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Abstract

The second geometric-arithmetic index GA2(G) of a graph G was introduced recently

by Fath-Tabar et al. [2] and is defined to be
∑

uv∈E(G)

√
nu(e,G)nv(e,G)

1
2
[nu(e,G)+nv(e,G)]

, where e = uv is

one edge in G, and nu(e,G) denotes the number of vertices in G lying closer to u than
to v. In this paper, we characterize the tree with the minimum GA2 index among the
set of trees with given order and diameter. As applications, we deduce the trees with
the minimum and second-minimum GA2 index among the set of trees of given order,
respectively. In addition, all the trees minimizing the GA2 index have been shown to
have minimum Szeged index and Wiener index, which deduced a result of [7] concerning
the Wiener index of trees with given diameter.

1. Introduction

The geometric-arithmetic index GA was conceived [1], defined as

GA = GA(G) =
∑

uv∈E(G)

√
dudv

1
2
(du + dv)

where uv is an edge of the graph G, du stands for the degree of the vertex u, and the

summation goes over all edges of G.
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More recently, another geometric-arithmetic index, which we called GA2 index, was

studied [2] and defined as

GA2 = GA2(G) =
∑

uv∈E(G)

√
nu(e,G)nv(e,G)

1
2
[nu(e,G) + nv(e,G)]

(1)

where e = uv is an edge of the graph G, nu(e,G) is equal to the number of vertices in

G lying closer to u than to v, and the summation goes over all edges of G.

The other two structure descriptors, based on the numbers nu(e,G) and nv(e,G), are

the so-called Szeged index [5, 6], defined as

Sz(G) =
∑

uv∈E(G)

nu(e,G) · nv(e,G) (2)

and the vertex PI index [5, 6], defined as

PIv(G) =
∑

uv∈E(G)

[nu(e,G) + nv(e,G)].

Numerical examples and discussion [2] have shown that GA and GA2 will both be

simultaneously applicable in QSPR and QSAR studies. So it make sense for scholars to

further investigate these two indices in mathematical chemistry.

Fath-Tabar et al. [2] proposed the GA2 index and obtained various lower and upper

bounds of this index for a connected graph in terms of PIv(G) or Sz(G). In particular,

they determined the n−vertex trees with the maximum and minimum GA2 index, respec-

tively. We encourage the reader to consult [3] and [4], for more information on these two

newly defined GA indices.

Note that for any edge e = uv in a tree T , we always have nu(e, T ) + nv(e, T ) = n.

Thus, for a n−vertex tree T , Eq. (1) is simplified as

GA2 = GA2(T ) =
∑

uv∈E(G)

2

n

√
nu(e, T )nv(e, T ). (3)

In this paper, we characterize the tree with the minimum GA2 index among the set of

trees with given order and diameter. As applications, we deduce the trees with the mini-

mum and second-minimum GA2 index among the set of trees of given order, respectively.

In addition, all the trees minimizing the GA2 index have been shown to have minimum

Szeged index and Wiener index, which deduced a result of [7] concerning the Wiener index

of trees with given diameter.
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2. Main results

A vertex in a tree T is said to be a branch vertex, if the degree of this vertex is greater

than or equal to 3. The diameter of a graph G, denoted by diam(G), is the largest

distance between any two vertices in G. Since the diameter of any tree T is not less than

2 and the star Sn is the unique tree with diam(T ) = 2, we assume that diam(T ) ≥ 3 for

any tree T in our following discussions. Denote by Tn, d the set of trees of with n vertices

and diameter d.

We first give some graph transformations that decrease the GA2 index of graphs under

consideration.
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Fig. 1. Graph transformation I: T 1 −→ T 2 that decreases the value of GA2(T
1).

Lemma 1. Let T 1 and T 2 be trees shown as in Fig. 1 with Pd+1 = v1 · · · vd+1 being

diametrical path in both T 1 and T 2. If Ti in T 1 is not isomorphic to a star centered at vi,

then GA2(T
1) > GA2(T

2), where Ti is a subtree of T 1 rooted at vi and n(Ti)(≥ 3) is the

number of vertices in Ti.

Proof. According to Eq.(2), we need only to consider the term
√
nu(e) · nv(e). Consider

trees T 1 and T 2. For any edge e = uv not in Ti, we clearly have nu(e, T
1) · nv(e, T

1) =

nu(e, T
2) ·nv(e, T

2). Also, for one pendent edge e = uv in any graph G, we have nu(e,G) ·
nv(e,G) = 1× (n− 1) = n− 1 attains the minimum value of nu(e,G) · nv(e,G). So

GA2(T
1) =

∑
e=uv∈E(T 1)

√
nu(e, T 1) · nv(e, T 1)

=
∑

e=uv∈E(Ti)

√
nu(e, T 1) · nv(e, T 1) +

∑
e=uv 	∈E(Ti)

√
nu(e, T 1) · nv(e, T 1)

>
∑

e=uv∈E(Ti)

√
nu(e, T 2) · nv(e, T 2) +

∑
e=uv 	∈E(Ti)

√
nu(e, T 2) · nv(e, T 2)

= GA2(T
2).
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This completes the proof. �

Remark 1. Noth that both T 1 and T 2 have Pd+1 = v1 · · · vd+1 as a diametrical path.

Since all trees we considered in this paper come from Tn,d, the graph transformation I:

T 1 −→ T 2 that did not change the diameter of T 1 is valid to our proof of main result. So,

we have either n(T2) = 1(resp., n(Td)) or T2(resp., n(Td)) is a star centered at v2(resp., vd).

A simple but useful elementary result is given as follows.

Lemma 2. Let xi, yi be positive integers satisfying xi + yi = n. If |xk − yk| > |xj − yj|,
then xkyk < xjyj.

𝑇𝑢 𝑇𝑢

𝑇𝑢

𝑇𝑣 𝑇𝑣

𝑇𝑣

𝑢1 𝑣1𝑢𝑠 𝑣𝑡 T4T3

T5

𝑢 𝑢

𝑢

𝑣 𝑣

𝑣

𝑢1 𝑢𝑠 𝑣1 𝑣𝑡

𝑣𝑡𝑣1𝑢𝑠𝑢1

...

... .....

... ........

Fig. 2. Graph transformation II: T 3 −→ T 4 or T 3 −→ T 5 that decreases the value of

GA2(T
3).

In the following, we will always use n(T ) to denote the number of vertices in a tree T .

Lemma 3. Let T 3, T 4 and T 5 be trees shown as in Fig. 2. Then GA2(T
3) > GA2(T

4)

or GA2(T
3) > GA2(T

5), where s, t ≥ 1, and Tu(resp., Tv) may be a single vertex u(resp., v).

Proof. It is not difficult to see from Fig. 2 that diam(T 3) = diam(T 4) = diam(T 5).

First, we assume that n(Tu) + s ≥ n(Tv) + t. We consider the graph transformation

II: T 3 −→ T 4. For one edge e = xy in E(Tu) ∪ E(Tv), we clearly have nx(e, T
3) ·

ny(e, T
3) = nx(e, T

4) · ny(e, T
4). Also, for any pendent edge e = uui or vvj(uvj), we have

nu(e, T
3)·nui

(e, T 3) = nu(e, T
4)·nui

(e, T 4) = nv(e, T
3)·nvj(e, T

3) = nu(e, T
4)·nvj(e, T

4) =

1×(n−1) = n−1. For the edge e = uv, we have nu(e, T
3)·nv(e, T

3) = (n(Tu)+s)·(n(Tv)+t)

and nu(e, T
4) · nv(e, T

4) = n(Tv) · (n(Tu) + s + t). By Lemma 2, we have GA2(T
3) >

GA2(T
4).

Similarly, if n(Tu) + s < n(Tv) + t, then GA2(T
3) > GA2(T

5).

This completes the proof. �
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Fig. 3. Graph transformation III: T 6 −→ T 7 or T 6 −→ T 8 that decreases the value of

GA2(T
6).

Remark 2. Since the trees we consider in this paper are members of Tn,d, the graph

transformation II: T 3 −→ T 4 or II: T 3 −→ T 5 that will not change the diameter of T 3

is valid to our proof of main result. So in our following proof of Theorem 5, we actually

require that n(Tu), n(Tv) ≥ 2.

Lemma 4. Let T 6, T 7 and T 8 be trees shown as in Fig. 3. Then GA2(T
6) > GA2(T

7)

or GA2(T
6) > GA2(T

8), where s, t, k ≥ 1, and Tu(resp., Tv) may be a single vertex

u(resp., v).

Proof. From Fig. 3, we know that diam(T 6) = diam(T 7) = diam(T 8). If n(Tu) + s ≥
n(Tv) + t+ k, then n(Tu) + s+ k > n(Tv) + t. We consider the graph transformation III:

T 6 −→ T 8. Obviously, for any edge e = xy ∈ E(T j)\{wkv, vv1, · · · , vvt, wkv1, · · · , wkvt}
(j = 6, 8), we have nx(e, T

6) · ny(e, T
6) = nx(e, T

8) · ny(e, T
8). Also, nv(vvj, T

6) ·
nvj(vvj, T

6) = nwk
(wkvj, T

8) · nvj(wkvj, T
8)(j = 1, · · · , t) = n − 1. For the edge wkv,

nv(e, T
6) · nwk

(e, T 6) = (n(Tu) + s + k) · (n(Tv) + t) > n(Tv) · (n(Tu) + s + t + k) =

nv(e, T
8) · nwk

(e, T 8). So we have GA2(T
6) > GA2(T

8).

If n(Tu) + s < n(Tv) + t+ k, we consider the graph transformation III: T 6 −→ T 7. By

the same reasoning as above, we obtain GA2(T
6) > GA2(T

7).

This completes the proof. �
Remark 3. As stated in Remark 2, we actually require that n(Tu), n(Tv) ≥ 2 in the

proof of main result.
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Fig. 4. Graph Pd+1(i, n− d− 1).

Let Pd+1(i, n− d− 1) denote the tree in Tn,d obtained from the path Pd+1 = v1 · · · vd+1

by attaching to its ith vertex (2 ≤ i ≤ d) n− d− 1 leaves.

The following is our main result of this paper.

Theorem 5. Among all trees in Tn,d, the tree Pd+1(�d+1
2
�, n− d− 1) has the minimum

GA2 index.

Proof. Let T be a tree in Tn,d such that GA2(T ) attains the minimum value. By Lemma

1, T must be a caterpillar of diameter d. By Lemmas 3 and 4, we claim that T must be

isomorphic to Pd+1(i, n− d− 1). If not so, T must be a caterpillar with Pd+1 = v0v1 · · · vd
as its diametrical path, and there exist at least two branch vertices vi, vj (2 ≤ i ≤ j ≤ d).

If vi is adjacent to vj, then T can be viewed as the graph T 3 in Fig. 2. So, we can

employ the graph transformation II on T and we shall obtain a new tree T ∈ Tn,d with

GA2(T ) > GA2(T ), a contradiction to our choice of T .

Suppose vi is not adjacent to vj, but branch vertices vi, vj are chosen such that there

is no other branch vertices along the path vivi+1 · · · vj(j ≥ i+ 2). Now, T can be viewed

as the graph T 6 in Fig. 3. So, we can employ the graph transformation III on T , and we

obtain a new tree T̂ ∈ Tn,d with GA2(T ) > GA2(T̂ ), a contradiction once again. Thus,

T ∼= Pd+1(i, n− d− 1).

Suppose that T �∼= Pd+1(�d+1
2
�, n − d − 1). Denote by u1, u2, · · · , un−d−1 the leaves

adjacent to vi. If i < d+1− i, then GA2(Pd+1(i, n−d−1)) > GA2(Pd+1(i+1, n−d−1)).

If i > d + 1 − i, then GA2(Pd+1(i, n − d − 1)) > GA2(Pd+1(i − 1, n − d − 1)). These

contradictions give T ∼= Pd+1(i, n− d− 1), completing the proof. �

Remark 4. In the proof of Lemmas 1, 3 and 4, in order to compare the GA2 index of

two trees T
′
, T

′′ ∈ Tn,d, we actually proved that for each edge–pair {e′
, e

′′}, (e′
= u

′
v

′ ∈
T

′
, e

′′
= u

′′
v

′′ ∈ T
′′
), if nu′ (e

′
, T

′
) · nv′ (e

′
, T

′
) ≥ nu′′ (e

′′
, T

′′
) · nv′′ (e

′
, T

′′
) and there exists

one pair of edges {e′
0, e

′′
0} such that nu

′
0
(e

′
0, T

′
) ·nv

′
0
(e

′
0, T

′
) > nu

′′
0
(e

′′
0 , T

′′
) ·nv

′′
0
(e

′
0, T

′′
), then
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GA2(T
′
) > GA2(T

′′
).

By Eq. (2) and Remark 4, the statements of Lemmas 1, 3 and 4 are valid for Szeged

index. Recall that for a tree T , its Wiener index, a well-known molecular-structure

descriptor, is equal to Szeged index. It then follows immediately the following result,

which is a result of [7] concerning the Wiener index of trees with fixed diameter.

Theorem 6. Among all trees in Tn,d, the tree Pd+1(�d+1
2
�, n− d− 1) has the minimum

Szeged and Wiener indices.

Lemma 7. For any 3 ≤ d ≤ n−2, GA2(Pd+1(�d+1
2
�, n−d−1)) > GA2(Pd(�d

2
�, n−d)).

Proof. If d = 2k, we contract the edge vkvk+1 in Pd+1(�d+1
2
�, n − d − 1) and add

one additional pendent edge vk+1x to the resulting graph. Now, we obtain Pd(�d
2
�, n− d).

During this process, nu(e)·nv(e) remains unchanged for any edge e(= uv) �= vkvk+1. Thus,

GA2(Pd+1(�d+1
2
�, n− d− 1))−GA2(Pd(�d

2
�, n− d)) = nvk(vkvk+1, Pd+1(�d+1

2
�, n− d− 1)) ·

nvk+1
(vkvk+1, Pd+1(�d+1

2
�, n− d− 1))− nvk+1

(vk+1x, Pd(�d
2
�, n− d)) · nx(vk+1x, Pd(�d

2
�, n−

d)) = k · (n− k)− 1 · (n− 1) > 0.

If d = 2k + 1, we contract the edge vk+1vk+2 in Pd+1(�d+1
2
�, n − d − 1) and add the

pendent edge vk+1y to the resulting graph. Similar to above, we can prove the desired

result. This completes the proof. �

For any tree T in Tn,d with a given diameter d(≥ 3), if T � Pd+1(�d+1
2
�, n − d − 1),

then GA2(T ) > GA2(Pd+1(�d+1
2
�, n− d− 1)) by Theorem 5. Also, by Lemma 7, we have

GA2(Pd+1(�d+1
2
�, n−d−1)) > GA2(Pd(�d

2
�, n−d)). Thus, GA2(T ) > GA2(Pd+1(�d+1

2
�, n−

d − 1)) > GA2(Pd(�d
2
�, n − d)) > · · · > GA2(P3(�3

2
�, n − 3)). Note that P3(�3

2
�, n − 3) is

just the n−vertex star Sn. So, we have the following consequence.

Corollary 8([2]). Among all trees with n vertices, the star Sn has the minimum GA2

index.

A double star tree Sa,b is defined to be the tree obtained from the path P2 by attaching

to its two end-vertices a and b pendent edges, respectively. Note that P4(�4
2
�, n − 4) is

just the double star tree S1,n−3. By above discussion, we have

Corollary 9. Among all trees with n vertices, the double star tree S1,n−3 has the second-

minimum GA2 index.
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By means of Corollaries 8 and 9, we thus have

Corollary 10. Among all trees with n vertices, the star Sn has the minimum Szeged

and Wiener indices.

Corollary 11. Among all trees with n vertices, the double star tree S1,n−3 has the

second-minimum Szeged and Wiener indices.

3. Concluding remarks

In this paper, we have determined the unique tree with the minimum GA2 index among

all trees in Tn,d. A related problem arising at this moment is: which tree has the maximum

GA2 index among all trees in Tn,d? It seems to be a much more difficult problem than

the one we have solved in this paper.
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