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Abstract

Let G = (V,E) be a simple connected graph (molecular graph) with vertex set
V (G) = {v1, v2, . . . , vn} and edge set E(G) , where |V (G)| = n and |E(G)| = m .
Let di be the degree of vertex vi for i = 1, 2, . . . , n . In [1], Vukičević et al. defined a
new topological index, named “geometric–arithmetic index” of a graph G, denoted
by GA(G) and is defined by

GA(G) =
∑

vivj∈E(G)

2
√
di dj

di + dj
.

In this paper we obtain the lower and upper bounds on GA(G) of a connected graph
and characterize graphs for which these bounds are best possible. Moreover, we give
Nordhaus–Gaddum–type results for GA(G) of the graph and its complement, and
characterize extremal graphs.

1 Introduction

Let G = (V,E) be a simple connected graph with vertex set V (G) = {v1, v2, . . . , vn} and

edge set E(G) , where |V (G)| = n and |E(G)| = m . Let di be the degree of vertex vi for

i = 1, 2, . . . , n . The maximum vertex degree is denoted by Δ , the minimum by δ and

the minimum non-pendent vertex degree δ1 . The second Zagreb index M2(G) is equal

to the sum of the products of the degrees of pairs of adjacent vertices of the underlying

molecular graph G , that is, M2(G) =
∑

vivj∈E(G)

di dj .

Graph theory has provided chemist with a variety of useful tools, such as topological

indices [2]. Molecules and molecular compounds are often modeled by molecular graph.
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Topological indices of molecular graphs are one of the oldest and most widely used de-

scriptors in QSPR/QSAR research. Recently, people are studying various topological

descriptors, like Zagreb indices [3], Randić connectivity index [4], modified Zagreb indices

[5], etc. Beside above-mentioned there are other topological descriptors based on end

vertex degrees of edges of graph that have found some applications in QSPR/QSAR re-

search [6–16]. The geometric–arithmetic index has a number of interesting properties in

[1]. The lower and upper bounds of the geometric–arithmetic index of a connected graph

and characterize graphs for which these bounds are best possible in [1].

In [1], Vukičević et al. defined a new topological index “geometric–arithmetic index”

of a graph G, denoted by GA(G) and is defined by

GA(G) =
∑

vivj∈E(G)

2
√
di dj

di + dj
. (1)

Let G = (V (G), E(G)) . If V (G) is the disjoint union of two nonempty sets V1(G)

and V2(G) such that every vertex in V1(G) has degree r and every vertex in V2(G) has

degree s, then G is (r, s)-semiregular graph. When r = s , is called a regular graph. If

(r, s)-semiregular graph is a tree, then it is called (r, 1)-semiregular tree. Denote, as usual,

by K1,n−1 , Pn and Kn the star, path and complete graph on n vertices, respectively.

In this paper, we obtain the lower and upper bounds on GA(G) of a connected graph,

and characterize graphs for which these bounds are best possible. Moreover, we give

the Nordhaus–Gaddum-type result for GA(G) of the graph and its complement, and

characterize extremal graphs. The bounds of a descriptor are important information of a

molecule (graph) in the sense that they establish the approximate range of the descriptor

in terms of molecular structural parameters.

2 Lower and upper bounds on geometric–arithmetic

index

In [1] the following lower and upper bounds for GA(G) and GA(T ) were established:

Lemma 2.1. [1] Let G be a simple connected graph with n vertices, then

2(n− 1)3/2

n
≤ GA(G) ≤

(
n

2

)
. (2)

Lower bound is achieved if and only if G ∼= K1,n−1 and upper bound is achieved if and

only if G ∼= Kn .
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Lemma 2.2. [1] Let T be a tree with n > 2 vertices, then

2(n− 1)3/2

n
≤ GA(T ) ≤ 4

√
2

3
+ n− 3 . (3)

Lower bound is achieved if and only if T ∼= K1,n−1 and upper bound is achieved if and

only if T ∼= Pn .

Now we give lower and upper bounds on GA(G) of a graph G in terms of number of

edges m , maximum vertex degree Δ and minimum vertex degree δ . First we obtain the

lower bound on GA(G) of a graph G .

Theorem 2.3. Let G be a simple connected graph of m edges with maximum vertex degree

Δ and minimum vertex degree δ . Then

GA(G) ≥ 2m
√
Δδ

Δ+ δ
, (4)

with equality holding in (4) if and only if G is isomorphic to a regular graph or G is

isomorphic to a bipartite semiregular graph.

Proof: Since
Δ

δ
≥ di

dj
≥ δ

Δ
for all vi, vj ∈ V (G) , we have

(√
di
dj

+

√
dj
di

)2

=

(√
di
dj

−
√

dj
di

)2

+ 4

≤
(√

Δ

δ
−
√

δ

Δ

)2

+ 4 =

(√
Δ

δ
+

√
δ

Δ

)2

. (5)

Using (5) in (1), we get the required result (4).

Moreover, the equality holds in (4) if and only if

di
dj

=
Δ

δ
for any vivj ∈ E(G) and di ≥ dj

that is,

di = Δ , dj = δ for any edge vivj ∈ E(G) and di ≥ dj

that is, G is a regular graph or G is a bipartite semiregular graph, as G is connected.

Conversely, one can see easily that the equality holds in (4) for regular graph or

bipartite semiregular graph.
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Remark 2.4. Our lower bound (4) is better than the lower bound in (2). Since G is

connected, we have to show that

2
√
Δδ

Δ+ δ
≥ 2

√
n− 1

n

that is,

[δ(n− 1)−Δ]

[
1

δ
− 1

(n− 1)Δ

]
≥ 0

which, evidently, is always obeyed.

Lemma 2.5. (Ozeki inequality) [17] Let (a1, a2, . . . , an) and (b1, b2, . . . , bn) be two positive

n-tuples such that there exist positive numbers M1,m1,M2,m2 satisfying:

0 < m1 ≤ ai ≤ M1 , 0 < m2 ≤ bi ≤ M2 , 1 ≤ i ≤ n .

Then
n∑

i=1

a2i

n∑
i=1

b2i −
(

n∑
i=1

aibi

)2

≤ 1

4
n2(M1M2 −m1m2)

2 . (6)

A vertex of a graph is said to be pendent if its neighborhood contains exactly one

vertex. An edge of a graph is said to be pendent if one of its vertices is a pendent vertex.

Now we give a lower bound on GA(G) of a graph G .

Theorem 2.6. Let G be a simple connected graph of order n (n > 2), m edges with

maximum vertex degree Δ , minimum non-pendent vertex degree δ1 and degree sequence

d1, d2, . . . , dn . Then

GA(G) ≥ 2p
√
Δ

Δ+ 1
+

√√√√μ2 − μ

4δ21

(
n∑

i=1

d3i − 2M2(G)− p(δ1 − 1)2

)
− μ2

4

(
1− 2

√
Δδ1

Δ+ δ1

)2

(7)

where p is the number of pendent vertices in G , μ = m− p is the number of non-pendent

edges, and M2(G) is the second Zagreb index of G . Moreover, the equality holds in (7) if

and only if G is isomorphic to a regular graph or G is isomorphic to a (Δ, 1)-semiregular

graph.

Proof: For δ1 ≤ di, dj ≤ Δ , we have

2
√
Δδ1

Δ+ δ1
≤ 2

√
didj

di + dj
≤ 1 , by (5). (8)
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Since

2
√
didj

di + dj
=

√
1−

(
di − dj
di + dj

)2

and μ is the number of non-pendent edges in G , using (6) we have⎛
⎝ ∑

vivj∈E(G),di,dj 	=1

2
√
didj

di + dj

⎞
⎠

2

≥ μ
∑

vivj∈E(G),di,dj 	=1

(
1−

(
di − dj
di + dj

)2
)

− μ2

4

(
1− 2

√
Δδ1

Δ+ δ1

)2

by (8) . (9)

Now,

∑
vivj∈E(G),di,dj 	=1

(
1−

(
di − dj
di + dj

)2
)

≥ μ− 1

4δ21

∑
vivj∈E(G),di,dj 	=1

(di − dj)
2

≥ μ− 1

4δ21

(
n∑

i=1

d3i − 2M2(G)− p(δ1 − 1)2

)
. (10)

Using (10) in (9), we get

∑
vivj∈E(G),di,dj 	=1

2
√
di dj

di + dj
≥

√√√√μ2 − μ

4δ21

(
n∑

i=1

d3i − 2M2(G)− p(δ1 − 1)2

)
− μ2

4

(
1− 2

√
Δδ1

Δ+ δ1

)2

. (11)

Thus

GA(G) =
∑

vivj∈E(G),di=1

2
√
dj

dj + 1
+

∑
vivj∈E(G),di,dj 	=1

2
√
di dj

di + dj
. (12)

For 2 ≤ dj ≤ Δ we have √
dj

dj + 1
≥

√
Δ

Δ+ 1
.

By (11) and using above result in (12), we get the required result (7).

Now suppose that equality in (7) holds. Then all inequalities in the above argument

must be equalities. In particular, from (10), we get

di = dj = δ1 for any vivj ∈ E(G) , di, dj �= 1 , m− p > 0 .

Also, we have

dj = Δ for vivj ∈ E(G) , di = 1 .
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If m = p , then we have n − 1 ≤ m = p ≤ n − 1 , as G is connected. Hence G is

isomorphic to a (n − 1, 1)-semiregular graph. Otherwise, m > p . When p = 0 , G is

isomorphic to a regular graph. When p �= 0 , G is isomorphic to a (Δ, 1)-semiregular

graph, as G is connected.

Conversely, one can see easily that the equality holds in (7) for (Δ, 1)-semiregular

graph or regular graph.

Corollary 2.7. Let G be a simple connected graph of order n (n > 2), m edges with

maximum vertex degree Δ , minimum vertex degree δ and degree sequence d1, d2, . . . , dn .

Then

GA(G) ≥

√√√√m2 − m

4δ2

(
n∑

i=1

d3i − 2M2(G)

)
− m2

4

(
1− 2

√
Δδ

Δ+ δ

)2

, (13)

where M2(G) is the second Zagreb index of G . Moreover, the equality holds in (13) if and

only if G is isomorphic to a regular graph.

Proof: The proof follows directly from Theorem 2.6.

Corollary 2.8. Let T be a tree of order n (n > 2) with maximum vertex degree Δ ,

minimum non-pendent vertex degree δ1 and degree sequence d1, d2, . . . , dn . Then

GA(T ) ≥ 2p
√
Δ

Δ+ 1
+

√√√√μ2 − μ

4δ21

(
n∑

i=1

d3i − 2M2(T )− p(δ1 − 1)2

)
− μ2

4

(
1− 2

√
Δδ1

Δ+ δ1

)2

(14)

where p and μ = n − p − 1 are the number of pendent and non-pendent vertices in T ,

respectively, and M2(T ) is the second Zagreb index of T . Moreover, the equality holds in

(14) if and only if T is isomorphic to a (Δ, 1)-semiregular tree.

Corollary 2.9. Let T be a tree of order n (n > 2) with maximum vertex degree Δ . Then

GA(T ) ≥ 2p
√
Δ

Δ+ 1
. (15)

Moreover, the equality holds in (15) if and only if T ∼= K1,n−1 .
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Proof: From (14), we get the required result (15). Moreover, the equality holds in (15) if

and only if n− p− 1 = 0 , that is, p = n− 1 , that is, T ∼= K1,n−1 .

Now we give an upper bound on GA(G) of a graph G .

Theorem 2.10. Let G be a simple connected graph of m edges with maximum vertex

degree Δ , minimum non-pendent vertex degree δ1 and degree sequence d1, d2, . . . , dn . Then

GA(G) ≤ 2p
√
δ1

δ1 + 1
+

√√√√(m− p)

(
m− p− 1

4Δ2

(
n∑

i=1

d3i − 2M2(G)− p(Δ− 1)2

))
(16)

where p is the number of pendent vertices in G and M2(G) is the second Zagreb index of

G . Moreover, the equality holds in (16) if and only if G is isomorphic to a regular graph

or G is isomorphic to a (Δ, 1)-semiregular graph.

Proof: For each edge vivj ∈ E(G) , di = 1 and dj ≥ δ1 ≥ 2 , we have

2
√
dj

dj + 1
≤ 2

√
δ1

δ1 + 1
. (17)

Since m− p is the number of non-pendent edges in G, by Cauchy-Schwarz inequality,⎡
⎣ ∑

vivj∈E(G),di,dj 	=1

√
1−

(
di − dj
di + dj

)2
⎤
⎦

2

≤ (m− p)
∑

vivj∈E(G),di,dj 	=1

[
1−

(
di − dj
di + dj

)2
]

≤ (m− p)

[
m− p− 1

4Δ2

(
n∑

i=1

d3i − 2M2(G)− p(Δ− 1)2

)]
. (18)

Since

2
√
didj

di + dj
=

√
1−

(
di − dj
di + dj

)2

using (17) and (18) in (12), we get the required result (16).

Now suppose that equality in (16) holds. Then all inequalities in the above argument

must be equalities. In particular, from (18), we get

di = dj = Δ for vivj ∈ E(G) , di , dj �= 1 and m > p .

From equality in (17), we get dj = δ1 for vivj ∈ E(G) , di = 1 .
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If m = p , then G is isomorphic to a (n− 1, 1)-semiregular graph. Otherwise, m > p .

When p = 0 , G is isomorphic to a regular graph. When p �= 0 , G is isomorphic to a

(Δ , 1)-semiregular graph, as G is connected.

Conversely, one can see easily that the equality holds in (16) for regular graph or

(Δ, 1)-semiregular graph.

Corollary 2.11. Let G be a simple connected graph of m edges with minimum non-

pendent vertex degree δ1 . Then

GA(G) ≤ 2p
√
δ1

δ1 + 1
+m− p (19)

where p is the number of pendent vertices in G . Moreover, the equality holds in (19) if

and only if G is isomorphic to a regular graph or G is isomorphic to a (δ1, 1)-semiregular

graph.

Proof: The proof follows directly from Theorem 2.10.

Corollary 2.12. Let T be a tree of order n with minimum non-pendent vertex degree δ1 .

Then

GA(T ) ≤ 4
√
δ1

δ1 + 1
+ n− 3 (20)

with equality holding in (20) if and only if G ∼= Pn .

Proof: Let us consider a function

f(x) =
2x

√
δ1

δ1 + 1
+ n− 1− x for 2 ≤ x ≤ n− 1 .

We have

f
′
(x) =

2
√
δ1

δ1 + 1
− 1 < 0 as δ1 ≥ 2 .

Thus f(x) is a decreasing function for 2 ≤ x ≤ n − 1 . By (19), we get the required

result (20). Moreover, the equality holds in (20) if and only if p = 2 , that is, T ∼= Pn .
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Corollary 2.13. Let G be a simple connected graph of m edges with maximum vertex

degree Δ and degree sequence d1, d2, . . . , dn . Then

GA(G) ≤
√√√√m

(
m− 1

4Δ2

(
n∑

i=1

d3i − 2M2(G)

))
(21)

where M2(G) is the second Zagreb index of G . Moreover, the equality holds in (21) if and

only if G is isomorphic to a regular graph.

Proof: The proof follows directly from Theorem 2.10.

Remark 2.14. Since √
δ1

δ1 + 1
≤

√
2

3

our upper bound (20) is better than the upper bound in (3).

Remark 2.15. Our upper bound (21) is better than the upper bound in (2). The reason

is the following:

From (16), we get√√√√√m

⎛
⎝m− 1

4Δ2

⎛
⎝ ∑

vi∈V (G)

d3i − 2M2(G)

⎞
⎠
⎞
⎠ ≤ m ≤

(
n

2

)
.

Remark 2.16. The lower and upper bounds given by (7) and (16), respectively, are equal

when G is a regular graph or (Δ, 1)-semiregular graph.

3 Nordhaus–Gaddum-type results for geometric-

-arithmetic index

For a graph G , the chromatic number χ(G) is the minimum number of colors needed to

color the vertices of G in such a way that no two adjacent vertices are assigned the same

color. In 1956, Nordhaus and Gaddum [18] gave bounds involving the chromatic number

χ(G) of a graph G and its complement G :

2
√
n ≤ χ(G) + χ(G) ≤ n+ 1 .

Motivated by the above results, we now obtain analogous conclusions for the geometric–

arithmetic index.
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Theorem 3.1. Let G be a connected graph on n vertices with a connected G. Then

GA(G) +GA(G) ≥ 2k

k2 + 1

(
n

2

)
(22)

where k = max
{√

Δ
δ
,
√

n−1−δ
n−1−Δ

}
; Δ, δ are the maximum vertex degree and minimum

vertex degree in G , respectively. Moreover, the equality holds in (22) if and only if G is

isomorphic to a regular graph.

Proof: We have m =
(
n
2

) − m , Δ = n − 1 − δ and δ = n − 1 − Δ , where m , Δ and

δ are the number of edges, maximum vertex degree and minimum vertex degree in G,

respectively. Using (4), we get

GA(G) +GA(G) ≥ 2m
√
Δδ

Δ+ δ
+

(n(n− 1)− 2m)
√

(n− 1− δ)(n− 1−Δ)

2(n− 1)−Δ− δ
. (23)

Since

k ≥
√

Δ

δ
≥ 1 and 1−

√
δ

k
√
Δ

≥ 0

we have (
k −

√
Δ

δ

)(
1−

√
δ

k
√
Δ

)
≥ 0

i. e., √
Δδ

Δ+ δ
≥ k

k2 + 1
. (24)

Again, since k ≥√
(n− 1− δ)/(n− 1−Δ) , we have√

(n− 1− δ)(n− 1−Δ)

2(n− 1)−Δ− δ
≥ k

k2 + 1
. (25)

Using (24) and (25) in (23), we get the required result (22).

By Theorem 2.3, the equality holds in (23) if and only if G is a regular graph, as G

and G are connected. Moreover, all inequalities in the above argument must be equalities

for regular graph. Thus the equality holds in (22) if and only if G is isomorphic to a

regular graph.

Theorem 3.2. Let G be a connected graph on n vertices with a connected G. Then

GA(G) +GA(G) ≤
(
n

2

)
− p

(
√
δ1 − 1)2

δ1 + 1
− p

(
√
δ1 − 1)2

δ1 + 1
(26)
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where p , p and δ1 , δ1 are the number of pendent vertices and minimum non-pendent

vertex degrees in G and G , respectively. Moreover, the equality holds in (26) if and only

if G is isomorphic to a regular graph.

Proof: By (19), we get

GA(G) +GA(G) ≤ m− p+
2p
√
δ1

δ1 + 1
+m− p+

2p
√
δ1

δ1 + 1
.

Since m +m =
(
n
2

)
, we get the required result (26). By Corollary 2.11, the equality

holds in (26) if and only if G is isomorphic to a regular graph.

Corollary 3.3. Let G be a connected graph on n vertices with a connected G. Then

GA(G) +GA(G) ≤
(
n

2

)
(27)

with equality holding in (27) if and only if G is isomorphic to a regular graph.

Proof: The proof follows directly from Theorem 3.2.

Remark 3.4. The upper bound of GA(G) in (2) is
(
n
2

)
, but this is our upper bound for

GA(G) +GA(G) .

Remark 3.5. The lower and upper bounds given by (22) and (26), respectively, are equal

when G is a regular graph.
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[3] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-electron

energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535–538.

-629-
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