MATCH Communications in Mathematical and in Computer Chemistry

ISSN 0340 - 6253

Counterexamples to Conjectures on Graphs with the Greatest Edge–Szeged Index

Dragan Stevanović¹

PMF, University of Niš, Niš, Serbia and PINT, University of Primorska, Koper, Slovenia

(Received December 17, 2009)

Abstract

Recently, it was conjectured by Gutman and Ashrafi that the complete graph K_n has the greatest edge-Szeged index among simple graphs with n vertices. This conjecture turned out to be false, but led Vukičević to conjecture the coefficient 1/15552 of n^6 for the approximate value of the greatest edge-Szeged index. We provide counterexamples to this conjecture.

1 Introduction

Let G = (V, E) be a simple graph. Inspired by the property of Wiener index valid for trees, the Szeged index [1] has been introduced as

$$Sz(G) = \sum_{uv \in E(G)} n_u(uv|G) \cdot n_v(uv|G),$$

where $n_u(uv|G)$ is the number of vertices closer to vertex u than to vertex v, and $n_v(uv|G)$ is the number of vertices closer to vertex v than to vertex u. Properties of the Szeged index have been extensively studied (see [2] and more recent papers from this journal [3]-[6]).

The modification of this index has been proposed in [7] as

$$Sz_e(G) = \sum_{uv \in E(G)} m_u(uv|G) \cdot m_v(uv|G),$$

¹E-mail: dragance106@yahoo.com

Supported by the research grant 144015G of the Serbian Ministry of Science and Environmental Protection and the research programme P1-0285 of the Slovenian Agency for Research.

-604-

where $m_u(uv|G)$ is the number of edges lying closer to vertex u than to vertex v, and $m_v(uv|G)$ is the number of edges closer to vertex v than to vertex u. This index is called the *edge-Szeqed index* and some of its properties have been analyzed in [7, 8, 9, 10].

The problem of determining the n-vertex simple graph with greatest edge-Szeged index appears to be tough. The following conjecture was proposed in [7]:

Conjecture 1 The complete graph K_n has the greatest edge-Szeged index among all simple graphs with n vertices.

This conjecture was refuted in [8]. It was shown there that the value of the greatest edge-Szeged index among *n*-vertex simple graphs is $\Theta(n^6)$ or, in other words,

 $\lim_{n \to \infty} \log_n \max\{Sz_e(G): G \text{ is a simple graph on } n \text{ vertices}\} = 6,$

and a new conjecture was proposed:

Conjecture 2
$$\lim_{n \to \infty} \frac{\max\{Sz_e(G): G \text{ is a simple graph on } n \text{ vertices}\}}{n^6} = \frac{1}{15552}$$

A relatively complicated class of graphs achieving this limit is described in [8].

Our goal here is to refute this conjecture by describing a set of counterexamples. In short, counterexamples are obtained from a cycle C_5 by expanding each of its vertices into a complete graph. In more detail, let n be a positive integer and let $a_i \in \{\lfloor n/5 \rfloor, \lceil n/5 \rceil\}$ for i = 1, ..., 5, such that $\sum_{i=1}^5 a_i = n$. Let G_n be formed from the union of complete graphs K_{a_1}, \ldots, K_{a_5} by adding an edge between a vertex of K_i and a vertex of K_j whenever $i - j \equiv 1 \pmod{5}$. In total, G_n has n vertices and approximately $3n^2/10$ edges (the actual number of edges depends on the distribution of values $\lfloor n/5 \rfloor, \lceil n/5 \rceil$ among a_1, \ldots, a_5 , but it is irrelevant for calculating the limit in Conjecture 2). As an example, G_{11} is shown in Figure 1.

Let us now estimate the contributions of particular edges to $Sz_e(G_n)$. There are two types of edges in G_n : those connecting vertices in distinct complete graphs and those connecting vertices in the same complete graph K_{a_i} . For easier reading, let $k = \lfloor n/5 \rfloor$.

Suppose first that uv is an edge between vertices from distinct complete graphs and, without loss of generality, suppose that $u \in K_{a_3}$ and $v \in K_{a_4}$. Then the edges between K_{a_1} and K_{a_2} , as well as the edges within K_{a_2} , are closer to u than to v. On the other hand, the edges between K_{a_1} and K_{a_5} , as well as the edges within K_{a_5} , are closer to v -605-

Figure 1: Graph G_{11} .

than to u. The remaining edges have equal distance to both u and v, except for those edges having u or v as one of their end vertices. Therefore,

$$m_u(uv|G) = a_1a_2 + \binom{a_2}{2} + a_2 + (a_3 - 1) + (a_4 - 1) \ge \frac{3}{2}k^2 + \frac{5}{2}k - 2,$$

$$m_v(uv|G) = a_1a_5 + \binom{a_5}{2} + a_5 + (a_4 - 1) + (a_3 - 1) \ge \frac{3}{2}k^2 + \frac{5}{2}k - 2.$$

Next, suppose that uv is an edge between two vertices from the same complete graph. Without loss of generation, suppose that $u, v \in K_{a_3}$. Then all edges have equal distance to both u and v, except for those edges having u or v as one of their end vertices. In this case

$$m_u(uv|G) = m_v(uv|G) = (a_3 - 2) + a_2 + a_4 \ge 3k - 2.$$

We see that the important contribution to $Sz_e(G_n)$ comes from the edges connecting vertices from distinct complete graphs. The number of such edges is $\sum_{i=1}^{5} a_i a_{i+1} \ge 5k^2$, and so we have

$$Sz_e(G_n) \ge 5k^2 \left(\frac{3}{2}k^2 + \frac{5}{2}k - 2\right)^2 > \frac{45}{4}k^6$$

Therefore,

$$\lim_{n \to \infty} \frac{\max\{Sz_e(G): G \text{ is a simple graph on } n \text{ vertices}\}}{n^6}$$
$$\geq \lim_{n \to \infty} \frac{Sz_e(G_n)}{n^6} \geq \lim_{n \to \infty} \frac{\frac{45}{4} \lfloor n/5 \rfloor^6}{n^6} = \frac{45}{4 \cdot 5^6} = \frac{9}{12500} > \frac{1}{15552}$$

So, Conjecture 2 turns out to be false as well.

Although the computer search on up to ten vertices suggests so, we are not entirely convinced that graphs G_n are truly the graphs with greatest edge-Szeged index among *n*-vertex graphs. Due to the nature of the edge-Szeged invariant and the structure of graphs G_n , one would have to search among the graphs with up to 20 vertices in order to get a better understanding of extremal graphs for the edge-Szeged index. This is certainly beyond the reach of present-day computers. In such case, a metaheuristic search may be employed, such as variable neighborhood search, particle sworm optimization or genetic algorithm, although it is not certain that truly extremal graphs will be found that way.

References

- I. Gutman, A formula for the Wiener number of trees and its extension to graphs containing cycles, *Graph Theory Notes New York* 27 (1994) 9–15.
- [2] I. Gutman, A. Dobrynin, The Szeged index—a success story, Graph Theory Notes New York 34 (1998) 37–44.
- [3] M. Eliasi, B. Taeri, Szeged index of armchair polyhex nanotubes, MATCH Commun. Math. Comput. Chem. 59 (2008) 437–450.
- [4] M. Ghorbani, M. Jalali, The vertex PI, Szeged and Omega polynomials of carbon nanocones CNC₄[n], MATCH Commun. Math. Comput. Chem. 62 (2009) 353–362.
- [5] M. Mirzagar, PI, Szeged and edge Szeged polynomials of a dendrimer nanostar, MATCH Commun. Math. Comput. Chem. 62 (2009) 363–370.
- [6] A. Iranamanesh, N. A. Gholami, Computing the Szeged index of styrylbenzene dendrimer and triarylamine dendrimer of generation 1—3, MATCH Commun. Math. Comput. Chem. 62 (2009) 371–379.
- [7] I. Gutman, A. R. Ashrafi, The edge version of the Szeged index, Croat. Chem. Acta 81 (2008) 263–266.
- [8] D. Vukičević, Note on the graphs with the greatest edge–Szeged index, MATCH Commun. Math. Comput. Chem. 61 (2009) 673–681.
- [9] A. R. Ashrafi, M. Mirzargar, The edge Szeged polynomial of graphs, MATCH Commun. Math. Comput. Chem. 60 (2008) 897–904.
- [10] A. Mahmiani, A. Iranmanesh, Edge-Szeged index of HAC₅C₇[r, p] nanotube, MATCH Commun. Math. Comput. Chem. 62 (2009) 397-417.