction

The Wiener index of a molecular graph, introduced by Wiener [30] in 1947, is one

of the oldest and most widely used topological index in the quantitative structure

property relationships. In the mathematical literature, the Wiener index seems to

be first studied by Entringer et al. [6]. For more information and background, the
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readers may refer to a recent and very comprehensive survey [5] and a book [24],

which is dedicated to Harry Wiener, on the Wiener index and the references therein.

For some most recent research on the Wiener index see [1, 3, 15, 18, 27, 29, 31].

Through this paper, all graphs are finite, simple and undirected. Let 𝐺 = (𝑉, 𝐸)

be a simple connected graph with vertex set 𝑉 (𝐺) = {𝑣1, . . . , 𝑣𝑛} and edge set 𝐸(𝐺) .
Denote by 𝑑𝐺(𝑣𝑖) (or for short 𝑑(𝑣𝑖)) the degree of vertex 𝑣𝑖 . The distance between

vertices 𝑣𝑖 and 𝑣𝑗 is the minimum number of edges between 𝑣𝑖 and 𝑣𝑗 and denoted by

𝑑𝐺(𝑣𝑖, 𝑣𝑗) (or for short 𝑑(𝑣𝑖, 𝑣𝑗)). TheWiener index of a connected graph 𝐺 is defined

as

𝑊 (𝐺) =
∑

{𝑣𝑖,𝑣𝑗}⊆𝑉 (𝐺)

𝑑(𝑣𝑖, 𝑣𝑗) . (1)

A tree is a connected and acyclic graph. A caterpillar is a tree in which a single

path (called Spine) is incident to (or contains) every edge. For other terminology and

notions, we follow from [2].

Entringer et al. [6] proved that the path 𝑃𝑛 and the star𝐾1,𝑛−1 have the maximum

and minimum Wiener indices, respectively, in the set consisting of all trees of order

𝑛 . Dankelmann [4] obtained the all extremal graphs in the set of all connected

graphs with given the order and the matching number which attained the maximum

Wiener value. Moreover, Fischermann et al. [8] and Jelen et al. [16] independently

determined all trees which have the minimum Wiener indices among all trees of

order 𝑛 and maximum degree Δ . A nonincreasing sequence of nonnegative integers

𝜋 = (𝑑1, 𝑑2, . . . , 𝑑𝑛) is called graphic if there exists a simple graph having 𝜋 as its

vertex degree sequence. Hence it is natural to consider the following problem.

Problem 1.1 Let 𝜋 = (𝑑1, . . . , 𝑑𝑛) be graphic degree sequence and

𝒢𝜋 = {𝐺 : the degree sequence of 𝐺 is 𝜋} .

Find the upper (lower) bounds for the Wiener index of all graphs 𝐺 in 𝒢𝜋 and char-

acterize all extremal graphs which attain the upper (lower) bounds.

Moreover, we call a graph maximum (minimum) optimal if it maximizes (minimizes)

the Wiener index in 𝒢𝜋 . Recently, by the different techniques, Wang [28] and Zhang et
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al. [32] independently characterized the tree that minimizes the Wiener index among

trees of given degree sequences. Moreover, they proved that the minimum optimal

trees for a given tree degree sequence 𝜋 are unique. On the other hand, Wang in

[28] also ”proved” the only maximum optimal tree that maximizes the Wiener index

among trees of given degree sequences. The result can be stated as follows:

Theorem 1.2 [28] Given the degree sequence and the number of vertices, the greedy

caterpillar maximizes the Wiener index, where the greedy caterpillar with degree se-

quence (𝑑1, . . . , 𝑑𝑛) (𝑑1 ≥ 𝑑2 ≥ ⋅ ⋅ ⋅ ≥ 𝑑𝑘 ≥ 2 > 𝑑𝑘+1 = 1) is formed by attaching

pending edges to a path 𝑣1, 𝑣2, . . . , 𝑣𝑘 of length 𝑘 − 1 such that

𝑑(𝑣1) ≥ 𝑑(𝑣𝑘) ≥ 𝑑(𝑣2) ≥ 𝑑(𝑣𝑘−1) ≥ ⋅ ⋅ ⋅ ≥ 𝑑(𝑣⌈ 𝑘+1
2

⌉) .

Unfortunately, this result is not correct. For example:

Example 1.3 Let 𝜋 = (13, 5, 5, 5, 4, 3, 1, . . . , 1) be a degree sequence of tree with 31

vertices. Let 𝑇1 and 𝑇2 be two trees with degree sequences 𝜋 (see Fig.1).
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Figure 1 𝑇1 and 𝑇2

Clearly, 𝑇2 is a greedy caterpillar and 𝑇1 is not a greedy caterpillar. Moreover, they

have the same degree sequences 𝜋 . By calculation, it is easy to see that

𝑊 (𝑇2) = 9870 < 𝑊 (𝑇1) = 9886 .
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Hence this example illustrates that Theorem 1.2 in [28] is not correct.

Motivated by Problem 1.1 and Example 1.3, we try to investigate the extremal

trees which attain the maximum Wiener index among all trees with given degree

sequences. The problem seems to be difficult. Because we find that the extremal

tree depends on the values of components of degree sequences. The rest of the paper

is organized as follows. In Section 2, we discuss some properties of the extremal

tree with the maximum Wiener index and give an upper bound in terms of degree

sequences. In Section 3, the extremal trees with the maximum Wiener index among

given degree sequences (𝑑1, . . . , 𝑑𝑛) , where 𝑑1 ≥ ⋅ ⋅ ⋅ ≥ 𝑑𝑘 ≥ 2 > 𝑑𝑘+1 = 1 and 𝑘 ≤ 6
are characterized. Moreover, the extremal maximal trees are not unique.

2 Properties of extremal trees with the maximum

Wiener index

Let 𝒯𝜋 be the set of all trees with degree sequences 𝜋 = (𝑑1, 𝑑2, . . . , 𝑑𝑛) with 𝑑1 ≥
𝑑2 ≥ ⋅ ⋅ ⋅ ≥ 𝑑𝑛 . Shi in [26] proved that a maximum optimal tree must be a caterpillar.

Lemma 2.1 [26] Let 𝑇 ∗ be a maximum optimal tree in 𝒯𝜋 . Then 𝑇 ∗ is a caterpillar.

From Lemma 2.1, we only need to consider all caterpillars with a degree sequence 𝜋 .

In order to study the structure of the maximum optimal trees, we present a formula

for Wiener index of any caterpillar.

Lemma 2.2 Let 𝑇 be a caterpillar of order 𝑛 with the degree sequence

𝜋 = (𝑑(𝑣1), . . . , 𝑑(𝑣𝑘), 𝑑(𝑣𝑘+1), . . . , 𝑑(𝑣𝑛)) (see Figure 2).
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Figure 2 𝑇
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If 𝑑(𝑣𝑖) = 𝑦𝑖 + 1 ≥ 2 for 𝑖 = 1, . . . , 𝑘 and 𝑑(𝑣𝑘+1) = ⋅ ⋅ ⋅ = 𝑑(𝑣𝑛) = 1 , then

𝑊 (𝑇 ) = (𝑛− 1)2 + 𝐹 (𝑦1, . . . , 𝑦𝑘), (2)

where

𝐹 (𝑦1, . . . , 𝑦𝑘) =
𝑘−1∑
𝑖=1

⎛
⎝ 𝑖∑

𝑗=1

𝑦𝑗

⎞
⎠
⎛
⎝ 𝑘∑

𝑗=𝑖+1

𝑦𝑗

⎞
⎠ . (3)

Proof. It is well known [14] that the formula (1) is equal to

𝑊 (𝑇 ) =
∑
𝑒

𝑛1(𝑒)𝑛2(𝑒)

where 𝑒 = (𝑢, 𝑣) is an edge of 𝑇 , and 𝑛1(𝑒) (resp. 𝑛2(𝑒)) is the number of vertices

of the component of 𝑇 − 𝑒 containing 𝑢 (resp. 𝑣). For 𝑒𝑖 = (𝑣𝑖, 𝑣𝑖+1) ∈ 𝐸(𝑇 ), the

numbers of vertices of the two components of 𝑇 − 𝑒𝑖 are
∑𝑖

𝑗=1 𝑑(𝑣𝑗) − (𝑖 − 1) and∑𝑘
𝑗=𝑖+1 𝑑(𝑣𝑗)− (𝑘 − 𝑖− 1) for 𝑖 = 1, . . . , 𝑘 − 1, respectively. Hence

𝑊 (𝑇 ) =
∑

𝑒∈𝐸(𝑇 )

𝑛1(𝑒)𝑛2(𝑒)

=
∑

𝑒 is pendent edge

𝑛1(𝑒)𝑛2(𝑒) +
∑

𝑒 is not pendent edge

𝑛1(𝑒)𝑛2(𝑒)

= (𝑛− 1)(𝑛− 𝑘) +
𝑘−1∑
𝑖=1

⎛
⎝ 𝑖∑

𝑗=1

𝑑(𝑣𝑗)− (𝑖− 1)
⎞
⎠
⎛
⎝ 𝑘∑

𝑗=𝑖+1

𝑑(𝑣𝑗)− (𝑘 − 𝑖− 1)
⎞
⎠

= (𝑛− 1)(𝑛− 𝑘) +
𝑘−1∑
𝑖=1

⎛
⎝1 + 𝑖∑

𝑗=1

𝑦𝑗

⎞
⎠
⎛
⎝1 + 𝑘∑

𝑗=𝑖+1

𝑦𝑗

⎞
⎠

= (𝑛− 1)(𝑛− 𝑘) + (𝑘 − 1)
⎛
⎝1 + 𝑘∑

𝑗=1

𝑦𝑗

⎞
⎠+ 𝑘−1∑

𝑖=1

⎛
⎝ 𝑖∑

𝑗=1

𝑦𝑗

⎞
⎠
⎛
⎝ 𝑘∑

𝑗=𝑖+1

𝑦𝑗

⎞
⎠

= (𝑛− 1)2 + 𝐹 (𝑦1, . . . , 𝑦𝑘),

where last equality is due to
∑𝑘

𝑗=1 𝑦𝑗 =
∑𝑘

𝑗=1 𝑑(𝑣𝑗)−𝑘 = 2(𝑛−1)−(𝑛−𝑘)−𝑘 = 𝑛−2 .
This completes the proof.

Remark In this sequel, the caterpillar 𝑇 in Lemma 2.2 is denoted by 𝑇 (𝑦1, . . . , 𝑦𝑘) .

Then degree sequence of 𝑇 (𝑦1, . . . , 𝑦𝑘) is (𝑦1 + 1, . . . , 𝑦𝑘 + 1, 1, . . . , 1) . The following

theorem give a characterization of a maximum optimal tree.
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Theorem 2.3 Let 𝜋 = (𝑑1, . . . , 𝑑𝑛) with 𝑑1 ≥ ⋅ ⋅ ⋅ ≥ 𝑑𝑘 ≥ 2 ≥ 𝑑𝑘+1 = ⋅ ⋅ ⋅ = 𝑑𝑛 = 1 .

Then 𝑇 is a maximum optimal tree in 𝒯𝜋 if and only if 𝑇 is a caterpillar 𝑇 (𝑥1, . . . , 𝑥𝑘)

and (𝑥1, . . . , 𝑥𝑘) satisfies

𝐹 (𝑥1, . . . , 𝑥𝑘) = max

⎧⎨
⎩𝐹 (𝑦1, . . . , 𝑦𝑘) =

𝑘−1∑
𝑖=1

⎛
⎝ 𝑖∑

𝑗=1

𝑦𝑗

⎞
⎠
⎛
⎝ 𝑘∑

𝑗=𝑖+1

𝑦𝑗

⎞
⎠ : 𝑦1 ≥ 𝑦𝑘

⎫⎬
⎭ , (4)

where (𝑦1, . . . , 𝑦𝑘) is any permutation of (𝑑1 − 1, . . . , 𝑑𝑘 − 1) .
Proof. Necessity. Since 𝑇 is a maximum optimal tree in 𝒯𝜋 , by Lemmas 2.1, 𝑇

must be a caterpillar and can be denoted by 𝑇 (𝑧1, . . . , 𝑧𝑘) with (𝑧1, . . . , 𝑧𝑘) is the

permutation of (𝑑1 − 1, . . . , 𝑑𝑘 − 1) . Moreover, by Lemma 2.2, we have

𝑊 (𝑇 (𝑧1, . . . , 𝑧𝑘)) = (𝑛− 1)2 + 𝐹 (𝑧1, . . . , 𝑧𝑘).

For any permutation (𝑦1, . . . , 𝑦𝑘) of (𝑑1 − 1, . . . , 𝑑𝑘 − 1) with 𝑦1 ≥ 𝑦𝑘 , there exists a

caterpillar 𝑇1 with the degree sequence 𝜋 such that

𝑊 (𝑇1) = (𝑛− 1)2 + 𝐹 (𝑦1, . . . , 𝑦𝑘).

Because 𝑇 (𝑧1, . . . , 𝑧𝑘) is a maximum optimal tree in 𝒯𝜋 , we have

𝐹 (𝑦1, . . . , 𝑦𝑘) = 𝑊 (𝑇1)− (𝑛− 1)2 ≤ 𝑊 (𝑇 (𝑧1, . . . , 𝑧𝑘))− (𝑛− 1)2 = 𝐹 (𝑧1, . . . , 𝑧𝑘).

Sufficiency. If 𝑇 is a caterpillar 𝑇 (𝑥1, . . . , 𝑥𝑘) and (𝑥1, . . . , 𝑥𝑘) satisfies

𝐹 (𝑥1, . . . , 𝑥𝑘) = max

⎧⎨
⎩𝐹 (𝑦1, . . . , 𝑦𝑘) =

𝑘−1∑
𝑖=1

⎛
⎝ 𝑖∑

𝑗=1

𝑦𝑗

⎞
⎠
⎛
⎝ 𝑘∑

𝑗=𝑖+1

𝑦𝑗

⎞
⎠ : 𝑦1 ≥ 𝑦𝑘

⎫⎬
⎭ (5)

where the maximum is taken over all permutations (𝑦1, . . . , 𝑦𝑘) of (𝑑1 − 1, . . . , 𝑑𝑘 −
1) . Let 𝑇1 be any tree with the degree sequence 𝜋 . By Lemma 2.1, there exists a

caterpillar 𝑇2 with the degree sequence 𝜋 such that 𝑊 (𝑇1) ≤ 𝑊 (𝑇2) . Then 𝑇2 must

be 𝑇 (𝑦1, . . . , 𝑦𝑘) , where (𝑦1, . . . , 𝑦𝑘) is the permutation of (𝑑1 − 1, . . . , 𝑑𝑘 − 1) . Hence

𝑊 (𝑇1) ≤ 𝑊 (𝑇2) = (𝑛− 1)2 + 𝐹 (𝑦1, . . . , 𝑦𝑘) ≤ (𝑛− 1)2 + 𝐹 (𝑥1, . . . , 𝑥𝑘)

= 𝑊 (𝑇 (𝑥1, . . . , 𝑥𝑘)) .

Therefore 𝑇 (𝑥1, . . . , 𝑥𝑘) is a maximum optimal tree. This completes the proof.

Now we can present an upper bound for the Wiener index of any tree with given

degree sequence 𝜋 in terms of degree sequences.
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Theorem 2.4 Let 𝑇 be a tree with a given degree sequence 𝜋 = (𝑑1, . . . , 𝑑𝑛) , where

𝑑1 ≥ ⋅ ⋅ ⋅ ≥ 𝑑𝑘 > 𝑑𝑘+1 = ⋅ ⋅ ⋅ = 𝑑𝑛 = 1 . Then

𝑊 (𝑇 ) ≤ (𝑛− 1)2 + 𝑘(𝑘 − 1)
4

𝑘∑
𝑖=1

(𝑑𝑖 − 1)2 (6)

with equality if and only if 𝑘 = 2 and 𝑑1 = 𝑑2 .

Proof. Let 𝑇 (𝑥1, . . . , 𝑥𝑘) be a caterpillar and (𝑥1, . . . , 𝑥𝑘) satisfy

𝐹 (𝑥1, . . . , 𝑥𝑘) = max{𝐹 (𝑦1, . . . , 𝑦𝑘) =
𝑘−1∑
𝑖=1

⎛
⎝ 𝑖∑

𝑗=1

𝑦𝑗

⎞
⎠
⎛
⎝ 𝑘∑

𝑗=𝑖+1

𝑦𝑗

⎞
⎠ : 𝑦1 ≥ 𝑦𝑘} (7)

where (𝑦1, . . . , 𝑦𝑘) is any permutation of (𝑑1−1, . . . , 𝑑𝑘−1) . By Theorem 2.3,𝑊 (𝑇 ) ≤
𝑊 (𝑇 (𝑥1, . . . , 𝑥𝑘)) . Clearly,

𝐹 (𝑥1, . . . , 𝑥𝑘) =
𝑘−1∑
𝑖=1

⎛
⎝ 𝑖∑

𝑗=1

𝑥𝑗

⎞
⎠
⎛
⎝ 𝑘∑

𝑗=𝑖+1

𝑥𝑗

⎞
⎠ = 1

2
(𝑥1, . . . , 𝑥𝑘)𝐶(𝑥1, . . . , 𝑥𝑘)

𝑇

where

𝐶 =

⎛
⎜⎜⎜⎜⎜⎝

0 1 2 ⋅ ⋅ ⋅ 𝑘 − 2 𝑘 − 1
1 0 1 ⋅ ⋅ ⋅ 𝑘 − 3 𝑘 − 2
. . . ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
𝑘 − 1 𝑘 − 2 𝑘 − 3 ⋅ ⋅ ⋅ 1 0

⎞
⎟⎟⎟⎟⎟⎠ .

By Perron-Frobenius theorem (for example, see [13]), the largest eigenvalue 𝜆1(𝐶) of

𝐶 is at most 𝑘(𝑘−1)
2
with equality if and only if 𝑘 = 2 . Hence by Rayleigh quotient,

(𝑥1, . . . , 𝑥𝑘)𝐶(𝑥1, . . . , 𝑥𝑘)
𝑇 ≤ 𝜆1(𝐶)

𝑘∑
𝑖=1

𝑥2𝑖

with equality if and only if (𝑥1, . . . , 𝑥𝑘)
𝑇 is an eigenvector of 𝐶 corresponding to the

eigenvalue 𝜆1(𝐶) . Therefore,

𝐹 (𝑥1, . . . , 𝑥𝑘) ≤ 𝑘(𝑘 − 1)
4

𝑘∑
𝑖=1

𝑥2𝑖

with equality if and only if 𝑘 = 2 and 𝑥1 = 𝑥2 . Hence

𝑊 (𝑇 ) ≤ (𝑛− 1)2 + 𝑘(𝑘 − 1)
4

𝑘∑
𝑖=1

𝑥𝑖
2 ≤ (𝑛− 1)2 + 𝑘(𝑘 − 1)

4

𝑘∑
𝑖=1

(𝑑𝑖 − 1)2

with equality if and only if 𝑘 = 2 and 𝑑1 = 𝑑2 , since (𝑑(𝑣1), . . . , 𝑑(𝑣𝑘)) is a permutation

of (𝑑1, . . . , 𝑑𝑘) . This completes the proof.
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Lemma 2.5 Let 𝑤1 ≥ 𝑤2 ≥ ⋅ ⋅ ⋅ ≥ 𝑤𝑘 ≥ 1 be the positive integers with 𝑘 ≥ 5 . Let

𝐹 (𝑧1, . . . , 𝑧𝑘) = max

⎧⎨
⎩𝐹 (𝑦1, . . . , 𝑦𝑘) =

𝑘−1∑
𝑖=1

⎛
⎝ 𝑖∑

𝑗=1

𝑦𝑗

⎞
⎠
⎛
⎝ 𝑘∑

𝑗=𝑖+1

𝑦𝑗

⎞
⎠ : 𝑦1 ≥ 𝑦𝑘

⎫⎬
⎭

where (𝑦1, . . . , 𝑦𝑘) is any permutation of (𝑤1, . . . , 𝑤𝑘) . Then there exists a 2 ≤ 𝑡 ≤
𝑘 − 2 such that the following holds:

𝑧1 + ⋅ ⋅ ⋅+ 𝑧𝑡−2 ≤ 𝑧𝑡+1 + ⋅ ⋅ ⋅+ 𝑧𝑘 (8)

and

𝑧1 + ⋅ ⋅ ⋅+ 𝑧𝑡−1 > 𝑧𝑡+2 + ⋅ ⋅ ⋅+ 𝑧𝑘 . (9)

Further, if equations (8) is strict, then

𝑧1 ≥ 𝑧2 ≥ ⋅ ⋅ ⋅ ≥ 𝑧𝑡, 𝑧𝑡 ≤ 𝑧𝑡+1 ≤ ⋅ ⋅ ⋅ ≤ 𝑧𝑘 . (10)

If equations (8) becomes equality, then

𝑧1 ≥ 𝑧2 ≥ ⋅ ⋅ ⋅ ≥ 𝑧𝑡, 𝑧𝑡 ≤ 𝑧𝑡+1 ≤ ⋅ ⋅ ⋅ ≤ 𝑧𝑘 (11)

or

𝑧1 ≥ 𝑧2 ≥ ⋅ ⋅ ⋅ ≥ 𝑧𝑡−1, 𝑧𝑡−1 ≤ 𝑧𝑡 ≤ ⋅ ⋅ ⋅ ≤ 𝑧𝑘 . (12)

Proof. Let

𝑓(𝑝) =
𝑝−2∑
𝑖=1

𝑧𝑖 −
𝑘∑

𝑖=𝑝+1

𝑧𝑖, 2 ≤ 𝑝 ≤ 𝑘 − 2 .

Clearly 𝑓(2) < 0 , 𝑓(𝑘 − 1) > 0 and

𝑓(2) ≤ 𝑓(3) ≤ ⋅ ⋅ ⋅ ≤ 𝑓(𝑘 − 1) .

Hence there exists a 2 ≤ 𝑡 ≤ 𝑘 − 2 such that 𝑓(𝑡) ≤ 0 and 𝑓(𝑡 + 1) > 0 . In other
words, equations (8) and (9) hold. By the definition of 𝐹 (𝑧1, . . . , 𝑧𝑘), we have for

1 ≤ 𝑖 ≤ 𝑘 − 1 ,

0 ≤ 𝐹 (𝑧1, . . . , 𝑧𝑖−1, 𝑧𝑖, 𝑧𝑖+1, . . . , 𝑧𝑘)− 𝐹 (𝑧1, . . . , 𝑧𝑖−1, 𝑧𝑖+1, 𝑧𝑖, . . . , 𝑧𝑘)

= (𝑧𝑖+1 − 𝑧𝑖)

⎛
⎝𝑖−1∑

𝑗=1

𝑧𝑗 −
𝑘∑

𝑗=𝑖+2

𝑧𝑗

⎞
⎠ .
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But for 1 ≤ 𝑖 ≤ 𝑡 − 2 , by (8), we have ∑𝑖−1
𝑗=1 𝑧𝑗 <

∑𝑘
𝑗=𝑖+2 𝑧𝑗 . Hence 𝑧1 ≥ ⋅ ⋅ ⋅ ≥ 𝑧𝑡−1 .

On the other hand, for 𝑡 ≤ 𝑖 ≤ 𝑘−1 , by (9), we have ∑𝑖−1
𝑗=1 𝑧𝑗 >

∑𝑘
𝑗=𝑖+2 𝑧𝑗 . Therefore

𝑧𝑡 ≤ 𝑧𝑡+1 ⋅ ⋅ ⋅ ≤ 𝑧𝑘 .

If (8) is strict, then (𝑧1+ ⋅ ⋅ ⋅+𝑧𝑡−2)−(𝑧𝑡+1+ ⋅ ⋅ ⋅+𝑧𝑘) < 0 , which implies 𝑧𝑡−1 ≥ 𝑧𝑡 .

So (10) holds.

If (8) becomes equality, i.e., 𝑧1+ ⋅ ⋅ ⋅+ 𝑧𝑡−2 = 𝑧𝑡+1+ ⋅ ⋅ ⋅+ 𝑧𝑘 , then it is easy to see
that (11) or (12) holds. This completes the proof.

Corollary 2.6 Let 𝑤1 ≥ 𝑤2 ≥ ⋅ ⋅ ⋅ ≥ 𝑤6 ≥ 1 be the positive integers. Let

𝐹 (𝑧1, . . . , 𝑧6) = max

⎧⎨
⎩𝐹 (𝑦1, . . . , 𝑦6) =

5∑
𝑖=1

⎛
⎝ 𝑖∑

𝑗=1

𝑦𝑗

⎞
⎠
⎛
⎝ 6∑

𝑗=𝑖+1

𝑦𝑗

⎞
⎠ : 𝑦1 ≥ 𝑦6

⎫⎬
⎭

where (𝑦1, . . . , 𝑦6) is any permutation of (𝑤1, . . . , 𝑤6) . Then (𝑧1, . . . , 𝑧6) is equal to

one of the following five (𝑤1, 𝑤6, 𝑤5, 𝑤4, 𝑤3, 𝑤2) , (𝑤1, 𝑤5, 𝑤6, 𝑤4, 𝑤3, 𝑤2) ,

(𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2) , (𝑤1, 𝑤4, 𝑤5, 𝑤6, 𝑤3, 𝑤2) , and (𝑤1, 𝑤3, 𝑤6, 𝑤5, 𝑤4, 𝑤2) .

Proof. By Lemma 2.5, there are just three cases:

Case 1 𝑡 = 2 . Then by Lemma 2.5, 𝑧1 ≥ 𝑧2 and 𝑧2 ≤ 𝑧3 ≤ 𝑧4 ≤ 𝑧5 ≤ 𝑧6 . Hence

(𝑧1, . . . , 𝑧6) must be (𝑤1, 𝑤6, 𝑤5, 𝑤4, 𝑤3, 𝑤2) .

Case 2 𝑡 = 3 . Then 𝑧1 ≤ 𝑧4 + 𝑧5 + 𝑧6 and 𝑧1 + 𝑧2 > 𝑧5 + 𝑧6. Moreover,

𝑧1 ≥ 𝑧2 ≥ 𝑧3 and 𝑧3 ≤ 𝑧4 ≤ 𝑧5 ≤ 𝑧6; or 𝑧1 ≥ 𝑧2 and 𝑧2 ≤ 𝑧3 ≤ 𝑧4 ≤ 𝑧5 ≤ 𝑧6 .

Therefore (𝑧1, . . . , 𝑧6) must be one of (𝑤1, 𝑤6, 𝑤5, 𝑤4, 𝑤3, 𝑤2) , (𝑤1, 𝑤5, 𝑤6, 𝑤4, 𝑤3, 𝑤2) ,

(𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2) and (𝑤1, 𝑤3, 𝑤6, 𝑤5, 𝑤4, 𝑤2) .

Case 3 𝑡 = 4 . Then 𝑧1 + 𝑧2 ≤ 𝑧5 + 𝑧6 . Moreover, 𝑧1 ≥ 𝑧2 ≥ 𝑧3 and 𝑧3 ≤ 𝑧4 ≤
𝑧5 ≤ 𝑧6; or 𝑧1 ≥ 𝑧2 ≥ 𝑧3 ≥ 𝑧4 and 𝑧4 ≤ 𝑧5 ≤ 𝑧6 . Therefore, (𝑧1, . . . , 𝑧6) must be one

of (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2) , (𝑤1, 𝑤5, 𝑤6, 𝑤4, 𝑤3, 𝑤2) and (𝑤1, 𝑤4, 𝑤5, 𝑤6, 𝑤3, 𝑤2) . This

completes the proof.

Theorem 2.7 Let 𝜋 = (𝑑1, . . . , 𝑑𝑛) be a tree degree sequence with 𝑑1 ≥ 𝑑2 ≥ ⋅ ⋅ ⋅ ≥
𝑑𝑘 ≥ 2 , 𝑑𝑘+1 = ⋅ ⋅ ⋅ = 𝑑𝑛 = 1 and 𝑘 ≥ 5 . If a caterpillar 𝑇 (𝑥1, . . . , 𝑥𝑘) is a maximum

optimal tree in 𝒯𝜋 with 𝐹 (𝑥1, . . . , 𝑥𝑘) in equation (2). Then there exists a 2 ≤ 𝑡 ≤ 𝑘−2
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such that either
𝑡−2∑
𝑖=1

𝑥𝑖 ≤
𝑘∑

𝑖=𝑡+1

𝑥𝑖
𝑡−1∑
𝑖=1

𝑥𝑖 >
𝑘∑

𝑡+2

𝑥𝑖

for 𝑥1 ≥ 𝑥2 ≥ ⋅ ⋅ ⋅ ≥ 𝑥𝑡−1 ≥ 𝑥𝑡, 𝑥𝑡 ≤ 𝑥𝑡+1 ≤ ⋅ ⋅ ⋅ ≤ 𝑥𝑘 , or

𝑡−2∑
𝑖=1

𝑥𝑖 =
𝑘∑

𝑖=𝑡+1

𝑥𝑖,
𝑡−1∑
𝑖=1

𝑥𝑖 >
𝑘∑

𝑡+2

𝑥𝑖

for 𝑥1 ≥ 𝑥2 ≥ ⋅ ⋅ ⋅ ≥ 𝑥𝑡−1 ≥ 𝑥𝑡, 𝑥𝑡 ≤ 𝑥𝑡+1 ≤ ⋅ ⋅ ⋅ ≤ 𝑥𝑘 , or

𝑡−2∑
𝑖=1

𝑥𝑖 =
𝑘∑

𝑖=𝑡+1

𝑥𝑖,
𝑡−1∑
𝑖=1

𝑥𝑖 >
𝑘∑

𝑡+2

𝑥𝑖

for 𝑥1 ≥ 𝑥2 ≥ ⋅ ⋅ ⋅ ≥ 𝑥𝑡−1, 𝑥𝑡−1 ≤ 𝑥𝑡 ≤ ⋅ ⋅ ⋅ ≤ 𝑥𝑘 .

Proof. It follows from Theorem 2.3 and Lemma 2.5 that the assertion holds.

3 The maximum optimal tree with many leaves

In this section, for a given degree sequence 𝜋 = (𝑑1, . . . , 𝑑𝑛) with at least 𝑛 − 6
leaves, we give the maximum optimal trees with the maximum Wiener index in 𝒯𝜋 .

Moreover, the maximum optimal tree may be not unique.

Theorem 3.1 Let 𝜋 = (𝑑1, . . . , 𝑑𝑘, . . . , 𝑑𝑛) be tree degree sequence with 𝑛 − 𝑘 leaves

for 2 ≤ 𝑘 ≤ 4. Then the maximum optimal tree in 𝒯𝜋 is the greedy caterpillar. In

other words,

if 𝑘 = 2 , then 𝑊 (𝑇 ) = (𝑛− 1)2 + (𝑑1 − 1)(𝑑2 − 1) , for 𝑇 ∈ 𝒯𝜋.

If 𝑘 = 3 , then for any 𝑇 ∈ 𝒯𝜋,

𝑊 (𝑇 ) ≤ (𝑛− 1)2 + (𝑑1 − 1)(𝑑2 + 𝑑3 − 2) + (𝑑1 + 𝑑2 − 2)(𝑑3 − 1)

with equality if and only if 𝑇 is the caterpillar 𝑇 (𝑑1 − 1, 𝑑3 − 1, 𝑑2 − 1).
If 𝑘 = 4, then for any 𝑇 ∈ 𝒯𝜋,

𝑊 (𝑇 ) ≤ (𝑛− 1)2 + (𝑑1 − 1)(𝑑2 + 𝑑3 + 𝑑4 − 3)
+ (𝑑1 + 𝑑2 − 2)(𝑑3 + 𝑑4 − 2) + (𝑑1 + 𝑑2 + 𝑑3 − 3)(𝑑4 − 1)

with equality if and only if 𝑇 is the caterpillar 𝑇 (𝑑1 − 1, 𝑑4 − 1, 𝑑3 − 1, 𝑑2 − 1) .
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Proof. If 𝑘 = 2 , it is obvious. If 𝑘 = 3 , it is easy to see that 𝐹 (𝑑1−1, 𝑑2−1, 𝑑3−1) ≤
𝐹 (𝑑1 − 1, 𝑑3 − 1, 𝑑2 − 1). By Theorem 2.3, the assertion holds.
If 𝑘 = 4 , then by Theorem 2.3, let 𝑇 be a caterpillar 𝑇 (𝑥1, 𝑥2, 𝑥3, 𝑥4) and

𝐹 (𝑥1, 𝑥2, 𝑥3, 𝑥4) = max{𝐹 (𝑦1, 𝑦2, 𝑦3, 𝑦4) : 𝑦1 ≥ 𝑦4},

where (𝑦1, 𝑦2, 𝑦3, 𝑦4) is any permutation of (𝑑1 − 1, 𝑑2 − 1, 𝑑3 − 1, 𝑑4 − 1) . Because

𝐹 (𝑥1, 𝑥2, 𝑥3, 𝑥4)− 𝐹 (𝑥2, 𝑥1, 𝑥3, 𝑥4) = (𝑥1 − 𝑥2)(𝑥3 + 𝑥4) ≥ 0

and

𝐹 (𝑥1, 𝑥2, 𝑥3, 𝑥4)− 𝐹 (𝑥1, 𝑥2, 𝑥4, 𝑥3) = (𝑥4 − 𝑥3)(𝑥1 + 𝑥2) ≥ 0,

we have 𝑥1 ≥ 𝑥2 and 𝑥4 ≥ 𝑥3 . So (𝑥1, 𝑥2, 𝑥3, 𝑥4) = (𝑑1 − 1, 𝑑4 − 1, 𝑑3 − 1, 𝑑2 − 1) .
This completes the proof.

Theorem 3.2 Let 𝜋 = (𝑑1, . . . , 𝑑𝑘, . . . , 𝑑𝑛) be tree degree sequence with 𝑛− 5 leaves.

(1). If 𝑑1 > 𝑑2 + 𝑑3 , then the maximum optimal tree in 𝒯𝜋 is the only caterpillar

𝑇 (𝑑1 − 1, 𝑑5 − 1, 𝑑4 − 1, 𝑑3 − 1, 𝑑2 − 1) .
(2). If 𝑑1 = 𝑑2+ 𝑑3 , then there are the exactly two maximum optimal trees in 𝒯𝜋:

one tree is the caterpillar 𝑇 (𝑑1 − 1, 𝑑5 − 1, 𝑑4 − 1, 𝑑3 − 1, 𝑑2 − 1); the other tree is the

caterpillar 𝑇 (𝑑1 − 1, 𝑑4 − 1, 𝑑5 − 1, 𝑑3 − 1, 𝑑2 − 1) .
(3). If 𝑑1 < 𝑑2 + 𝑑3 , then the maximum optimal tree in 𝒯𝜋 is the only caterpillar

𝑇 (𝑑1 − 1, 𝑑4 − 1, 𝑑5 − 1, 𝑑3 − 1, 𝑑2 − 1) .

Proof. By Theorem2.3, let 𝑇 (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) be a maximum optimal tree in 𝒯𝜋 . If

𝑑1 > 𝑑2 + 𝑑3 , then by Theorem 2.7, it is easy to see that 𝑡 = 2 , and 𝑥1 ≥ 𝑥2 and

𝑥2 ≤ 𝑥3 ≤ 𝑥4 ≤ 𝑥5 . Hence (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = (𝑑1 − 1, 𝑑5 − 1, 𝑑4 − 1, 𝑑3 − 1, 𝑑2 − 1) .
If 𝑑1 < 𝑑2 + 𝑑3 , then by Theorem 2.7, it is easy to see that 𝑥1 ≥ 𝑥2 ≥ 𝑥3 and

𝑥3 ≤ 𝑥4 ≤ 𝑥5 . Hence (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = (𝑑1 − 1, 𝑑4 − 1, 𝑑5 − 1, 𝑑3 − 1, 𝑑2 − 1) or
(𝑑1− 1, 𝑑3− 1, 𝑑5− 1, 𝑑4− 1, 𝑑2− 1) . But 𝑊 (𝑇 (𝑑1− 1, 𝑑4− 1, 𝑑5− 1, 𝑑3− 1, 𝑑2− 1))−
𝑊 (𝑇 (𝑑1 − 1, 𝑑3 − 1, 𝑑5 − 1, 𝑑4 − 1, 𝑑2 − 1)) = 2(𝑑1 − 𝑑2)(𝑑3 − 𝑑4) ≥ 0 with equality if
and only if 𝑑1 = 𝑑2 or 𝑑3 = 𝑑4 . Hence the assertion (3) holds.
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If 𝑑1 = 𝑑2 + 𝑑3 , then by Theorem 2.7, it is easy to see that either 𝑥1 ≥ 𝑥2 and

𝑥2 ≤ 𝑥3 ≤ 𝑥4 ≤ 𝑥5; or 𝑥1 ≥ 𝑥2 ≥ 𝑥3 and 𝑥3 ≤ 𝑥4 ≤ 𝑥5 . Hence (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) =

(𝑑1−1, 𝑑5−1, 𝑑4−1, 𝑑3−1, 𝑑2−1) or (𝑑1−1, 𝑑4−1, 𝑑5−1, 𝑑3−1, 𝑑2−1) . Moreover,
𝐹 (𝑑1− 1, 𝑑5− 1, 𝑑4− 1, 𝑑3− 1, 𝑑2− 1) = 𝐹 (𝑑1− 1, 𝑑4− 1, 𝑑5− 1, 𝑑3− 1, 𝑑2− 1) . Hence
(2) holds.

Lemma 3.3 Let 𝑤1 ≥ 𝑤2 ≥ ⋅ ⋅ ⋅ ≥ 𝑤6 ≥ 1 be positive integers and

𝐹 (𝑦1, . . . , 𝑦𝑘) =
𝑘−1∑
𝑖=1

⎛
⎝ 𝑖∑

𝑗=1

𝑦𝑗

⎞
⎠
⎛
⎝ 𝑘∑

𝑗=𝑖+1

𝑦𝑗

⎞
⎠ .

Then

𝐹 (𝑤1, 𝑤6, 𝑤5, 𝑤4, 𝑤3, 𝑤2)− 𝐹 (𝑤1, 𝑤5, 𝑤6, 𝑤4, 𝑤3, 𝑤2)

= (𝑤1 − 𝑤2 − 𝑤3 − 𝑤4)(𝑤5 − 𝑤6) (13)

𝐹 (𝑤1, 𝑤5, 𝑤6, 𝑤4, 𝑤3, 𝑤2)− 𝐹 (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2)

= 2(𝑤1 − 𝑤2 − 𝑤3)(𝑤4 − 𝑤5) (14)

𝐹 (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2)− 𝐹 (𝑤1, 𝑤4, 𝑤5, 𝑤6, 𝑤3, 𝑤2)

= (𝑤1 + 𝑤4 − 𝑤2 − 𝑤3)(𝑤5 − 𝑤6) (15)

𝐹 (𝑤1, 𝑤4, 𝑤5, 𝑤6, 𝑤3, 𝑤2)− 𝐹 (𝑤1, 𝑤3, 𝑤6, 𝑤5, 𝑤4, 𝑤2)

= (3𝑤3 − 3𝑤4 − 𝑤5 + 𝑤6)(𝑤1 − 𝑤2) . (16)

Proof. By a simple calculation, it is easy to see that the assertion holds.

Theorem 3.4 Let 𝜋 = (𝑑1, . . . , 𝑑6, . . . , 𝑑𝑛) be tree degree sequence with 𝑛− 6 leaves,

i. e., 𝑑1 ≥ ⋅ ⋅ ⋅ ≥ 𝑑6 ≥ 2 and 𝑑7 = ⋅ ⋅ ⋅ = 𝑑𝑛 = 1 .

(1). If 𝑑1 > 𝑑2 + 𝑑3 + 𝑑4 − 2 , then there is only one maximum optimal tree

𝑇 (𝑑1 − 1, 𝑑6 − 1, 𝑑5 − 1, 𝑑4 − 1, 𝑑3 − 1, 𝑑2 − 1) in 𝒯𝜋 .

(2). If 𝑑1 = 𝑑2 + 𝑑3 + 𝑑4 − 2 , then there are exactly two maximum optimal trees

in 𝒯𝜋: one maximum optimal tree is 𝑇 (𝑑1− 1, 𝑑6− 1, 𝑑5− 1, 𝑑4− 1, 𝑑3− 1, 𝑑2− 1); the
other maximum optimal tree is 𝑇 (𝑑1 − 1, 𝑑5 − 1, 𝑑6 − 1, 𝑑4 − 1, 𝑑3 − 1, 𝑑2 − 1) .
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(3). 𝑑2+ 𝑑3 − 1 < 𝑑1 < 𝑑2+ 𝑑3+ 𝑑4 − 2 , then there is only one maximum optimal

tree 𝑇 (𝑑1 − 1, 𝑑5 − 1, 𝑑6 − 1, 𝑑4 − 1, 𝑑3 − 1, 𝑑2 − 1) in 𝒯𝜋 .

(4). If 𝑑2+ 𝑑3 − 1 = 𝑑1 , then there are exactly two maximum optimal trees in 𝒯𝜋:

one maximum optimal tree is 𝑇 (𝑑1 − 1, 𝑑5 − 1, 𝑑6 − 1, 𝑑4 − 1, 𝑑3 − 1, 𝑑2 − 1); the other

maximum optimal tree is 𝑇 (𝑑1 − 1, 𝑑4 − 1, 𝑑6 − 1, 𝑑5 − 1, 𝑑3 − 1, 𝑑2 − 1) .
(5). If max{𝑑2+ 𝑑3 − 𝑑4, 𝑑2+

1
3
(𝑑5 − 𝑑6)} < 𝑑1 < 𝑑2+ 𝑑3 − 1 , then there is only

one maximum optimal tree 𝑇 (𝑑1 − 1, 𝑑4 − 1, 𝑑6 − 1, 𝑑5 − 1, 𝑑3 − 1, 𝑑2 − 1) in 𝒯𝜋 .

(6). If 𝑑1 = 𝑑2 + 𝑑3 − 𝑤4 > 𝑑2 +
1
3
(𝑑5 − 𝑑6) , then there are exactly two maximum

optimal trees in 𝒯𝜋: one maximum optimal tree is 𝑇 (𝑑1 − 1, 𝑑4 − 1, 𝑑6 − 1, 𝑑5 − 1, 𝑑3 −
1, 𝑑2−1); the other maximum optimal tree is 𝑇 (𝑑1−1, 𝑑4−1, 𝑑5−1, 𝑑6−1, 𝑑3−1, 𝑑2−1) .

(7). If 𝑑1 = 𝑑2 +
1
3
(𝑑5 − 𝑑6) > 𝑑2 + 𝑑3 − 𝑑4 , then there are exactly two maximum

optimal trees in 𝒯𝜋: one maximum optimal tree is 𝑇 (𝑑1 − 1, 𝑑4 − 1, 𝑑6 − 1, 𝑑5 − 1, 𝑑3 −
1, 𝑑2−1); the other maximum optimal tree is 𝑇 (𝑑1−1, 𝑑3−1, 𝑑6−1, 𝑑5−1, 𝑑4−1, 𝑑2−1) .

(8). If 𝑑1 = 𝑑2+ 𝑑3 − 𝑑4 = 𝑑2+
1
3
(𝑑5 − 𝑑6) , then there are exactly three maximum

optimal trees in 𝒯𝜋: they are 𝑇 (𝑑1 − 1, 𝑑4 − 1, 𝑑6 − 1, 𝑑5 − 1, 𝑑3 − 1, 𝑑2 − 1); 𝑇 (𝑑1 −
1, 𝑑4−1, 𝑑5−1, 𝑑6−1, 𝑑3−1, 𝑑2−1) and 𝑇 (𝑑1−1, 𝑑3−1, 𝑑6−1, 𝑑5−1, 𝑑4−1, 𝑑2−1) .

(9). If 𝑑2+
1
3
(𝑑5−𝑑6) ≤ 𝑑1 < 𝑑2+𝑑3−𝑑4 , or 𝑑1 ≤ 𝑑2+

1
3
(𝑑5−𝑑6) < 𝑑2+𝑑3−𝑑4 ,

then there is only one maximum optimal tree 𝑇 (𝑑1−1, 𝑑4−1, 𝑑5−1, 𝑑6−1, 𝑑3−1, 𝑑2−1)
in 𝒯𝜋 .

(10). If 𝑑2+𝑑3−𝑑4 ≤ 𝑑1 < 𝑑2+
1
3
(𝑑5−𝑑6); or 𝑑1 ≤ 𝑑2+𝑑3−𝑑4 < 𝑑2+

1
3
(𝑑5−𝑑6) ,

then there is only one maximum optimal tree 𝑇 (𝑑1−1, 𝑑3−1, 𝑑6−1, 𝑑5−1, 𝑑4−1, 𝑑2−1)
in 𝒯𝜋 .

(11). If 𝑑1 < 𝑑2 +
1
3
(𝑑5 − 𝑑6) = 𝑑2 + 𝑑3 − 𝑑4 , then there are exactly two maximum

optimal trees in 𝒯𝜋: one maximum optimal tree is 𝑇 (𝑑1 − 1, 𝑑3 − 1, 𝑑6 − 1, 𝑑5 − 1, 𝑑4 −
1, 𝑑2−1); the other maximum optimal tree is 𝑇 (𝑑1−1, 𝑑4−1, 𝑑5−1, 𝑑6−1, 𝑑3−1, 𝑑2−1) .

Proof. The proof is referred to appendix since it is technique.

Remark. From Theorem 3.4, we can see that the maximum optimal trees depend

on the values of all components of the tree degree sequences and not unique, while

the minimum optimal tree is unique for a given tree degree sequence. Moreover,
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Theorem 3.4 explains that it seems to be difficult for characterize all the maximum

optimal trees for a given tree degree sequence.
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Appendix: Proof of Theorem 3.4

Lemma 3.5 Let 𝑤1 ≥ 𝑤2 ≥ ⋅ ⋅ ⋅ ≥ 𝑤6 ≥ 1 be positive integers. If

𝐹 (𝑧1, . . . , 𝑧6) = max{𝐹 (𝑦1, . . . , 𝑦6) : 𝑦1 ≥ 𝑦6}

where (𝑦1, . . . , 𝑦6) is any permutation of (𝑤1, . . . , 𝑤6) , then the following statement

holds.

(1). If 𝑤1 > 𝑤2 + 𝑤3 + 𝑤4 , then (𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5, 𝑧6) = (𝑤1, 𝑤6, 𝑤5, 𝑤4, 𝑤3, 𝑤2) .

(2). If 𝑤1 = 𝑤2 + 𝑤3 + 𝑤4 , then (𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5, 𝑧6) = (𝑤1, 𝑤6, 𝑤5, 𝑤4, 𝑤3, 𝑤2) or

(𝑤1, 𝑤5, 𝑤6, 𝑤4, 𝑤3, 𝑤2) .

(3). If 𝑤2 + 𝑤3 < 𝑤1 < 𝑤2 + 𝑤3 + 𝑤4 , then (𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5, 𝑧6) =

(𝑤1, 𝑤5, 𝑤6, 𝑤4, 𝑤3, 𝑤2) .

(4). If 𝑤2 + 𝑤3 = 𝑤1 , then (𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5, 𝑧6) = (𝑤1, 𝑤5, 𝑤6, 𝑤4, 𝑤3, 𝑤2) or

(𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2) .

(5). If max{𝑤2 + 𝑤3 − 𝑤4, 𝑤2 +
1
3
(𝑤5 − 𝑤6)} < 𝑤1 < 𝑤2 + 𝑤3 , then

(𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5, 𝑧6) = (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2) .
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(6). If 𝑤1 = 𝑤2 + 𝑤3 − 𝑤4 > 𝑤2 +
1
3
(𝑤5 − 𝑤6) , then (𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5, 𝑧6) =

(𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2) or (𝑤1, 𝑤4, 𝑤5, 𝑤6, 𝑤3, 𝑤2) .

(7). If 𝑤1 = 𝑤2 +
1
3
(𝑤5 − 𝑤6) > 𝑤2 + 𝑤3 − 𝑤4 , then (𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5, 𝑧6) =

(𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2) or (𝑤1, 𝑤3, 𝑤6, 𝑤5, 𝑤4, 𝑤2) .

(8). If 𝑤1 = 𝑤2 + 𝑤3 − 𝑤4 = 𝑤2 +
1
3
(𝑤5 − 𝑤6) , then (𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5, 𝑧6) =

(𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2) , or (𝑤1, 𝑤4, 𝑤5, 𝑤6, 𝑤3, 𝑤2) or (𝑤1, 𝑤3, 𝑤6, 𝑤5, 𝑤4, 𝑤2) .

(9). If 𝑤2 +
1
3
(𝑤5 − 𝑤6) ≤ 𝑤1 < 𝑤2 + 𝑤3 − 𝑤4 , or 𝑤1 ≤ 𝑤2 +

1
3
(𝑤5 − 𝑤6) <

𝑤2 + 𝑤3 − 𝑤4 , then (𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5, 𝑧6) = (𝑤1, 𝑤4, 𝑤5, 𝑤6, 𝑤3, 𝑤2) .

(10). If 𝑤2 + 𝑤3 − 𝑤4 ≤ 𝑤1 < 𝑤2 +
1
3
(𝑤5 − 𝑤6); or 𝑤1 ≤ 𝑤2 + 𝑤3 − 𝑤4 <

𝑤2 +
1
3
(𝑤5 − 𝑤6) , then (𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5, 𝑧6) = (𝑤1, 𝑤3, 𝑤6, 𝑤5, 𝑤4, 𝑤2).

(11). If 𝑤1 < 𝑤2 +
1
3
(𝑤5 − 𝑤6) = 𝑤2 + 𝑤3 − 𝑤4 , then (𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5, 𝑧6) =

(𝑤1, 𝑤4, 𝑤5, 𝑤6, 𝑤3, 𝑤2) or (𝑤1, 𝑤3, 𝑤6, 𝑤5, 𝑤4, 𝑤2).

Proof. (1). 𝑤1 > 𝑤2 + 𝑤3 + 𝑤4 . By (8) and (9) in Lemma 2.5, we have 𝑡 = 2 and

(𝑧1, . . . , 𝑧6) = (𝑤1, 𝑤6, 𝑤5, 𝑤4, 𝑤3, 𝑤2) .

(2). 𝑤1 = 𝑤2+𝑤3+𝑤4 . By (8) and (9) in Lemma 2.5, we have 𝑡 = 3 . By (11) and

(12). we consider the following two cases. If 𝑧1 ≥ 𝑧2 ≥ 𝑧3 and 𝑧3 ≤ 𝑧4 ≤ 𝑧5 ≤ 𝑧6 , then

by corollary 2.6 and 𝑤1 = 𝑤2+𝑤3+𝑤4 , we have (𝑧1, . . . , 𝑧6) = (𝑤1, 𝑤5, 𝑤6, 𝑤4, 𝑤3, 𝑤2) .

If 𝑧1 ≥ 𝑧2 and 𝑧2 ≤ 𝑧3 ≤ 𝑧4 ≤ 𝑧5 ≤ 𝑧6 , then (𝑧1, . . . , 𝑧6) = (𝑤1, 𝑤6, 𝑤5, 𝑤4, 𝑤3, 𝑤2) .

Hence (2) holds.

(3). 𝑤2 + 𝑤3 < 𝑤1 < 𝑤2 + 𝑤3 + 𝑤4 . We consider the following four cases:

Case 1: 𝑤2 + 𝑤3 + 𝑤5 < 𝑤1 < 𝑤2 + 𝑤3 + 𝑤4 . By (8) and (9) in Lemma 2.5,

we have 𝑡 = 3 and 𝑧1 ≥ 𝑧2 ≥ 𝑧3 and 𝑧3 ≤ 𝑧4 ≤ 𝑧5 ≤ 𝑧6 . Hence by Corollary 2.6,

(𝑧1, . . . , 𝑧6) = (𝑤1, 𝑤5, 𝑤6, 𝑤4, 𝑤3, 𝑤2) .

Case 2: 𝑤2 + 𝑤3 + 𝑤5 = 𝑤1 < 𝑤2 + 𝑤3 + 𝑤4 . Similarly,

(𝑧1, . . . , 𝑧6) = (𝑤1, 𝑤5, 𝑤6, 𝑤4, 𝑤3, 𝑤2) .

Case 3: 𝑤2 + 𝑤4 + 𝑤5 < 𝑤1 < 𝑤2 + 𝑤3 + 𝑤5 and 𝑤1 > 𝑤2 + 𝑤3 . By (8) and

(9) in Lemma 2.5, we have 𝑡 = 3 . Further (𝑧1, . . . , 𝑧6) = (𝑤1, 𝑤5, 𝑤6, 𝑤4, 𝑤3, 𝑤2) or

(𝑧1, . . . , 𝑧6) = (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2) . But by Lemma 3.3, we have

𝐹 (𝑤1, 𝑤5, 𝑤6, 𝑤4, 𝑤3, 𝑤2)− 𝐹 (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2) = 2(𝑤1 − 𝑤2 − 𝑤3)(𝑤4 − 𝑤5).
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Hence (𝑧1, . . . , 𝑧6) = (𝑤1, 𝑤5, 𝑤6, 𝑤4, 𝑤3, 𝑤2) .

Case 4: 𝑤2 + 𝑤3 < 𝑤1 ≤ 𝑤2 + 𝑤4 + 𝑤5 . By (8) and (9) in Lemma 2.5, we have

𝑡 = 3 . Further (𝑧1, . . . , 𝑧6) = (𝑤1, 𝑤3, 𝑤6, 𝑤5, 𝑤4, 𝑤2) , or (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2) , or

(𝑤1, 𝑤5, 𝑤6, 𝑤4, 𝑤3, 𝑤2) . But by Lemma 3.3, we have

𝐹 (𝑤1, 𝑤3, 𝑤6, 𝑤5, 𝑤4, 𝑤2)− 𝐹 (𝑤1, 𝑤2, 𝑤6, 𝑤5, 𝑤4, 𝑤3)

= 2(𝑤2 − 𝑤3)(2𝑤1 − 𝑤4 + 𝑤6) ≥ 0

𝐹 (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2)− 𝐹 (𝑤1, 𝑤3, 𝑤6, 𝑤5, 𝑤4, 𝑤2)

= (𝑤3 − 𝑤4)(3𝑤1 − 3𝑤2 − 𝑤5 + 𝑤6) ≥ 0

𝐹 (𝑤1, 𝑤5, 𝑤6, 𝑤4, 𝑤3, 𝑤2)− 𝐹 (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2)

= 2(𝑤1 − 𝑤2 − 𝑤3)(𝑤4 − 𝑤5) .

Hence (𝑧1, . . . , 𝑧6) = (𝑤1, 𝑤5, 𝑤6, 𝑤4, 𝑤3, 𝑤2) .

(4). 𝑤2 + 𝑤3 = 𝑤1 . From the proof of (3), it is easy to see that (𝑧1, . . . , 𝑧6) =

(𝑤1, 𝑤5, 𝑤6, 𝑤4, 𝑤3, 𝑤2) or (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2) , because 𝐹 (𝑤1, 𝑤5, 𝑤6, 𝑤4, 𝑤3, 𝑤2)−
𝐹 (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2) = 0 . Therefore (4) holds.

(5). max{𝑤2 +𝑤3 −𝑤4, 𝑤2 +
1
3
(𝑤5 −𝑤6)} < 𝑤1 < 𝑤2 +𝑤3 . We consider the four

cases.

Case 1: 𝑤1 > 𝑤2+𝑤4+𝑤5 and 𝑤1 > 𝑤2+𝑤3−𝑤5 . By (8) and (9) in Lemma 2.5, we

have 𝑧1 ≥ 𝑧2 ≥ 𝑧3 and 𝑧3 ≤ 𝑧4 ≤ 𝑧5 ≤ 𝑧6 . Then (𝑧1, . . . , 𝑧6) = (𝑤1, 𝑤5, 𝑤6, 𝑤4, 𝑤3, 𝑤2)

or (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2) . But

𝐹 (𝑤1, 𝑤5, 𝑤6, 𝑤4, 𝑤3, 𝑤2)− 𝐹 (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2)

= 2(𝑤4 − 𝑤5)(𝑤1 − 𝑤2 − 𝑤3) ≤ 0

with equality if and only if 𝑤4 = 𝑤5 . Therefore (𝑧1, . . . , 𝑧6) = (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2) .

Case 2: 𝑤1 > 𝑤2+𝑤4+𝑤5 and 𝑤1 ≤ 𝑤2+𝑤3−𝑤5 . By (8) and (9) in Lemma 2.5, we

have 𝑧1 ≥ 𝑧2 ≥ 𝑧3 and 𝑧3 ≤ 𝑧4 ≤ 𝑧5 ≤ 𝑧6 . Then (𝑧1, . . . , 𝑧6) = (𝑤1, 𝑤5, 𝑤6, 𝑤4, 𝑤3, 𝑤2)

or (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2) . But by Lemma 3.3, we have

𝐹 (𝑤1, 𝑤5, 𝑤6, 𝑤4, 𝑤3, 𝑤2)− 𝐹 (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2)

= 2(𝑤4 − 𝑤5)(𝑤1 − 𝑤2 − 𝑤3) ≤ 0
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with equality if and only if 𝑤4 = 𝑤5 . Therefore (𝑧1, . . . , 𝑧6) = (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2) .

Case 3: 𝑤1 ≤ 𝑤2+𝑤4+𝑤5 and 𝑤1 > 𝑤2+𝑤3−𝑤5 . By (8) and (9) in Lemma 2.5, we

have 𝑧1 ≥ 𝑧2 ≥ 𝑧3 and 𝑧3 ≤ 𝑧4 ≤ 𝑧5 ≤ 𝑧6 . Then (𝑧1, . . . , 𝑧6) = (𝑤1, 𝑤5, 𝑤6, 𝑤4, 𝑤3, 𝑤2) ,

or (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2) , or (𝑤1, 𝑤3, 𝑤6, 𝑤5, 𝑤4, 𝑤2) . But by Lemma 3.3, we have

𝐹 (𝑤1, 𝑤5, 𝑤6, 𝑤4, 𝑤3, 𝑤2)− 𝐹 (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2)

= 2(𝑤4 − 𝑤5)(𝑤1 − 𝑤2 − 𝑤3) ≤ 0

with equality if and only if 𝑤4 = 𝑤5 . Moreover,

𝐹 (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2)− 𝐹 (𝑤1, 𝑤3, 𝑤6, 𝑤5, 𝑤4, 𝑤2)

= (𝑤3 − 𝑤4)(3𝑤1 − 3𝑤2 − 𝑤5 + 𝑤6) ≥ 0

with equality if and only if 𝑤3 = 𝑤4 . Therefore (𝑧1, . . . , 𝑧6) = (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2) .

Case 4: 𝑤1 ≤ 𝑤2+𝑤4+𝑤5 and 𝑤1 ≤ 𝑤2+𝑤3−𝑤5 . By (8) and (9) in Lemma 2.5, we

have 𝑧1 ≥ 𝑧2 ≥ 𝑧3 and 𝑧3 ≤ 𝑧4 ≤ 𝑧5 ≤ 𝑧6 . Then (𝑧1, . . . , 𝑧6) = (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2) ,

or (𝑤1, 𝑤3, 𝑤6, 𝑤5, 𝑤4, 𝑤2) . But by Lemma 3.3, we have

𝐹 (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2)− 𝐹 (𝑤1, 𝑤3, 𝑤6, 𝑤5, 𝑤4, 𝑤2)

= (𝑤3 − 𝑤4)(3𝑤1 − 3𝑤2 − 𝑤5 + 𝑤6) ≥ 0

with equality if and only if 𝑤3 = 𝑤4 . Therefore (𝑧1, . . . , 𝑧6) = (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2) .

(6). 𝑤1 = 𝑤2 + 𝑤3 − 𝑤4 > 𝑤2 +
1
3
(𝑤5 − 𝑤6) . By (8) and (9) in Lemma 2.5,

we have 𝑧1 ≥ 𝑧2 ≥ 𝑧3 and 𝑧3 ≤ 𝑧4 ≤ 𝑧5 ≤ 𝑧6; or 𝑧1 ≥ 𝑧2 ≥ 𝑧3 ≥ 𝑧4 and

𝑧4 ≤ 𝑧5 ≤ 𝑧6 . Then (𝑧1, . . . , 𝑧6) = (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2); or (𝑤1, 𝑤3, 𝑤6, 𝑤5, 𝑤4, 𝑤2);

or(𝑤1, 𝑤5, 𝑤6, 𝑤4, 𝑤3, 𝑤2); or (𝑤1, 𝑤4, 𝑤5, 𝑤6, 𝑤3, 𝑤2) . But

𝐹 (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2)− 𝐹 (𝑤1, 𝑤3, 𝑤6, 𝑤5, 𝑤4, 𝑤2)

= (𝑤3 − 𝑤4)(3𝑤1 − 3𝑤2 − 𝑤5 + 𝑤6) ≥ 0

𝐹 (𝑤1, 𝑤5, 𝑤6, 𝑤4, 𝑤3, 𝑤2)− 𝐹 (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2)

= 2(𝑤1 − 𝑤2 − 𝑤3)(𝑤4 − 𝑤5) ≤ 0

𝐹 (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2)− 𝐹 (𝑤1, 𝑤4, 𝑤5, 𝑤6, 𝑤3, 𝑤2)

= (𝑤1 + 𝑤4 − 𝑤2 − 𝑤3)(𝑤5 − 𝑤6) = 0 .
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Therefore (𝑧1, . . . , 𝑧6) = (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2) or (𝑤1, 𝑤4, 𝑤5, 𝑤6, 𝑤3, 𝑤2) .

(7) 𝑤1 = 𝑤2+
1
3
(𝑤5−𝑤6) > 𝑤2+𝑤3−𝑤4 . By (8) and (9) in Lemma 2.5, we have

𝑧1 ≥ 𝑧2 ≥ 𝑧3 and 𝑧3 ≤ 𝑧4 ≤ 𝑧5 ≤ 𝑧6 . Then (𝑧1, . . . , 𝑧6) = (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2); or

(𝑤1, 𝑤3, 𝑤6, 𝑤5, 𝑤4, 𝑤2); or (𝑤1, 𝑤5, 𝑤6, 𝑤4, 𝑤3, 𝑤2) . But by Lemma 3.3, we have

𝐹 (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2)− 𝐹 (𝑤1, 𝑤3, 𝑤6, 𝑤5, 𝑤4, 𝑤2)

= (𝑤3 − 𝑤4)(3𝑤1 − 3𝑤2 − 𝑤5 + 𝑤6) = 0

and

𝐹 (𝑤1, 𝑤5, 𝑤6, 𝑤4, 𝑤3, 𝑤2)− 𝐹 (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2)

= 2(𝑤1 − 𝑤2 − 𝑤3)(𝑤4 − 𝑤5) ≤ 0 .

Hence (𝑧1, . . . , 𝑧6) = (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2) or (𝑤1, 𝑤3, 𝑤6, 𝑤5, 𝑤4, 𝑤2) .

(8). 𝑤1 = 𝑤2 + 𝑤3 − 𝑤4 = 𝑤2 +
1
3
(𝑤5 − 𝑤6) . It follows from (6) and (7) that (8)

holds.

(9). Assume that 𝑤2+
1
3
(𝑤5−𝑤6) ≤ 𝑤1 < 𝑤2+𝑤3−𝑤4 . Then we have to consider

the following two cases:

Case 1: 𝑤1 > 𝑤2 +𝑤4 +𝑤5 . By (8) and (9) in Lemma 2.5, we have 𝑧1 ≥ 𝑧2 ≥ 𝑧3

and 𝑧3 ≤ 𝑧4 ≤ 𝑧5 ≤ 𝑧6 ; or 𝑧1 ≥ 𝑧2 ≥ 𝑧3 ≥ 𝑧4 and 𝑧4 ≤ 𝑧5 ≤ 𝑧6 . Hence (𝑧1, . . . , 𝑧6) =

(𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2) , (𝑤1, 𝑤4, 𝑤5, 𝑤6, 𝑤3, 𝑤2) , or (𝑤1, 𝑤5, 𝑤6, 𝑤4, 𝑤3, 𝑤2) . By Lem-

ma 3.3, we have

𝐹 (𝑤1, 𝑤5, 𝑤6, 𝑤4, 𝑤3, 𝑤2)− 𝐹 (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2)

= 2(𝑤1 − 𝑤2 − 𝑤3)(𝑤4 − 𝑤5) ≤ 0

with equality if and only if 𝑤4 = 𝑤5 , and

𝐹 (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2)− 𝐹 (𝑤1, 𝑤4, 𝑤5, 𝑤6, 𝑤3, 𝑤2)

= 2(𝑤1 + 𝑤4 − 𝑤2 − 𝑤3)(𝑤5 − 𝑤6) ≤ 0

with equality if and only if 𝑤5 = 𝑤6 . Therefore (𝑧1, . . . , 𝑧6) = (𝑤1, 𝑤4, 𝑤5, 𝑤6, 𝑤3, 𝑤2) .

Case 2: 𝑤1 ≤ 𝑤2+𝑤4+𝑤5 . By (8) and (9) in Lemma 2.5, we have 𝑧1 ≥ 𝑧2 ≥ 𝑧3

and 𝑧3 ≤ 𝑧4 ≤ 𝑧5 ≤ 𝑧6; or 𝑧1 ≥ 𝑧2 ≥ 𝑧3 ≥ 𝑧4 and 𝑧4 ≤ 𝑧5 ≤ 𝑧6 . Hence (𝑧1, . . . , 𝑧6) =
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(𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2) or (𝑤1, 𝑤3, 𝑤6, 𝑤5, 𝑤4, 𝑤2) or (𝑤1, 𝑤4, 𝑤5, 𝑤6, 𝑤3, 𝑤2) or

(𝑤1, 𝑤5, 𝑤6, 𝑤4, 𝑤3, 𝑤2) . But by Lemma 3.3, we have

𝐹 (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2)− 𝐹 (𝑤1, 𝑤3, 𝑤6, 𝑤5, 𝑤4, 𝑤2)

= (3𝑤1 − 3𝑤2 − 𝑤5 + 𝑤6)(𝑤3 − 𝑤4) ≤ 0

with equality if and only if 𝑤3 = 𝑤4 ,

𝐹 (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2)− 𝐹 (𝑤1, 𝑤5, 𝑤6, 𝑤4, 𝑤3, 𝑤2)

= 2(−𝑤1 + 𝑤2 + 𝑤3)(𝑤4 − 𝑤5) ≥ 0

and

𝐹 (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2)− 𝐹 (𝑤1, 𝑤4, 𝑤5, 𝑤6, 𝑤3, 𝑤2)

= (𝑤1 + 𝑤4 − 𝑤2 − 𝑤3)(𝑤5 − 𝑤6) ≥ 0

with equality if and only if 𝑤5 = 𝑤6 . Therefore (𝑧1, . . . , 𝑧6) = (𝑤1, 𝑤4, 𝑤5, 𝑤6, 𝑤3, 𝑤2) .

Assume that 𝑤1 ≤ 𝑤2+
1
3
(𝑤5−𝑤6) < 𝑤2+𝑤3−𝑤4 . By (8) and (9) in Lemma 2.5,

we have 𝑧1 ≥ 𝑧2 ≥ 𝑧3 and 𝑧3 ≤ 𝑧4 ≤ 𝑧5 ≤ 𝑧6; or 𝑧1 ≥ 𝑧2 ≥ 𝑧3 ≤ 𝑧4 and 𝑧4 ≤
𝑧5 ≤ 𝑧6 . Hence, (𝑧1, . . . , 𝑧6) = (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2); or (𝑤1, 𝑤3, 𝑤6, 𝑤5, 𝑤4, 𝑤2); or

(𝑤1, 𝑤5, 𝑤6, 𝑤4, 𝑤3, 𝑤2); or (𝑤1, 𝑤4, 𝑤5, 𝑤6, 𝑤3, 𝑤2) . But by Lemma 3.3, we have

𝐹 (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2)− 𝐹 (𝑤1, 𝑤3, 𝑤6, 𝑤5, 𝑤4, 𝑤2)

= (3𝑤1 − 3𝑤2 − 𝑤5 + 𝑤6)(𝑤3 − 𝑤4) ≤ 0

with equality if and only if 𝑤3 = 𝑤4;

𝐹 (𝑤1, 𝑤5, 𝑤6, 𝑤4, 𝑤3, 𝑤2)− 𝐹 (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2)

= 2(𝑤1 − 𝑤2 − 𝑤3)(𝑤4 − 𝑤5) ≤ 0

𝐹 (𝑤1, 𝑤4, 𝑤5, 𝑤6, 𝑤3, 𝑤2)− 𝐹 (𝑤1, 𝑤3, 𝑤6, 𝑤5, 𝑤4, 𝑤2)

= (3𝑤3 − 3𝑤4 − 𝑤5 + 𝑤6)(𝑤1 − 𝑤2) ≥ 0

with equality if and only if 𝑤1 = 𝑤2 . Therefore (𝑧1, . . . , 𝑧6) = (𝑤1, 𝑤4, 𝑤5, 𝑤6, 𝑤3, 𝑤2) .

(10). Assume that 𝑤2 + 𝑤3 − 𝑤4 ≤ 𝑤1 < 𝑤2 +
1
3
(𝑤5 − 𝑤6) . By (8) and (9) in

Lemma 2.5, we have 𝑧1 ≥ 𝑧2 ≥ 𝑧3 and 𝑧3 ≤ 𝑧4 ≤ 𝑧5 ≤ 𝑧6; or 𝑧1 ≥ 𝑧2 ≥ 𝑧3 ≤ 𝑧4 and
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𝑧4 ≤ 𝑧5 ≤ 𝑧6 . Hence, (𝑧1, . . . , 𝑧6) = (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2); or (𝑤1, 𝑤3, 𝑤6, 𝑤5, 𝑤4, 𝑤2);

or (𝑤1, 𝑤5, 𝑤6, 𝑤4, 𝑤3, 𝑤2); or (𝑤1, 𝑤4, 𝑤5, 𝑤6, 𝑤3, 𝑤2) . But by Lemma 3.3, we have

𝐹 (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2)− 𝐹 (𝑤1, 𝑤3, 𝑤6, 𝑤5, 𝑤4, 𝑤2)

= (3𝑤1 − 3𝑤2 − 𝑤5 + 𝑤6)(𝑤3 − 𝑤4) ≤ 0
with equality if and only if 𝑤3 = 𝑤4 ,

𝐹 (𝑤1, 𝑤5, 𝑤6, 𝑤4, 𝑤3, 𝑤2)− 𝐹 (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2)

= 2(𝑤1 − 𝑤2 − 𝑤3)(𝑤4 − 𝑤5) ≤ 0

𝐹 (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2)− 𝐹 (𝑤1, 𝑤4, 𝑤5, 𝑤6, 𝑤3, 𝑤2)

= (𝑤1 + 𝑤4 − 𝑤2 − 𝑤3)(𝑤5 − 𝑤6) ≥ 0
with equality if and only if 𝑤5 = 𝑤6 . Therefore (𝑧1, . . . , 𝑧6) = (𝑤1, 𝑤3, 𝑤6, 𝑤5, 𝑤4, 𝑤2) .

Assume that 𝑤1 ≤ 𝑤2+𝑤3−𝑤4 < 𝑤2+
1
3
(𝑤5−𝑤6) . By (8) and (9) in Lemma 2.5,

we have 𝑧1 ≥ 𝑧2 ≥ 𝑧3 and 𝑧3 ≤ 𝑧4 ≤ 𝑧5 ≤ 𝑧6; or 𝑧1 ≥ 𝑧2 ≥ 𝑧3 ≤ 𝑧4 and 𝑧4 ≤
𝑧5 ≤ 𝑧6 . Hence, (𝑧1, . . . , 𝑧6) = (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2); or (𝑤1, 𝑤3, 𝑤6, 𝑤5, 𝑤4, 𝑤2); or

(𝑤1, 𝑤5, 𝑤6, 𝑤4, 𝑤3, 𝑤2); or (𝑤1, 𝑤4, 𝑤5, 𝑤6, 𝑤3, 𝑤2) . But by Lemma 3.3, we have

𝐹 (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2)− 𝐹 (𝑤1, 𝑤3, 𝑤6, 𝑤5, 𝑤4, 𝑤2)

= (3𝑤1 − 3𝑤2 − 𝑤5 + 𝑤6)(𝑤3 − 𝑤4) ≤ 0
with equality if and only if 𝑤3 = 𝑤4 ,

𝐹 (𝑤1, 𝑤5, 𝑤6, 𝑤4, 𝑤3, 𝑤2)− 𝐹 (𝑤1, 𝑤4, 𝑤6, 𝑤5, 𝑤3, 𝑤2)

= 2(𝑤1 − 𝑤2 − 𝑤3)(𝑤4 − 𝑤5) ≤ 0
and

𝐹 (𝑤1, 𝑤4, 𝑤5, 𝑤6, 𝑤3, 𝑤2)− 𝐹 (𝑤1, 𝑤3, 𝑤6, 𝑤5, 𝑤4, 𝑤2)

= (3𝑤3 − 3𝑤4 − 𝑤5 + 𝑤6)(𝑤1 − 𝑤2) ≤ 0
with equality if and only if 𝑤1 = 𝑤2 . Therefore (𝑧1, . . . , 𝑧6) = (𝑤1, 𝑤3, 𝑤6, 𝑤5, 𝑤4, 𝑤2) .

(11). 𝑤1 < 𝑤2 + 𝑤3 − 𝑤4 = 𝑤2 +
1
3
(𝑤5 − 𝑤6) . It follows from (9) and (10) that

(11) holds.

Proof. of Theorem 3.4. It follows from Theorem 2.3 and Lemma 3.5 that the

assertion holds.
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