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Abstract. A topological index is a numeric quantity derived from the structure of a 
graph G(V,E) which is invariant up to automorphisms of the considered graph. One 
of the most famous topological indices is the Wiener index W(G); it equals the sum 
of distances between all unordered pairs of vertices of G. A related number is the 
Szeged index SZ(G), which is the sum of all products of non-equidistant, proximal 
vertices nu(e), nv(e) with respect to the two ends of any edge e=(u,v) in G. Third is 
the Cluj index CJeS(G), calculated from the first derivative of CJe(x) polynomial. 

A forth index, called Cluj-Ilmenau CI(G), is calculated from the first and second 
derivatives of the Omega ( )x� polynomial, which counts the opposite edge strips in 
G. All these indices and related polynomials are derived here by edge cutting 
procedures in some bipartite graphs and/or partial cubes. A clear relatedness among 
these descriptors was established and exemplified. Their use in correlating various 
physico-chemical or biological properties with the molecular structure have been 
extensively proven. 

 1. Introduction

One of the most famous topological indices is the Wiener index, introduced by 

Harold Wiener.1 The Wiener index equals the sum of topological distances between 

all unordered pairs of vertices of G: 

( , ) ( )
( ) ( , )Gu v V G

W G d u v
�

��      (1)  

The Szeged index is another topological index defined by Ivan Gutman2 as:  

( , ) ( )
( ) ( ) ( )u vu v E G

Sz G n e n e
�

� ��      (2) 

where nu(e) is the number of vertices of G lying closer to u than to v and nv(e) is the 

number of vertices of G lying closer to v than to u.  
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We proposed Cluj matrices and indices in view of extending the definition of 

Wiener matrices, proposed by Randi�3,4 to cycle-containing graphs, other than the 

Szeged index did.  

A Cluj fragment5-9 
pjiCJ ,,  collects vertices v lying closer to i than to j, the 

endpoints of a path p(i,j). Such a fragment collects the vertex proximities of i against 

any vertex j, joined by the path p, with the distances measured in the subgraph D(G-p): 

   

� �, , ( ) ( )( ); ( , ) ( , )i j p G p G pCJ v v V G D i v D j v	 	� � 
    (3) 

In trees, pjiCJ ,,  denotes sets of  (connected) vertices v joined with j by paths p 

going through i. The path p(i,j) is characterized by a single endpoint, which is 

sufficient to calculate the unsymmetric matrix UCJ. 

In graphs containing rings, the choice of the appropriate path is quite difficult, 

thus that path which provides the fragment of maximum cardinality is considered: 
  

  [UCJ] i, j,pp
max CJ�

i, j
             (4) 

When path p belongs to the set of distances DI(G), the suffix DI is added to 

the name of matrix, as in UCJDI. When path p belongs to the set of detours DE(G), 

the suffix is DE. When the matrix symbol is not followed by a suffix, it is implicitly 

DI. The Cluj matrices are defined in any graph and, except for some symmetric 

graphs, are unsymmetric and can be symmetrized by the Hadamard (pair-wise) 

multiplication10 with their transposes: 

 

SMp = UM � (UM)T      (5) 

 

If the matrices calculated on edges (i.e., on adjacent vertex pairs) are required, 

the matrices calculated on paths must be multiplied by the adjacency matrix A (which 

has the non-diagonal entries of 1 if the vertices are joined by an edge and, otherwise, 

zero): 
 

SMe = SMp � A      (6) 

The Cluj indices, calculated as half sum of the matrix entries, previously used 

in correlating studies published by TOPO GROUP Cluj, were calculated in the 

symmetric matrices, thus involving a multiplicative operation. Also, the symbol CJ 
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(Cluj) is used here for the previously denoted CF (Cluj fragmental) matrices and 

indices.  

In this paper, the unsymmetric matrix defined on distances and calculated on 

edges UCJe will be used to compare the coefficients of the Cluj polynomials11,12 with 

those obtained by a cutting procedure (see below): 
 

UCJe = UCJp � A      (7) 

2. Basic definitions 

Let G(V,E) be a connected bipartite plane graph, with the vertex set V(G) and edge 

set E(G). Two edges e=(x,y) and f=(u,v) of G are in relation opposite, e op f, if they 

are opposite edges of a face in G. Assuming that faces are isometric subgraphs of G, 

the relation op implies the condition of “topologically parallel edges”:13 

 

( , ) ( , ) 1 ( , ) 1 ( , )d x v d x u d y v d y u� � � � �     (8)    

Relation op is reflexive and symmetric but, in general, is not transitive. It will 

partition the edges set E(G) into opposite edge strips ops, S(G)={ 1 2, ,..., kS S S }, as 

follows. (i) Any two subsequent edges of an ops are in op relation; (ii) Any three 

subsequent edges of such a strip belong to adjacent faces; (iii) The ops is taken as 

maximum possible, irrespective of the starting edge. (iv) The choice about the 

maximum size of face/ring, and the face/ring mode counting, will decide the length of 

the strip.  

There are graphs in which op is transitive and ops superimpose over the 

orthogonal cut strips ocs, C(G)={ 1 2, ,..., kc c c }, defined by relation co.13,14 In such a 

graph, relation op, defined locally (on faces), becomes a global property, like the co-

relation and the graph is a co-graph or a partial cube. Then its orthogonal cuts form a 

partition of the edges in G: 1 2( ) ... , ,k i jE G c c c c c i j� 
 
 
 � � � � . The ocs can 

be obtained by an orthogonal edge-cutting procedure (see below). 

A subgraph H� G is called isometric, if ( , ) ( , )H Gd u v d u v� , for any 

( , )u v H� ; it is convex if any shortest path in G between vertices of H belongs to H.  

A graph G is a partial cube if it is embeddable in the n-cube nQ , which is the 

regular graph whose vertices are all binary strings of length n, two strings being 
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adjacent if they differ in exactly one position.15 The distance function in the n-cube is 

the Hamming distance. A hypercube can also be expressed as the Cartesian product: 

1 2
n

n iQ K��   

For any edge e=(u,v) of a connected graph G let nuv denote the set of vertices 

lying closer to u than to v: � �( ) | ( , ) ( , )uvn w V G d w u d w v� � 
 . It follows that 

� �( ) | ( , ) ( , ) 1uvn w V G d w v d w u� � � � . The sets (and subgraphs) induced by these 

vertices, nuv and nvu, are called semicubes of G; the semicubes are opposite and 

disjoint ones.16,17 

A graph G is bipartite if and only if, for any edge of G, the opposite semicubes 

define a partition of G: ( )uv vun n v V G� � � . These semicubes are just the vertex 

proximities of (the endpoints of) edge e=(u,v), which the Cluj polynomials count (see 

below). 

The relation co is related to ~ (Djokovi�18) and �  (Winkler19) relations:20 in a 

connected bipartite graph, co = ~ = � . For two edges e=(u,v) and  f=(x,y)  of G the 

theta relation is defined as: e� f if ),(),(),(),( xvdyudyvdxud ��� .  

A bipartite graph G is a co-graph if and only if it is a partial cube, and all its 

semicubes are convex; relation /co � is then transitive.17 A co-graph can also be 

non-bipartite. 

 

3. Cluj and related polynomials by the cutting procedure 

The Cluj polynomials are defined11,12,21,22 on the basis of Cluj matrices as: 
 

( ) ( ) k
k

CJ x m k x� ��       (9) 
 

They count the semicube or proximity p of the vertex i with respect to any 

vertex j in G, joined to i by an edge {pe,i} (the Cluj-edge polynomials) or by a path 

{pp,i}  (the Cluj-path polynomials), taken as the shortest (i.e., distance DI) or the 

longest (i.e., detour DE) paths. In eq. (9), the coefficients m(k) can be calculated from 

the entries of unsymmetric Cluj matrices by the TOPOCLUJ software program.23 The 

summation runs over all }{pk � in G.  

In bipartite graphs, the semicubes counted by CJe polynomial can be estimated 

by an orthogonal edge-cutting procedure.22,24-26 To perform it, take a straight line 
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segment, orthogonal to the edge e, and intersect e and all its parallel edges (in a 

polygonal plane graph). The set of these intersections is called an orthogonal cut (oc

for short) of G, with respect to e (Figure 1). 
 

 
 

 
 

 

    CJe S(x) = 3·2·3(x5+x121)+ 3·2·6(x16+x110)+ 

                     3·2·8(x31+x95)+ 3·2·8(x47+x79)+ 

                     3·1·8(x63+x63) 

   CJe S’(1) = 21924; CJe S’’(1) = 1762320 
        PIv(x) = 3·2·3(x5+121)+ 3·2·6(x16+110)+ 

                     3·2·8(x31+95)+ 3·2·8(x47+79)+ 

                     3·1·8(x63+63) 

      PIv’(1) = 21924; PIv’’(1) = 2740500 

   CJe P(x) = 3·2·3(x5·121)+ 3·2·6(x16·110)+ 

                     3·2·8(x31·95)+ 3·2·8(x47·79)+ 

                     3·1·8(x63·63) 

  CJe P’(1) = 489090 

         W(x) = 3·2(x5·121)+ 3·2(x16·110)+ 

                     3·2(x31·95)+ 3·2(x47·79)+ 

                     3·1(x63·63) 

       W’(1) = H`(1) = 66045 

      ( )x� = 3·2x3+3·2x6 +(3·4+3·1)x8 

                         = 6x3+6x6 +15x8 

     ( ) 29046CI G �  

Figure 1. Cutting procedure in the calculus of several topological descriptors 

 

To any orthogonal cut ck, k=1,2,..,kmax two numbers are associated: first one 

represents the number of edges ek intersected or the cutting cardinality | ck | while the 

second (in round brackets, in Figure 1) is vk or the number of points lying to the left 

hand with respect to ck. 

Out of CJe polynomial, there are other topological descriptors that count the 

semicubes in G (see Figure 1, the polynomial exponents), they differing only in the 

mathematical operation used in re-composing the edge contributions to the global 

graph property. Because the opposite semicubes define a partition of vertices in a 

bipartite graph, it is easily to identify the two semicubes: nuv= vk and nvu= v-vk or vice-

versa.  
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The coefficients of these descriptors are calculated (with some exceptions) as 

the product of three numbers (in the front of brackets - right hand part of Figure 1) 

with the meaning: (i) symmetry of G; (ii) occurrence of ck (in the whole structure) and 

(iii) ek.  

Resuming to the mathematical operation used in re-composing the graph 

semicubes, four polynomials can be defined according to: 

  

(i) Summation, and the polynomial is called Cluj-Sum, by Diudea et

al.11,12,21,22,27 (and symbolized CJeS): 
 

� �( ) v v vk k
e eCJ S x x x 	� ��      (10)

(ii) Pair-wise summation, with the polynomial called (vertex) Padmakar-

Ivan28  by Ashrafi29-32 (and symbolized PIv): 
 

( )( ) v v vk k
v ePI x x � 	� �       (11) 

 (iii) Pair-wise product, while the polynomial is called Cluj-Product (and 

symbolized CJeP)5-9,22,26 or also Szeged polynomial (and symbolyzed SZ):30-32  

  ( )( ) ( ) v v vk k
e eCJ P x SZ x x 	� � �     (12) 

(iv) Single edge pair-wise product and the polynomial is called Wiener W(x): 
( )( ) k kv v v

k
W x x � 	� �       (13) 

The first derivative (in x=1) of a (graph) counting polynomial provides single 

numbers, often called topological indices.  

Some comments are now welcome. It is not difficult to see that the first 

derivative (in x=1) of the first two polynomials gives one and the same value,  

however, their second derivative is different (see Figure 1) and the following relations 

hold in any graph:21 

(1) (1)e vCJ S PI �� � ; (1) (1)e vCJ S PI ���� �    (14) 

The number of terms, given by CJeS(1)=2e is twice the number given by

PIv(1) because, in the last case, the two endpoint contributions are pair-wise summed 

for any edge in a bipartite graph (see (10) and (11)).  

It is not difficult to observe the first derivative (in x=1) of PIv(x) takes the 

maximal value in bipartite graphs: 
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 (1) | ( ) | | ( ) |vPI e v E G V G� � � � �     (15)

It can also be seen by considering the definition of the corresponding index, as written 

by Ili�:33 

, , ,( ) (1)v v u v v u u v
e uv e uv

PI G PI n n V E m
� �

�� � � � � 	� �
   (16) 

where nu,v, nv,u count the non-equidistant vertices with respect to the endpoints of the 

edge e=(u,v) while m(u,v) is the number of equidistant vertices vs. u and v.  However, 

it is known that, in bipartite graphs, there are no equidistant vertices vs. any edge, so 

that the last term in (16) will miss. The value of PIv(G) is thus maximal in bipartite 

graphs, among all graphs on the same number of vertices; the result of (16) can be 

used as a criterion for checking the “bipatity” of a graph. 

The third polynomial uses the pair-wise product; notice that Cluj-Product 

CJeP(x) is precisely the (vertex) Szeged polynomial SZv(x), defined by Ashrafi et al.30-

32 This comes out from the relations between the basic Cluj (Diudea5,34,35) and Szeged 

(Gutman2,35 -see relation (2)) indices:  

 (1) ( ) ( ) (1)e e vCJ P CJ DI G SZ G SZ �� � � �     (17) 

All the first three polynomials (and their derived indices) do not count the 

equidistant vertices, an idea introduced in Chemical Graph Theory by Gutman.2  

The last polynomial we call Wiener, because it is calculated as Wiener did in 

calculating the index W(G) in tree graphs: multiply the number of points lying to the 

left and to the right of each edge (actually read orthogonal cut ck): 

( ) (1) ( )k kk
W G W v v v�� � � 	�      (18) 

where vk and v-vk are the cardinalities of the disjoint semicubes forming a partition 

with respect to each edge in ck taken, however, as a “single edge” (as in trees). In fact, 

the relation (18) counts paths “external” to the orthogonal cuts ck, as the Wiener 

matrix W, proposed by Randi�, does. The both descriptors are restrictively defined: 

only in trees (the matrix W) and only in partial cubes (the polynomial W(x)). Note that 

tree graphs are partial cubes. The both above descriptors count vertices (not edges).  

In the opposite, the Hosoya polynomial36-40 H(x) counts edges (not vertices), 

by working on the Distance D matrix:15,35 

( ) ( ) k
k

H x m k x� ��        (19) 
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where the exponent denotes the shortest paths (between pairs of vertices in G) of 

extent k, while m(k) counts the number of k-paths. The definition of W(G), as given in 

relation (1), is thus related to the (first derivative H`(1) of ) Hosoya polynomial. 

Clearly, the both polynomials will provide the same value of W(G) in 

trees/partial cubes, according to the theorem of Klein, Gutman and Lukovits,41 which 

states the equality of sums of the internal paths (collected by De&Dp matrices) and the 

external paths (given by We &Wp matrices):42 
 

( ) (1) (1)W G W H� �� �        (20) 

Klavžar25 stated that, in calculating the index W(G), the orthogonal cut 

procedure is applicable only in partial cubes. Thus, we can write the following 
 

Proposition 1:  A bipartite graph in which the relation (20) holds is a partial cube. 
 

From the above discussion, the proposition appears at least conceivable. More over, 

the upper bond of the products in relation (18) is reached for vk =v/2 and the number 

of these maximal length ocs is limited by the symmetry of G. Thus, a graph in which 

the following inequality holds is not a partial cube:26    
 

2( ) | ( ) | ( / 2)W G S G v� �       (21) 

However, a value of W(G) lower than the above bond and, does not ensure G is a 

partial cube. In such a case, trying to perform the cutting procedure, a value vk >v/2 

will indicate a non-convex, non-isometric subgraph and thus a graph which is not a 

partial cube. The final proof is the checking of transitivity of co-relation. 

 A last remark on W(x): in partial cubes, its exponents are identical to those in 

CJeP(x) =SZ(x) while the coefficients are those in the above polynomials, divided by 

ek. 

  

4. Omega and related polynomials by the cutting procedure 

Let’s now return to Figure 1 and introduce the last descriptor: the Omega 

polynomial. 

Denote by m(s) or simply m the number of ops of length s=|sk| and define the 

Omega polynomial as:16,17,43-52  
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( ) ( ) s
s

x m s x� � ��       (22) 

The exponents count just the intersected edges by the cut-line, which is not 

needed to be orthogonal on all the edges of an ops (see above); the coefficients m(s) 

are easily counted from the symmetry of G.  

In partial cubes, other two related polynomials16,17 can be calculated on ops: 

( ) s
s

x ms x� � ��           (23) 

( ) e s
s

x ms x 	� � ��       (24) 

The �(x) counts equidistant edges while �(x) non-equidistant edges. Thus, Omega 

and its related polynomials count edges not vertices. Their first derivative (in x=1) 

provides single number topological descriptors: 
 

 (1) ( )
s
m s e E G�� � � � ��         (25)   

2(1) ( )
s
m s G��� � � ��           (26) 

(1) ( ) ( )
s
ms e s G�� � � 	 � ��             (27) 

On Omega polynomial, the Cluj-Ilmenau index,13 CI=CI(G), was defined: 

2( ) [ (1)] [ (1) (1)]{ }CI G � � ��� � 	 � ��      (28)    

A polynomial related to �(x) was defined by Ashrafi53 as: 
( , ) ( , )

( )
( ) n e u n e v

e
e E G

PI x x �

�
� �                   (29) 

where n(e,u) is the number of edges lying closer to the vertex u than to the v vertex. 
 

Its first derivative (in x=1) provides the PI(G) index proposed by Khadikar.28,54 

 

Proposition 2. In co-graphs/partial cubes, the equality ( ) ( )CI G G� �  holds.  

This can be demonstrated by expanding definition (28), CI calculation leading 

to ( )G� :16,17 

� �2
2 2( ) ( 1) ( )

s s s s
CI G m s m s m s s e m s G� �� � 	 � � � � 	 � 	 � ��� �� � � �   (30) 

Relation (30) is valid only in the assumption k kc s� , which provides the same value 

for the exponent s and this is precisely achieved in co-graphs/partial cubes.  
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A graph, of which ( )x� can be written exactly in the terms of ( )x� , 

according to the pair relations {(22)&(23)}, will precisely show the equality 

( ) ( )CI G G� � cf (30). The relatedness of the two polynomials (and identity 

( ) ( )CI G G� � ) is provided rather by the equality of cardinalities  k ks c�  than by 

the corresponding sets superposition � � � �k ks c� , the condition {(22)&(23)} being 

thus necessary but not sufficient in order a graph to be declared co-graph/partial cube. 

Finally, the transitivity of ops/ocs must be proven. Note that there is not known a 

simple procedure to establish the partial cube status.17  

The equality ( ) ( )CI G G� �  can appear even the pair relations {(22)&(23)} 

are not related. This is because the equidistance relation eqd involves both conditions 

for topologically “parallel” (relation (8)) and “perpendicular” (relation (31)) edges: 
 

( , ) ( , ) ( , ) ( , )d u x d u y d v x d v y� � �      (31) 

In such a case, the index equality can be considered as a case of degeneracy. 

If the graph is co-graph/partial cube, then all of its semicubes are convex.17,20  

Further, an orthogonal edge-cutting procedure can be used to get the ops. 

 In general, ( ) ( )G PI G� � , the difference between the two indices originating 

in the different definition (Ashrafi44) of edge distance: the distance from a vertex z to 

an edge ( , )e u v�  is taken as the minimum distance between the given point and the 

two endpoints of e: 

( , ) min{ ( , ), ( , )}d z e d z u d z v�       (32) 

Then, the edge e=(u,v) and  f=(x,y)  are in relation e eqd f if: 

( , ) ( , ) and ( , ) ( , )d x e d y e d u f d v f� �      (33) 

Relations (8)&(31) are stronger than relations (32)&(33), in bipartite graphs 

they superimposing to each other (but not in general graphs) and ( ) ( )G PI G� � . 

Since any partial cube is also a bipartite graph, then in partial cubes/co-graphs the 

following triple equality holds:16,17,26 

 ( ) ( ) ( )eCI G G PI G� � �       (34)  

In the opposite, in general graphs, the equality changes to the corresponding 

inequality: 

 ( ) ( ) ( )eCI G G PI G� � �       (35) 
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Resuming, the status of co-graph/partial cube cannot be decided by a simple and rapid 

criterion/condition. Out of various algorithms proposed to reach this task, the testing 

of transitivity of ocs is the last proof. To reduce the number of graphs tested, the 

conditions {(20)&(30)}, can be considered, under the reserve they are necessary but 

not sufficient.  

 
5. Applications

In the following, we apply the cutting procedure on two classes of structures: 

(i) pcu cubic net and (ii) “topological nanocones”. Formulas are given symbolically, 

in view of easily understanding the cutting procedures (in association with the graphs 

in figures) and only in final, at the first derivative calculation, the net parameter are 

substituted. Numerical examples are given. 

 

5.1. Cutting procedure in pcu cubic net 
We apply now the orthogonal cutting procedure in the pcu cubic network, 

appearing in crystal structure (Figure 2); among various ocs, the central one is 

denoted by k=0. The formulas for the net parameters and topological descriptors are 

given in Table 1. 

 

C(3,3,3) Ck=1 Ck=0 

Figure 2. Cutting procedure in pcu cubic net

Table 1. Net parameters and topological descriptors in pcu cubic lattice.
Type Formulas 
( ( ))v C a  3( ( )) ( ( )) ( 1)v C a V C a a� � �  

( ( ))e C a 2( ( )) | ( ) | 3 ( 1)e C a E G a a� � �  

kv 2( ( )) ( 1)kv C a k a� �  
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0v 3
0 ( ( )) ( 1) / 2v C a a� �  

k ke s�  2( ( )) ( 1)ke C a a� �  
Wiener 

 
2

( 1)/2
( )(( /2)

1
( ( , ), ) 3 6 k k

a
v v vv

k
W C a odd x x x

	
� 	

�

� � �  

3 2 2 3 2
( 1)/2

(( 1) /2) ( 1) [( 1) ( 1) ]

1
( ( , ), ) 3 6

a
a k a a k a

k
W C a odd x x x

	
� � � � 	 �

�

� � �  

( 1)/2
3 2 2 3 2

1
( ( , ),1) 3[( 1) / 2] 6 ( 1) [( 1) ( 1) ]

a

k
W C a odd a k a a k a

	

�

� � � � � � � 	 ��  

/2
( )

1
( ( , ), ) 6 k k

a
v v v

k
W C a even x x � 	

�

� �  

2 3 2
/2

( 1) [( 1) ( 1) ]

1
( ( , ), ) 6

a
k a a k a

k
W C a even x x � � � 	 �

�

� �  

/2
2 3 2

1

( ( , ),1) 6 ( 1) [( 1) ( 1) ]
a

k
W C a even k a a k a

�

� � � � � 	 ��  

 
5( ( ),1) (1/ 2) ( 2)( 1)W C a a a a� � � �  

Examples: 
a=4; W(x) = 6x2500 + 6x3750; W '(1) = 37500. 
a=5; W(x) = 6x6480+6x10368+3x11664; W '(1) = 136080. 

Szeged 2( ( ), ) ( ( )) ( ( ), ) ( 1) ( ( ), )kSZ C a x e C a W C a x a W C a x� � � � �  
2 7(1) ( 1) ( ( )) (1/ 2) ( 2)( 1)SZ a W C a a a a� � � � � � �  

Examples: 
a=4; SZ(x)=150x2500+150x3750; SZ' (1) = 937500. 
a=5; SZ(x)=216x6480+216x10368+108x11664; SZ '(1) = 4898880. 

Cluj 
CJeS

( 1)/2
/2

1

( ( , ), ) 6 [ ( )]k k

a
v v vv

e k
k

CJ S C a odd x e x x x
	

	

�

� � � ��  

3

2 3 2

2 ( 1) /2

( 1)/2
( 1) [( 1) ( 1) ]

1

( ( , ), ) 6( 1) [

( )]

a
e

a
k a a k a

k

CJ S C a odd x a x

x x

�

	
� � 	 �

�

� � � �

��
 

/2

1
( ( , ), ) 6 ( )

a
v v vk k

e k
k

CJ S C a even x e x x 	

�
� ��  

/2 2 3 22 ( 1) [( 1) ( 1) ]

1
( ( , ), ) 6( 1) ( )

a
k a a k a

e
k

CJ S C a even x a x x� � 	 �

�
� � ��  

1
( ( ), ) 6

a
vk

e k
k

CJ S C a x e x
�

� ��  

22 ( 1)

1
( ( ), ) 6( 1)

a
k a

e
k

CJ S C a x a x �

�
� � ��  

2 3 5(1) 3 ( 1) ( 1) 3 ( 1)eCJ S e v a a a a a� � � � � � � � �  
Examples: 
a=4; CJeS(x)=150x100 + 150x75 + 150x50 + 150x25; CJeS '(1)=37500. 
a=5; CJeS(x)=216x180 + 216x144 + 216x108+216x72 + 216x36; CJeS '(1)=116640. 

-580-



Omega ( 1)( 1) ( 1)( 1) ( 1)( 1)(C( , , ), ) b c a c a ba b c x a x b x c x� � � � � �� � � � � � �  
2( 1)( 1) ( 1)(C( , , ), ) 2 a c aa a c x a x c x� � �� � � � �  

2( 1)(C( , , ), ) 3 aa a a x a x �� � �  
2( ( ),1) 3 ( 1)C a e a a�� � � �  

2 2( ( ),1) 3 ( 1) ( 2)C a a a a��� � � �  
4( ( )) 3 (3 1)( 1)CI C a a a a� 	 �  

Examples: 
a=4; 25( ) 12 ; (1) 300; 82500x x CI�� � � � � . 

a=5; 36( ) 15 ; (1) 540; 272160x x CI�� � � � � . 

 
5.2. Cutting procedure in nanocones 

Conical nano-structures have been reported in Nanoscience since 1968,55,56  

before the discovery of fullerenes. If a graphite sheet is divided into six sectors, each 

with an angle of 60º, and if m of these sectors (with m=1 to 3) are deleted 

sequentially, the dangling bonds being fused together, three classes of graphs, 

associated to single-walled nanocones, are obtained; their apex polygon will be a 

pentagon (a=5), a square (a=4) or a triangle (a=3), respectively. One can extend the 

construction principle and accept in the family of “topological cones” structures 

having the apex polygon 6a � ; of course, that “cone” with a=6 is just the plane 

graphite sheet while those having larger polygons will show a saddle shape. In the 

recent years, several researchers have considered the mathematical properties of such 

nanostructures.57-59  

Figure 3 gives three examples of such “topological cones”, with the 

application of the cutting procedures in view of deriving some important topological 

descriptors.  

 

 
Figure 3. Cutting procedure in nanocones of apex a=4,6 and 8 
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Formulas, referring to net parameters and descriptors are given in the Tables 2 

and 3, along with some numerical examples, in Table 4.  
 

Table 2. Net parameters and topological descriptors in bipartite 
(partial cubes) nanocones 

Type Formulas for Cones C(a,n); a=even; a>4. 
( , )v a n  2( , ) ( 1)v a n a n� �  
( , )e a n  2( , ) ( / 2)(3 5 2)e a n a n n� � �  

kh  kh n k� �  

0h  0 2 1h n� �  

kv  
1

(2 2 1) (2 2)
k

k
i

v n i k n k
�

� � � � � ��  

k ke s�  1ke n k� � �  

0e  0 2( 1)e n� �  
CJeS(x) 0( ) ( ) ( )e e e kCJ S x CJ S x CJ S x� �  

/2 /2
0 0( ) [( / 2)( 1) ( 6)( 1)] ( )v v

eCJ S x a h a n x x� � � 	 � � �  
/2 /2

0 0( ) ( / 2) ( )v v
eCJ S x a e x x� � �  

1
( ) ( 1) ( )k k

n
v v v

e k k
k

CJ S x a h x x 	

�

� � � ��  

1
( ) ( )k k

n
v v v

e k k
k

CJ S x a e x x 	

�

� � ��  

/2 /2
0

1
( ) ( / 2) ( ) ( )k k

n
v v vv v

e k
k

CJ S x a e x x a e x x 	

�

� � � � � ��  

2 2 2 3(1) ( / 2)(3 5 2) ( 1) ( / 2)( 1) (3 2)eCJ S e v a n n a n a n n� � � � � � � � � � �  
PIv(x) 22 ( 1)( ) ( / 2)(3 5 2)v a n

vPI x e x a n n x �� � � � � �  
2 3(1) (1) ( / 2)( 1) (3 2)v ePI CJ S e v a n n� �� � � � � �  

CJeP(x) 2 ( )( /2)
0

1
( ) ( / 2) ( ) k k

n
v v vv

e k
k

CJ P x a e x a e x 	

�

� � � ��  

2 4 4 3 2 3 3

2 2 2 2 2 2

(1) ( / 4)( 1) ( 18 9 36 24

21 19 3 3 2 6 )
eCJ P a n n an n a n an

an n a n a n n an a

� � � 	 � 	 � � �

	 � � 	 � �
 

(, ) ( )e kCJ P x s W x� �  
Wiener 2 ( )( /2)

1
( ) ( / 2)( ) k k

n
v v vv

k
W x a x a x 	

�

� � �  

2

1
(1) ( / 2)( / 2) ( )

n

k k
k

W a v a v v v
�

� � � 	�  

4 4 3 3
,

2 3 2 2 2 2 2

2

( ,1) (1/120) ( 1)( 304 160 460 676

15 444 440 45 45 76
140 15 )

a nW C a n n an an n

a n n an a n a n n
an a

� � � 	 � � 	 �

	 � � � 	 �

�
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4 4 3 2 3 3 2
2 ,

2 2 2 2 2

( ,1) (1/15) ( 1)(80 76 169 15 230 111

45 220 19 45 70 15 )
s nW C s n sn n n s n sn n

s n sn n s n sn s

� � � 	 	 � � 	 �

� 	 � � �
 

4 3 2
2 3,( ,1) (1/ 5)( 1)(164 656 954 596 135)nW C n n n n n�� � � � � � �  

Omega 1
2( 1)

2
( ) ( / 2)

n
n n k

k
x a x a x

�
� �

�

� � � � ��  

2(1) ( / 2)(3 5 2)a n n�� � � �  
3 2 2(( , ) (1/12) ( 1)(27 28 63 50 48 12 24)CI a n a n an n an n an a� � 	 � 	 � � 	  
 

Table 3. Net parameters and topological descriptors in bipartite 
(non-partial cubes) nanocones 

Type Formulas for Cones C(4,n).  
(4, )v n  2(4, ) 4( 1)v n n� �  
(4, )e n  2(4, ) 2(3 5 2)e n n n� � �  

k ke s�  1ke n k� � �  

kv  (2 2)kv k n k� � �  
 n=odd:  n=even: 

last 
normal cut 0 ( 1) / 2k n� �  0 / 2k n�  

corrected 
cut 0 1 ( 3) / 2ck k n� � � �  0 1 ( 2) / 2ck k n� � � �  

correction 2( ) 2 2 1k cc k k k n� 	 � � 	 	  2( ) 2 2 1k cc k k k n� 	 � � 	 	  
CJeS(x) 

2 2

1
/2 /2

1

( ) ( )

( (4, ), ) 4( 1)( ) 4 ( )

4 ( 2 ) ( ) 4 2 ( )

c
k k

k k k k k k

c c

k
v v vv v

e k
k

n n
v v v v c v v c

k k k
k k k k

CJ S C n x n x x e x x

e c x x c x x

	
	

�

	 	 	 �

� �

� � � � � � �

	 � � � � �

�

� �
 

2 2 3( (4, ),1) 2(3 5 2) 4( 1) 8(3 2)( 1)eCJ S C n e v n n n n n� � � � � � � � � � �  
CJeP(x) 2

2 2

1
( )( /2)

1

( ) ( ( ) )( ( ) )

( (4, ), ) 4( 1) 4

4 ( 2 ) 4 2

c
k k

k k k k k k

c c

k
v v vv

e k
k

n n
v v v v c v v c

k k k
k k k k

CJ P C n x n x e x

e c x c x

	
	

�

	 	 	 �

� �

� � � � � �

	 � � �

�

� �
 

2 3

4 5 6

( (4, ),1) 16 (538 / 5) (4129 /15) 370

(1669 / 6) (557 / 5) (557 / 30)
e evenCJ P C n n n n

n n n

� � � � � �

� �
 

2 3

4 5 6

( (4, ),1) (31/ 2) (523 / 5) (8213 / 30) 370

(1669 / 6) (557 / 5) (557 / 30)
e oddCJ P C n n n n

n n n

� � � � � �

� �
 

Omega 1
2( 1)

2

( ) ( / 2)
n

n n k

k
x a x a x

�
� �

�

� � � � ��  

2(1) ( / 2)(3 5 2)a n n�� � � �  
3 2 2(( , ) (1/12) ( 1)(27 28 63 50 48 12 24)CI a n a n an n an n an a� � 	 � 	 � � 	  

 

As can be seen from Tables 2 and 3, Omega polynomial is calculated by the 

same general formula in any cones with 4a � , a=even.  
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It is important to see that if G allows an “orthogonal cut” then 

{ } { } { }k k ke c s� � ; however, in cones with a=4 and a=odd, a detail on these sets is 

needed. 

In all cones, with 4a � , a=integer, the equality ( ) ( )CI G G� � holds, by the 

following reasons: (i) cones with even 4a �  are partial cubes; (ii) cones with odd 

4a � are unions of partial cubes in non-bipartite graphs ({ } { }k kc s� and co is 

transitive, thus the cones are co-graphs, but not partial cubes); (iii) cones with 

4a � show | | | |k ks c�  (but { } { }k kc s� , ck is non-transitive and the bipartite graphs are 

not co-graphs or partial cubes), the last case being considered as a case of degeneracy.  

In cones with a=3, ( ) ( )CI G G� �  because | | | |k ks c� (and the non-bipartite 

graphs are not co-graphs or partial cubes). In any cone with a=even (i.e., bipartite 

graphs), the equality ( ) ( )G PI G� � holds. 

Table 4. Examples for the formulas in Tables 2 and 3. 

a n Polynomial Index 

4 3 CJeS(x) = 20x55 + 24x44 + 16x35 + 12x33 + 32x32 + 12x31 + 

16x29 + 24x20 + 20x9 

PIv(x)= 88x64 

SZv(x)=20x495+24x880+16x1015+12x1023+16x1024 

( )x� =4x5+4x6+4x7+2x8 

CJeS’(1)= 5632 

 

PIv' (1) = 5632 

SZv'(1)=75920 

CI=7176 

4 4 CJeS(x) = 24x89 + 28x76 + 8x62 + 24x61 + 12x56 + 24x53 + 

40x50 + 24x47 + 12x44 + 24x39 + 8x38  +28x24 + 24x11 

PIv(x)= 140x100 

SZv(x)=24x979+28x1824+8x2356+24x2379+12x2464+24x2491 

+20x2500 

( )x� =4x6+4x7+4x8+4x9+2x10 

CJeS'(1)= 14000 

 

PIv'(1) = 14000 

SZv'(1)= 289864 

 

CI= 18480 

6 3 CJeS(x)=30x87 + 36x76 + 42x63 + 48x48 + 42x33 + 36x20 + 30x9 

PIv(x)= 132x96 

SZv(x)=30x783+36x1520+42x2079+242304 

W(x)=6x783+6x1520+6x2079+32304 

( )x� =6x5+6x6+6x7+3x8 

CJeS'(1)=12672 

 

PIv'(1)=12672 

SZv'(1)=220824 

W'(1)=33204 

CI= 16572 

6 4 CJeS(x)=36x139 + 42x126 + 48x111 + 54x94 + 60x75 + 54x56 + 

48x39 + 42x24 + 36x11 

PIv(x)= 210x150 

CJeS’(1)= 31500 

 

PIv' (1) = 31500 
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SZv(x)= 36x1529+42x3024+48x4329+54x5264+30x5625

W(x)=6x1529+6x3024+6x4329+6x5264+3x5625 

( )x� =6x6+6x7+6x8+6x9+3x10 

SZv'(1)= 842850 

W'(1)=101751 

CI= 42420 

8 3 CJeS(x)=40x119 + 48x108 + 56x95 + 64x64 + 56x33 + 48x20 + 

40x9 

PIv (x) = 176x128 

SZv(x)=40x1071+48x2160+56x3135+32x4096 

W(x)=8x1071+8x2160+8x3135+4x4096 

( )x� = 8x5+8x6+8x7+4x8 

CJeS'(1)= 22528 

 

PIv'(1) =22528 

SZv'(1)=453152 

W'(1)=67312 

CI= 29840 

8 4 CJeS(x)=48x189 + 56x176 + 64x161 + 72x144 + 80x100 + 72x56 + 

64x39 + 56x24 + 48x11 

PIv(x) = 280x200 

SZv(x)=48x2079+56x4224+64x6279+72x8064+40x10000 

W(x)= 8x2079+8x4224+8x6279+8x8064+4x10000 

( )x� = 8x6+8x7+8x8+8x9+4x10 

CJeS'(1)= 56000 

 

PIv' (1)= 56000 

SZv'(1)=1718800 

W'(1)=205168 

CI= 76160 

 

In graphs which are not partial cubes, like the cones C(4,n), ) one can use a 

procedure based on �* which is the transitive closure of Winkler’s � relation.60,61 

Numerical calculation were done by our original software programs 

TOPOCLUJ,23  Omega counter62 and Nano Studio.63  

The use of the herein discussed descriptors in correlating of various physico-

chemical or biological properties with the molecular structure have been extensively 

proven, thus we only invite the reader to consult some monographs in the field.54,64-67  

Conclusions 
The most used topological indices: Wiener index W(G), Szeged index SZ(G), 

Cluj indices CJ(G) and the more recently defined Cluj-Ilmenau CI(G), were derived 

here by edge cutting procedures in some bipartite graphs and/or partial cubes. The 

analytical formulas enabled us to find a clear relatedness among these topological 

descriptors. Numerical examples were given. 

 

Acknowledgements: The financial support of the Romanian Grant CNCSIS PN-II 
IDEI 506/2007, is acknowledged. 
 

 

-585-



REFERENCES 
 

1. H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. 

Soc. 69 (1947) 17–20.  

2. I. Gutman, A formula for the Wiener number of trees and its extension to 

graphs containing cycles, Graph Theory Notes New York 27 (1994) 9–15. 

3. M. Randi�, X. Guo,  T. Oxley, H. Krishnapriyan, Wiener matrix: source of 

novel graph invariants, J. Chem. Inf. Comput. Sci. 33 (1993) 700–716. 

4. M. Randi�, X. Guo, T. Oxley, H. Krishnapriyan, L. Naylor, Wiener matrix 

invariants, J. Chem. Inf. Comput. Sci. 34 (1994) 361–367.  

5. M. V. Diudea, Cluj matrix invariants, J. Chem. Inf. Comput. Sci. 37 (1997) 

300–305. 

6. M. V. Diudea, Cluj matrix CJu : source of various graph descriptors. MATCH

Commun. Math. Comput. Chem. 35 (1997) 169–183.

7. M. V. Diudea, B. Parv, I. Gutman,  Detour–Cluj matrix and derived invariants, 

J. Chem.  Inf. Comput. Sci. 37 (1997) 1101–1108.

8. I. Gutman, M. V. Diudea, Defining Cluj matrices and Cluj matrix invariants, 

J. Serb. Chem. Soc. 63 (1998) 497–504.

9. M. V. Diudea, G. Katona, I. Lukovits, N. Trinajsti�, Detour and Cluj-detour 

indices, Croat. Chem. Acta 71 (1998) 459–471. 

10. R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge Univ. Press, 

Cambridge, 1985. 

11. M. V. Diudea, Cluj polynomials, J. Math. Chem. 45 (2009) 295–308. 

12. M. V. Diudea, A. E. Vizitiu, D. Janeži�, Cluj and related polynomials applied 

in correlating studies, J. Chem. Inf. Model. 47 (2007) 864–874. 

13. P. E. John, A. E. Vizitiu, S. Cigher, M. V. Diudea, CI index in tubular 

nanostructures, MATCH Commun. Math. Comput. Chem. 57 (2007) 479–484. 

14. P. E. John, P. V. Khadikar, J. Singh, A method of computing the PI index of 

benzenoid hydrocarbons using orthogonal cuts, J. Math. Chem. 42 (2007) 37–

45. 

15. F. Harary, Graph Theory, Addison–Wesley, Reading, 1969. 

16. M. V. Diudea, S. Cigher, P. E. John, Omega and related counting polynomials, 

MATCH Commun. Math. Comput. Chem. 60 (2008) 237–250.

-586-



17. M. V. Diudea, S. Klavžar, Omega polynomial revisited, Carpath. J. Math. 

(2009) in press. 

18. D. Ž. Djokovi�, Distance preserving subgraphs of hypercubes, J. Combin. 

Theory Ser. B 14 (1973) 263–267. 

19. P. M. Winkler, Isometric embedding in products of complete graphs, Discr. 

Appl. Math. 8 (1984) 209–212. 

20. S. Klavžar, Some comments on co graphs and CI index, MATCH Commun. 

Math. Comput. Chem. 59 (2008) 217–222. 

21. M. V. Diudea, A. Ili�, M. Ghorbani, A. R. Ashrafi, Cluj and PIv polynomials, 

Croat. Chem. Acta (2009) in press. 

22. M. V. Diudea, N. Dorosti, A. Iranmanesh, Cluj CJ polynomial and indices in a 

dendritic molecular graph, Carpath. J. Math. (2009) in press. 

23. O. Ursu, M. V. Diudea, TOPOCLUJ software program, Babes-Bolyai 

University, Cluj, 2005; Available, on line at http://chem.ubbcluj.ro/~diudea. 

24. I. Gutman, S. Klavžar, An algorithm for the calculation of the Szeged index of 

benzenoid hydrocarbons, J. Chem. Inf. Comput. Sci. 35 (1995) 1011–1014. 

25. S. Klavžar, A brid’s eye view of the cut method and a survey of its appli-

cations in chemical graph theory, MATCH Commun. Math. Comput. Chem. 60 

(2008) 255	274. 

26. M. V. Diudea, Counting polynomials in partial cubes, in: I. Gutman, B. 

Furtula (Eds.), Novel Molecular Structure Descriptors – Theory and 

Applications I, Univ. Kragujevac, Kragujevac, 2010, pp. 191-215. 

27. A. E. Vizitiu, M. V. Diudea, Cluj polynomial description of TiO2 nanostru-

ctures, Studia Univ. Babes-Bolyai 54 (2009) 173–180. 

28. P. V. Khadikar, On a novel structural descriptor PI, Nat. Acad. Sci. Lett. 23 

(2000) 113–118. 

29. M. H. Khalifeh, H. Yousefi–Azari, A. R. Ashrafi, Vertex and edge PI indices 

of Cartesian product graphs, Discr. Appl. Math. 156 (2008) 1780–1789. 

30. M. H. Khalifeh, H. Yousefi–Azari, A. R. Ashrafi, A matrix method for 

computing Szeged and vertex PI indices of join and composition of graphs, 

Lin. Algebra Appl. 429 (2008) 2702–2709. 

31. A. R. Ashrafi, M. Ghorbani, M. Jalali, The vertex PI and Szeged indices of an 

infinite family of fullerenes, J. Theor. Comput. Chem. 7 (2008) 221–231. 

-587-



32. T. Mansour, M. Schork, The vertex PI index and Szeged index of bridge 

graphs, Discr. Appl. Math. 157 (2009) 1600–1606. 

33. A. Ili�, On the extremal graphs with respect to the vertex PI index, Appl.

Math. Lett. (2009) submitted. 

34. M. V. Diudea, Valencies of property, Croat. Chem. Acta 72 (1999) 835–851. 

35. M. V. Diudea, I. Gutman, L. Jäntschi, Molecular Topology, Nova, New York, 

2002. 

36. H. Hosoya, On some counting polynomials in chemistry, Discr. Appl. Math. 

19 (1988) 239–257. 

37. E. V. Konstantinova, M. V. Diudea, The Wiener polynomial derivatives and 

other topological indices in chemical research, Croat. Chem. Acta 73 (2000) 

383–403. 

38. I. Gutman, S. Klavžar, M. Petkovšek, P. Žigert, On Hosoya polynomials of 

benzenoid graphs, MATCH Commun. Math. Chem. 43 (2001) 49–66. 

39. M. V. Diudea, Hosoya polynomial in tori, MATCH Commun. Math. Comput. 

Chem. 45 (2002) 109–122. 

40. M. Stefu, M. V. Diudea, Distance counting in tubes and tori: Wiener index and 

Hosoya polynomial, in: M. V. Diudea (Ed.), Nanostructures, Novel Archi-

tecture, Nova, New York, 2005, pp. 127–165. 

41. D. J. Klein, I. Lukovits, I. Gutman, On the definition of the hyper–Wiener 

index for cycle–containing structures,  J. Chem. Inf. Comput. Sci. 35 (1995)

50–52. 

42. M. V. Diudea, O. Ursu, Layer matrices and distance property descriptors, 

Indian J. Chem. 42A (2003) 1283–1294. 

43. M. V. Diudea, Omega polynomial, Carpath. J. Math. 22 (2006) 43–47. 

44. A. R. Ashrafi, M. Jalali, M. Ghorbani, M. V.  Diudea, Computing PI and 

omega polynomials of an infinite family of fullerenes, MATCH Commun. 

Math. Comput. Chem. 60 (2008) 905–916. 

45. M. V. Diudea, A. Ili�, Note on omega polynomial, Carpath. J. Math. 25 

(2009) 177–185. 

46. A. E. Vizitiu, M. V. Diudea, Omega and theta polynomials in conical nano-

structures, MATCH Commun. Math. Comput. Chem. 60 (2008) 927–933. 

47. M. V. Diudea, Omega polynomial in twisted/chiral polyhex tori, J. Math. 

Chem. 45 (2009) 309–315. 

-588-



48. M. V. Diudea, A. E. Vizitiu, F. Gholaminezhad, A. R. Ashrafi, Omega 

polynomial in twisted (4,4) tori, MATCH Commun. Math. Comput. Chem. 60 

(2008) 945–953. 

49. M. V. Diudea, Omega polynomial in twisted ((4,8)3)R tori, MATCH Commun. 

Math. Comput. Chem. 60 (2008) 935–944. 

50. M. V. Diudea, S. Cigher, A. E. Vizitiu, O. Ursu, P. E. John, Omega polyno-

mial in tubular nanostructures, Croat. Chem. Acta 79 (2006) 445–448. 

51. A. E. Vizitiu, S. Cigher, M. V. Diudea, M. S. Florescu, Omega polynomial in 

((4,8)3) tubular nanostructures, MATCH Commun. Math. Comput. Chem. 57

(2007) 457–462. 

52. M. V. Diudea, S. Cigher, A. E. Vizitiu, M. S. Florescu, P. E. John, Omega po-

lynomial and its use in nanostructures description, J. Math. Chem. 45 (2009) 

316–329. 

53. A. R. Ashrafi, B. Manoochehrian, H. Yousefi–Azari, On the PI polynomial of 

a graph, Util. Math. 71 (2006) 97–108. 

54. M. V. Diudea, M. S. Florescu, P. V. Khadikar, Molecular Topology and Its 

Applications, EFICON, Bucharest, 2006. 

55. A. Krishnan, E. Dujardin, M. M. J. Treacy, J. Hugdahl, S. Lynum, T. W. 

Ebbesen, Graphitic cones and the nucleation of curved carbon surfaces, Nature 

388 (1997) 451–454. 

56. T. W. Ebbesen, Cones and tubes: geometry in the chemistry of carbon, Acc.

Chem. Res. 31 (1998) 558–566. 

57. A. E. Vizitiu, M. V. Diudea, Conetori of high genera, Studia Univ. Babes-

Bolyai 51 (2006) 39–48. 

58. A. E. Vizitiu, M. V. Diudea, Omega and theta polynomials in conical 

nanostructures, MATCH Commun. Math. Comput. Chem. 60 (2008) 927–933. 

59. M. A. Alipour, A. R. Ashrafi, A numerical method for computing the Wiener 

index of one–heptagonal carbon nanocone, J. Comput. Theoret. Nanosci. 6 

(2009) 1204–1207. 

60. S. Klavžar, On the canonical metric representation, average distance, and 

partial Hamming graphs, Eur. J. Combin. 27 (2006) 68	73. 

61. A. Ili�, M. V. Diudea, F. Gholami–Nezhaad, A. R. Ashrafi, Topological indi-

ces in nanocones, in: I. Gutman, B. Furtula (Eds.), Novel Molecular Structure 

-589-



Descriptors – Theory and Applications I, Univ. Kragujevac, Kragujevac, 

2010, pp. 217-226. 

62. S. Cigher, M. V. Diudea, Omega Polynomial Counter, Babes–Bolyai Univ.,

2007. 

63. C. L. Nagy, M. V. Diudea, Nano-Studio software, Babes-Bolyai Univ., 2009. 

64. M. V. Diudea (Ed.), QSPR/QSAR Studies by Molecular Descriptors, Nova, 

New York, 2001.  

65. A. T. Balaban (Ed.), From Chemical Topology to Three–Dimensional Geo-

metry, Plenum Press, New York, 1997. 

66. M. A. Johnson, G. M. Maggiora (Eds.), Concepts and Application of Mole-

cular Similarity, Wiley, New York, 1990. 

67. M. V. Diudea, I. Gutman, Wiener–type topological indices, Croat. Chem. Acta 

71 (1998) 21–51. 

 

-590-


