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Abstract

Let 𝐺 = (𝑉,𝐸) be a simple graph with vertex set 𝑉 and edge set 𝐸 (∣𝑉 ∣ = 𝑛, ∣𝐸∣ =
𝑚), and let 𝑑𝑖 be the degree of vertex 𝑖 of 𝐺. The degree product 𝑃 (𝐺) :=

∏𝑛
𝑖=1 𝑑𝑖 of 𝐺

was introduced and studied by Narumi and Katayama. This index is here fundamentally

characterized; first, as the number of “functional” subgraphs of the directed graph 𝐷(𝐺)

associated to 𝐺; and, second, as a suitable weighting over a certain class of ordinary sub-

graph covers of 𝐺. Then, 𝑃 (𝐺) is related to several other common graph invariants by way

of several bounding relations.

1 Introduction

Given a simple graph 𝐺 = (𝑉,𝐸) with vertex set 𝑉 and edge set 𝐸, many different invari-

ants have been considered. Two of the very simplest are ∣𝑉 ∣ = 𝑛 and ∣𝐸∣ = 𝑚. Others may

be defined in terms of the vertex degrees, 𝑑𝑖 (1 ≤ 𝑖 ≤ 𝑛) for the 𝑖th vertex. One such simple

topological index

𝑃 (𝐺) :=
𝑛∏

𝑖=1

𝑑𝑖 (1)
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was proposed, in 1984, by Narumi and Katayama [1, 2], as sharing a number of characteristics

with the so-called Hosoya index [3], yet being much easier to compute. Along with the generally

recognized chemical relevance of the Hosoya index 𝑍(𝐺), this then motivated their study of

the degree product 𝑃 (𝐺). Later, 𝑃 (𝐺) was further studied [4, 5] to find that it “gives back”

the whole sequence of degrees, so long as the graph is connected and also so long as 𝑛 and

𝑚 are known and the degrees are ≤ 5, such as is the case for molecular graphs of saturated

hydrocarbons. Some of this work [4] relates 𝑃 (𝐺) for 𝐺 a tree to certain weighted subgraph

enumerations and to polynomials involving certain covers.

Here, we find that 𝑃 (𝐺) counts so-called “functional” digraphs in the digraph 𝐷(𝐺) sym-

metrically derived from 𝐺, and we also find 𝑃 (𝐺) to be a weighted evaluation of certain covers

of 𝐺. Further, several inequalities are given to relate 𝑃 (𝐺) to some other, better known graph

invariants, such as the number 𝑡(𝐺) of all spanning trees of 𝐺. Also, in support of Narumi

& Katayama’s ideas [1, 2], we relate 𝑃 (𝐺) to the Hosoya’s index 𝑍(𝐺) [3], which counts all

matchings of 𝐺.

2 Preliminaries

We need first to recall certain terminology (see [6]) and results. A digraph (or directed

graph) 𝐷 is a graph each of whose edges is directed. If for each pair of vertices 𝑢 and 𝑣 of 𝐷,

there exists a consistently oriented path from 𝑢 to 𝑣, but not necessarily from 𝑣 to 𝑢, then 𝐷 is

termed weakly connected (or weak). The outdegree (indegree) of a vertex 𝑣 is the number of

oriented lines (arcs and/or self-loops) that go out (come into) 𝑣, in 𝐷. In a symmetric digraph,

an outdegree of each vertex 𝑣 is equal to its indegree. In particular, one can obtain a symmetric

digraph 𝐷(𝐺) from a simple graph 𝐺 by the substitution of a pair of opposite arcs for each

(undirected) edge of 𝐺.

A functional digraph is a digraph in which each vertex has outdegree one. Harary, Norman,

and Cartwright (see p. 325 in [7] or p. 69 in [8]) demonstrated:

Proposition 1. A digraph 𝐷 is functional iff, first, each of its weak components consists of

exactly one directed cycle 𝑍 (which may also be a self-loop or an edge), and, second, for each

vertex 𝑢 of 𝑍, any weak component 𝑅(𝑢) of 𝐷 − 𝑍 which contains 𝑢 is a tree oriented to the

vertex 𝑢.

-608-



That is, each weak component of functional digraph contains exactly one consistently oriented

cycle (which, in general, may also be a self-loop or a pair of opposite arcs) while the other

vertices, if any, belong to directed trees whose arcs are all oriented to the respective points of

attachment to the cycle.

An entry 𝑎𝑖𝑗 of the adjacency matrix 𝐴 = [𝑎𝑖𝑗]
𝑛
𝑖=1 of a simple (resp. functional) graph

equals 1 iff the 𝑖th and 𝑗th vertices are adjacent (resp. there is an arc going from the 𝑖th vertex

to the 𝑗th vertex); otherwise, 𝑎𝑖𝑗 = 0. The adjacency matrix 𝐴[𝐷(𝐺)] of a derivative symmetric

digraph 𝐷(𝐺) coincides with the adjacency matrix 𝐴(𝐺) of an original simple graph 𝐺, i. e.,

𝐴[𝐷(𝐺)] = 𝐴(𝐺).

A 𝐺-cover (or 𝐷-cover) is a subgraph whose vertex set is 𝑉 (𝐺) (or 𝑉 (𝐷)). In this paper,

we utilize the number 𝑁𝑓 (𝐺) of all 𝐷-covers with components which are functional subgraphs.

Also, we shall specially obtain the number 𝑁𝑙(𝐺) of all (weakly) connected functional sub-

graphs covering 𝐷(𝐺) which contain a pair of opposite arcs (also called a fish, or lune). Ap-

parently, 𝑁𝑙(𝐺) ≤ 𝑁𝑓 (𝐺), where the equality holds only for 𝐾2 (since, by definition, 𝐺 has no

self-loops).

Besides another particular 𝐺-cover, we utilize several other graph structures. One such is

that of a tree, which is an acyclic connected graph, and another is bitree, which is a graph with

two components each of which is a tree. A tree or bitree, or indeed a general subgraph of 𝐺,

is said to be spanning if this subgraph includes all the vertices of 𝐺. Yet another structure

utilized is that of matchings, which are subsets of disjoint edges. And another is the “resistance

distance” Ω𝑖𝑗 between 2 vertices 𝑖 and 𝑗; this Ω𝑖𝑗 may be defined [9] as the effective electrical

resistance between vertices 𝑖 and 𝑗, when 𝐺 is viewed as an electrical network with unit resistors

on each edge. But also, there are [10] several other interpretations of Ω𝑖𝑗 , which further is a

metric on 𝐺, and, then, may be used to generate different meaningful invariants. We make

reference to several other graph invariants, which are introduced along the way.

Now, we turn to the derivation of our various results.

3 Equivalences

We begin this part with:

Proposition 2. The symmetrical digraph 𝐷(𝐺) of a simple graph 𝐺 has exactly 𝑁𝑓 (𝐺) =
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∏𝑛
𝑖=1 𝑑𝑖 = 𝑃 (𝐺) covers which are functional subgraphs.

𝑷𝒓𝒐𝒐𝒇. By definition, the adjacency matrix of each functional subgraph has exactly one unit

in every row. Thus, 𝑁𝑓 equals the number of all simultaneous choices of 𝑛 1’s, one from each

of the rows of 𝐴[𝐷(𝐺)]. Since the 𝑖th (1 ≤ 𝑖 ≤ 𝑛) row contains exactly 𝑑𝑖 1’s, a total number

of such choices equals
∏𝑛

𝑖=1 𝑑𝑖 = 𝑃 (𝐺), which is the proof. ■
Another auxiliary statement is:

Proposition 3. Let 𝑡(𝐺) be the number of all spanning trees of an 𝑛-vertex graph 𝐺 and let

𝑁𝑙(𝐺) be the number of all connected, spanning functional subgraphs, of 𝐷(𝐺), containing a

lune. Then 𝑡(𝐺) = 𝑁𝑙(𝐺)/(𝑛− 1).

𝑷𝒓𝒐𝒐𝒇. Apparently, each connected, spanning functional subgraph, of 𝐷(𝐺), containing a

lune corresponds to a respective spanning tree of a graph 𝐺. In turn, to each spanning tree of

𝐺, there corresponds exactly 𝑛 − 1 such connected, spanning functional subgraphs of 𝐷(𝐺),

where 𝑛− 1 is the number of edges in a spanning tree of 𝐺. This correspondence produces the

proof. ■
Now, we identify a correspondence to 𝐺-covers (of a certain type):

Proposition 4. Let C be the set of all 𝐺-covers with components which are trees or connected

subgraphs containing one cycle (of length ≥ 3). Then,

𝑃 (𝐺) =
∑
∀𝐶∈C

∏
∀𝛾∈𝐶

𝑤𝛾, (2)

where 𝑤𝛾 is the weight of component 𝛾 of 𝐶, which is 𝑤𝛾 = ∣𝑉 (𝛾)∣−1 if 𝛾 is a tree and 𝑤𝛾 = 2

if 𝛾 contains a proper cycle of 𝐺.

𝑷𝒓𝒐𝒐𝒇. First, note that the weight 2 of each unicyclic subgraph 𝛾 in 𝐶 is due to the fact that this

(undirected) cycle may receive two opposite orientations in a respective functional subgraph of

𝐷(𝐺), as described in Proposition 3. That is, this weight accounts for the two unicyclic graphs

with opposite orientations of their ‘common’ cycle, in 𝐷(𝐺). The weight ∣𝛾∣ − 1, when 𝛾 is a

tree, accounts for the different placements of lunes on it (as in Proposition 3). ■
This, in fact, is an example of a “family polynomial” (or 𝐹 -polynomial, for short) of Farrell

[11], whence relations generic for this family follow.
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We might denote the part of 𝑃 (𝐺) involving 𝛼 tree components and 𝛽 single-cycle-

containing components by 𝑃𝛼,𝛽(𝐺). Then, for instance, Proposition 3 gives 𝑃1,0(𝐺), and our

next Proposition gives 𝑃2,0(𝐺).

Proposition 5. Let 𝑊 ′(𝐺) :=
∑

𝑖<𝑗 Ω𝑖𝑗 be the resistance-distance sum, where Ω𝑖𝑗 is the resis-

tance distance between vertices 𝑖, 𝑗 ∈ 𝑉 (𝐺), and let 𝑡2(𝐺) be the number of spanning bitrees.

Then, the spanning-bitree part of the sum of Proposition 4 is

𝑃2,0(𝐺) = 𝑡(𝐺) ⋅𝑊 ′(𝐺)− (𝑛− 1)𝑡2(𝐺). (3)

𝑷𝒓𝒐𝒐𝒇. It is known [12] that Ω𝑖𝑗 = 𝑡𝑖,𝑗/𝑡(𝐺), where 𝑡𝑖,𝑗 is the number of spanning bitrees

𝑇1⊕𝑇2 with 𝑖 ∈ 𝑉 (𝐺) in one of components of 𝑇1⊕𝑇2 and 𝑗 ∈ 𝑉 (𝐺) in the other component.

Then,

𝑊 ′(𝐺) = (1/𝑡(𝐺))
∑
𝑖<𝑗

𝑡𝑖,𝑗 = (1/𝑡(𝐺))
s.bitrees∑
𝑇1⊕𝑇2

∣𝑉 (𝑇1)∣∣𝑉 (𝑇2)∣,

where the sum
∑

𝑇1⊕𝑇2
ranges over all spanning bitrees of 𝐺; and ∣𝑉 (𝑇1)∣∣𝑉 (𝑇2)∣ is exactly

the number of times which each bitree contributes to the sum
∑

𝑖<𝑗 𝑡𝑖,𝑗 , while considering all

choices of vertices 𝑖 in 𝑇1 and 𝑗 in 𝑇2 (for 𝑇1 and 𝑇2 being an unordered pair of trees). Replace-

ment of ∣𝑉 (𝑇𝑖)∣ = 𝑤𝑇𝑖
+ 1 (𝑖 = 1, 2), then, gives

𝑊 ′(𝐺) = (1/𝑡(𝐺))
s.bitrees∑
𝑇1⊕𝑇2

(𝑤𝑇1𝑤𝑇2 + 𝑤𝑇1 + 𝑤𝑇2 + 1).

But noting that 𝑤𝑇1 + 𝑤𝑇2 = 𝑛− 2, we obtain

𝑡(𝐺) ⋅𝑊 ′(𝐺) =
s.bitrees∑
𝑇1⊕𝑇2

𝑤𝑇1⊕𝑇2 + (𝑛− 1)𝑡2(𝐺).

Recognition of the spanning bitree sum here as the spanning bitree part 𝑃2,0(𝐺) of the polyno-

mial of Proposition 4, then, completes the proof. ■

4 Inequalities

Next, we proceed to several bounding relations:

Proposition 6. Let 𝑡(𝐺) be the number of all spanning trees of a simple graph 𝐺. Then, 𝑡(𝐺) ≤
(
∏𝑛

𝑖=1 𝑑𝑖)/(𝑛− 1) = 𝑃 (𝐺)/(𝑛− 1), and equality holds iff 𝐺 is a star.
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𝑷𝒓𝒐𝒐𝒇. Our present desired inequality is due to the obvious one 𝑁𝑙(𝐺) ≤ 𝑁𝑓 (𝐺) and Proposi-

tion 2. To obtain equality, there can be no contributions involving cyclic functional subdigraphs,

where 𝐺 must be acyclic. But to have only single-tree spanning functional subdigraphs, with

each component having at least 2 vertices (corresponding to the lune) one must not be able to

embed 2 disjoint edges in 𝐺, whence the longest path in 𝐺 must be of length no more than 2,

which, then, implies that 𝐺 is a star. ■
We can add the following statement which uses more information about 𝐺:

Proposition 7. Let 𝑡(𝐺) be the number of all spanning trees, and 𝜌(𝐺) = 𝑚 − 𝑛 + 1 be the

cyclomatic number of a graph 𝐺. Then,

𝑃 (𝐺) = 𝑁𝑓 (𝐺) ≥ (𝑛− 1) ⋅ 𝑡(𝐺) + 2𝜌(𝐺). (4)

𝑷𝒓𝒐𝒐𝒇. Indeed, the family C of all functional subgraphs includes (𝑛 − 1) ⋅ 𝑡(𝐺) connected

unicyclic subgraphs containing a lune and at least two covers containing each fundamental cycle

of 𝐺 (where this cycle has two opposite orientations). Since this inventory is not in general full,

we easily arrive at the inequality obtained in (3). ■
This gives a (very slightly) better bound to 𝑡(𝐺) than Proposition 6.

When the number 𝜎(𝐺) of all cycles in 𝐺 is known, one may state a stronger analog of this

last proposition, viz.:

Proposition 8. Let 𝜎(𝐺) be the number of all proper cycles of a graph 𝐺. Then,

𝑃 (𝐺) = 𝑁𝑓 (𝐺) ≥ (𝑛− 1) ⋅ 𝑡(𝐺) + 2𝜎(𝐺). (5)

𝑷𝒓𝒐𝒐𝒇. This follows similarly to the preceding two Propositions, now with a note that each cy-

cle can be associated with at least one corresponding cycle-containing term 𝛾 in the expression

of Proposition 4. ■

Proposition 9. Let 𝑊 ′(𝐺) be the resistance sum, and let 𝑡2(𝐺) be the number of all bitrees of a

graph 𝐺. Then,

𝑃 (𝐺) ≥ 𝑡(𝐺) ⋅𝑊 ′(𝐺) + (𝑛− 1)[𝑡(𝐺)− 𝑡2(𝐺)]. (6)

𝑷𝒓𝒐𝒐𝒇. This follows from 𝑃1,0(𝐺) + 𝑃2,0(𝐺) ≤ 𝑃 (𝐺), along with Propositions 3 and 5. ■
In a similar vein, we can state the following:
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Proposition 10. Let 𝑍(𝐺) be the total number of matchings, or Hosoya index, of 𝐺. Then,

𝑃 (𝐺) = 𝑁𝑓 (𝐺) ≥ 𝑍(𝐺)− 1. (7)

𝑷𝒓𝒐𝒐𝒇. It is also similar to those of Propositions 6 and 7. Namely, to each of 𝑘-matchings,

with 1 ≤ 𝑘 ≤ ⌊𝑛/2⌋, of 𝐺, there corresponds at least one functional subgraph of 𝐷(𝐺), whereas

the case 𝑘 = 0, accounted by 𝑍(𝐺), is rejected as a functional digraph. Hence, we arrive at the

proof. ■
This result supports an observation [1] of Narumi and Katayama’s that their index (𝑃 (𝐺))

seems to be related to the Hosoya index (𝑍(𝐺)); and, indeed, for a number of smaller trees,

equality in our bound is found. However, a stronger correlation is found in the next statement

which additionally involves values of 𝑡(𝐺) and 𝑚, viz.:

Proposition 11. Let 𝑍(𝐺) the number of all matchings of a graph 𝐺. Then,

𝑃 (𝐺) = 𝑁𝑓 (𝐺) ≥ (𝑛− 1) ⋅ 𝑡(𝐺) + 𝑍(𝐺)−𝑚− 1. (8)

𝑷𝒓𝒐𝒐𝒇. Apparently, 𝑍(𝐺) −𝑚 − 1 is the number of all matchings, of 𝐺, containing at least

two edges, where we note that the empty graph is usually included as a matching in the count

of 𝑍(𝐺). Every such matching can be complemented to at least one forest of 𝐺 with each

component of the forest containing just one of the (≥ 2) edges of the matching. Since every

forest of 𝐺 corresponds to at least one cover 𝐶 each of whose components contain a lune,

we obtain, in general, an incomplete inventory of functional subgraphs (which also include

(𝑛− 1) ⋅ 𝑇 (𝐺) monocomponent subgraphs containing one lune). Hence, the proof follows. ■
We can present here yet another result improving on the idea in Proposition 8:

Proposition 12. Let per𝐴(𝐺) be the permanent of the adjacency matrix of a graph 𝐺 with

∣𝑉 (𝐺)∣ ≥ 3, or, equivalently, of the symmetric digraph 𝐷(𝐺) (which, by definition, shares the

same adjacency matrix with 𝐺). Then,

𝑃 (𝐺) = 𝑁𝑓 (𝐺) ≥ (𝑛− 1) ⋅ 𝑡(𝐺) + per𝐴(𝐺). (9)

𝑷𝒓𝒐𝒐𝒇. The family of all functional subgraphs of 𝐷(𝐺) includes also all covers of 𝐷(𝐺) with

proper cycles. But per𝐴 counts the number of all covers with components which are either

an edge (with weight 1) or a proper cycle, with weight 2. Together with (𝑛 − 1) ⋅ 𝑡(𝐺) con-

nected spanning subgraphs containing one lune, these comprise, in general, not all functional
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subgraphs of 𝐷(𝐺), excepting any case where a contribution in per𝐴(𝐺) is such a spanning tree

– as only occurs for the single edge graph with ∣𝑉 (𝐺)∣ = 2. Hence, the proof is immediate. ■
Note that, for ∣𝑉 (𝐺)∣ = 2, 𝐷(𝐺) contains only one lune and no proper cycle; thus, this case

falls out of the conditions of Proposition 12.

Several of our bounds may be improved. For instance, the arguments to strengthen Propo-

sition 6 to give Propositions 7 and 8 may be similarly applied to strengthen Proposition 9 to

give:

Proposition 13. Let 𝑡(𝐺) be the number of all spanning trees, and 𝜌(𝐺) = 𝑚 − 𝑛 + 1 be the

cyclomatic number of a graph 𝐺. Then,

𝑃 (𝐺) ≥ 𝑡(𝐺) ⋅𝑊 ′(𝐺) + (𝑛− 1)[𝑡(𝐺)− 𝑡2(𝐺)] + 2𝜌(𝐺). (10)

And, similarly, we can state:

Proposition 14. Let 𝜎(𝐺) be the number of all proper cycles of a graph 𝐺. Then,

𝑃 (𝐺) ≥ 𝑡(𝐺) ⋅𝑊 ′(𝐺) + (𝑛− 1)[𝑡(𝐺)− 𝑡2(𝐺)] + 2𝜎(𝐺). (11)

Also, the arguments used to strengthen Proposition 6 to give Proposition 9 can be used to

strengthen the inequalities of Propositions 11 and 12 to give:

Proposition 15. Let 𝑊 ′(𝐺) be the resistance sum, and let 𝑡2(𝐺) be the number of all bitrees of

a graph 𝐺. Then,

𝑃 (𝐺) ≥ 𝑡(𝐺) ⋅𝑊 ′(𝐺) + (𝑛− 1)[𝑡(𝐺)− 𝑡2(𝐺)] + 𝑍(𝐺)− 𝜇(𝐺; 2)−𝑚− 1, (12)

where 𝜇(𝐺; 2) is the number of matchings consisting of two disjoint edges.

And, similarly, another statement is:

Proposition 16. Let 𝑊 ′(𝐺) be the resistance sum, and let 𝑡2(𝐺) be the number of all bitrees of

a graph 𝐺 (∣𝑉 (𝐺)∣ ≥ 5). Then,

𝑃 (𝐺) ≥ 𝑡(𝐺) ⋅𝑊 ′(𝐺) + (𝑛− 1)[𝑡(𝐺)− 𝑡2(𝐺)] + per(𝐺). (13)

Though further relations might be possible involving tritrees and beyond to more profligate

forests, we do not here attempt to consider such further invariants, as they are somewhat less

commonly considered.
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5 Discussion and conclusion

Besides the exact enumerations of Section 3, we have found several bounding relations in

Section 4. One such in Proposition 6 bounds the number 𝑡(𝐺) of all spanning trees of a graph.

This count 𝑡(𝐺) plays an important role in many applications of graph theory, so that several

bounds for it have been proposed, as in [13] and bibl. In particular, Das [13] obtained the sharp

upper bound 𝑡(𝐺) ≤ [(2𝑚−𝑑1−1)/(𝑛−2)]𝑛−2, where 𝑑1 is the maximum vertex degree in 𝐺.

Our bound 𝑡(𝐺) ≤ 𝑃 (𝐺)/(𝑛− 1) is sometimes better than his. For instance, for a quadrangle,

with 𝑡(𝐺) = 4, Das’ upper bound is ⌊[(2 ⋅ 4− 2− 1)/2]2⌋ = ⌊(5/2)2⌋ = 6, while ours is

⌊(2 ⋅2 ⋅2 ⋅2)/3⌋ = ⌊16/3⌋ = 5. However, this situation is reversed for all cycles beginning from

the 18-gon, for which 𝑡(𝐺) = 18, Das’ bound is ⌊[(2 ⋅ 18− 2− 1)/16]16⌋ = 10722, and ours

is ⌊218/17⌋ = 15420. Indeed, both bounds render increasingly worse bounds for longer cycles,

though both give sharp estimates for all stars, with 𝑡(𝐺) = 1, and Das’ bound is also sharp for

all complete graphs, with 𝑡(𝐺) = 2𝑛−2. It may be noted in general that most bounds, known

for 𝑡(𝐺), are yet ‘very approximate’, and, indeed, ours of Proposition 6 is clearly expected to

be very bad for larger graphs where many further terms (𝑃𝛼,𝛽(𝐺) with 𝛼 ∕= 1, 𝛽 ∕= 0) in the

expansion of Proposition 4 are neglected. If 𝜌(𝐺) or 𝜎(𝐺) are known, Propositions 7 and 8

yield modestly improved bounds on 𝑡(𝐺). The result of Proposition 10 yields a simple bound

for the number 𝑍(𝐺) of matchings, which, as we have already noted, achieves equality for a

number of smaller tree graphs. Indeed, this bound for 𝑍(𝐺) seems to us to be more generally

better bound than that of Proposition 6 for 𝑡(𝐺). When other suitable invariants are known, then

also Propositions 11 and 12 provide further bounds on 𝑡(𝐺). But in fact, Propositions 12 might

be better used to give a bound on per𝐴(𝐺). Propositions 13–16 yield yet further bounding

relations – though complicated by the numbers of invariants involved.

Indeed, our various boundary Propositions might be characterized in terms of which compo-

nents in the expansion of Proposition 4 are treated. That is each boundary Proposition takes into

account 𝑃𝛼,𝛽(𝐺) for selected values of 𝛼 (the number of tree components) and 𝛽 (the number

of single-cycle-containing components):
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Proposition 𝛼, 𝛽

6 1, 0

7 & 8 1, 0 & (0, 𝛽)

9 1, 0 & 2, 0

10 (𝛼, 0)

11 1, 0 & (𝛼, 0), 𝛼 ≥ 1

12 1, 0 & 0, 𝛽

13 & 14 1, 0 & 2, 0 & (0, 𝛽)

15 & 16 1, 0 & 2, 0 & 0, 𝛽

Here, when an (𝛼, 𝛽)-pair is enclosed in parentheses, the corresponding 𝑃𝛼,𝛽(𝐺) contribution is

in general only approximated, whereas if not so parenthesized, it is dealt with exactly. Indeed,

one might reexpress our various bonding propositions in terms of the 𝑃𝛼,𝛽(𝐺) (or certain sums

on them) – but we do not pursue this here.

Next, we introduce two equivalent polynomials reflecting all the information contained in

the degree sequence of a graph 𝐺, namely, 𝑃+(𝐺; 𝑥) =
∏𝑛

𝑖=1(𝑥 + 𝑑𝑖) =
∑𝑛

𝑠=0 𝑎𝑠𝑥
𝑛−𝑠 and

𝑃−(𝐺; 𝑥) =
∏𝑛

𝑖=1(𝑥 − 𝑑𝑖) =
∑𝑛

𝑠=0(−1)𝑠𝑎𝑠𝑥
𝑛−𝑠. The former seems to be more convenient,

while the latter has just vertex degrees 𝑑1, 𝑑2, . . . , 𝑑𝑛 as its roots (but substitution of pluses

for minuses, converts it into the former). One sees that 𝑎1 = 2𝑚 and 𝑎𝑛 = 𝑃+(𝐺; 0) =

(−1)𝑛𝑃−(𝐺; 0) = 𝑃 (𝐺), and yet further that, 𝑎2 = [4𝑚2 − 𝑀1(𝐺)]/2, where 𝑀1(𝐺) :=∑𝑛
𝑖=1 𝑑𝑖 is the first Zagreb index [14] (and also 𝑎2 = 𝜇(𝐺, 2) + 1

2
𝑚(3𝑚 − 1)). Apparently,

all 𝑎𝑖’s are elementary symmetric functions of the degree sequence of 𝐺. By analogy with

Proposition 2, it can be established:

Proposition 17. A coefficient 𝑎𝑖 (0 ≤ 𝑖 ≤ 𝑛) of 𝑥𝑛−𝑖, in 𝑃+(𝐺; 𝑥), equals the number of choices

of 𝑖 arcs (and/or self-loops) going out of exactly 𝑖 vertices in 𝐷(𝐺).

𝑷𝒓𝒐𝒐𝒇. It elementarily follows from the definition of a (component of) functional digraph and

uses arguments similar to those in the Proof of Proposition 2. ■
That is, the case of Proposition 17 deals with all 𝑖-arc covers which, along with unicyclic di-

graphs, may also contain, for 𝑖 < 𝑛, directed subtrees whose arcs are oriented, in each subtree,

to one of vertices. Taking into account the ease of calculation of 𝑎𝑖’s, it is very interesting to find

also different interpretations of these numbers, especially those which may be utilized in prac-
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tice. Therefore, we just pose here a problem about the combinatorial nature of all coefficients

of 𝑃+(𝐺; 𝑥), which is also addressed to the reader.

In conclusion, we have obtained new alternative representations of the degree product 𝑃 (𝐺),

first, as a functional-digraph enumerator, and, second, as a weighted enumerator of certain 𝐺-

covers. These both are “family polynomials” (or 𝐹 -polynomials, for short), for which, then,

further relations follow, as explicated by Farrell [11]. And further, we have found that 𝑃 (𝐺)

is related to a diversity of other graph invariants. And yet further, we have introduced a novel

new invariant 𝑃±(𝐺; 𝑥), which is related to the degree product 𝑃 (𝐺) much as the matching

polynomial is related to Hosoya’s [3] matching number 𝑍(𝐺). An inference (following from our

Proposition 10) supports an observation [1] of Narumi and Katayama that their index (𝑃 (𝐺))

seems to be related to the Hosoya index, and further our degree-product polynomials 𝑃±(𝐺; 𝑥)

may be viewed as analogs of the matching polynomial. We have also found relations to a variety

of other graph invariants (including the resistance-distance Wiener sum and the permanent of

𝐴). The results here suggest a fundamental nature for 𝑃 (𝐺).
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