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Abstract

In this paper, a new Runge-Kutta-Nyström method of fourth algebraic order
is developed. The new method has zero phase-lag, zero amplification error and
zero first derivatives of the previous properties. Numerical results indicate that
the new method is much more efficient than other methods constructed for solving
numerically the Schrödinger equation.

1 Introduction

In this paper we propose a new methodology, for deriving optimized methods, for the

numerical integration of ordinary differential equations with oscillatory solutions. This

type of ODEs often met in real problems, like the Schrödinger equation.
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In the recent past, many researchers developed methods with minimal phase-lag or

phase lag of order infinity or a combination of those with zero dissipation. Such methods

can be found in [2, 6, 8, 9, 12, 13, 15, 21, 22, 20].

Moreover several methods, based on phase, exponential or trigonometrically fitting,

developed for solving numerically the Schrödinger equation (see [3, 4, 8, 9, 10, 11, 14, 16,

17, 18, 19, 23, 24, 25, 26, 28, 29, 30, 31]).

For the first time in the literature there is an attempt to combine the nullification of

phase-lag and amplification factor with the nullification of their derivatives. The method

that we are going to develop in this paper contains four variable coefficients, which depend

on v = ωh, where ω is the dominant frequency of the problem and h is the step length of

integration.

2 Phase lag and amplification error analysis of

Runge-Kutta-Nyström methods

The initial value problem
d2y(t)

dt2
= f(t, y(t)) (1)

can be solved numerically by using Runge-Kutta-Nyström methods, which are of the form

yn = yn−1 + hy′n−1 + h2

m∑
i=1

bif(tn−1 + cih, fi),

yn = y′n−1 + h

m∑
i=1

b̂if(tn−1 + cih, fi), (2)

where

fi = yn−1 + hciy
′
n−1 + h2

i−1∑
j=1

αijf(tn−1 + cjh, fj), i = 1, . . . ,m (3)

more specifically for the explicit Runge-Kutta-Nyström methods c1 = 0 and more

specifically for an FSAL explicit RKN method cm = 1 and cm,j = bi for j = i.

By applying the RKN method (2) to the test equation

d2y(t)

dt2
= (iw)2y(t) =⇒ y′′(t) = −w2y(t), ω ∈ R (4)

we obtain the numerical solution[
yn
hy′n

]
= Dn

[
y0
hy′0

]
, D =

[
A(z2) B(z2)

Ȧ(z2) Ḃ(z2)

]
, z = ωh, (5)
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where A,B, Ȧ, Ḃ are polynomials in z2, completely determined by the parameters of the

method (2).

The eigenvalues of the amplification matrix D are the roots of the characteristic

equation

r2 − tr(D)r + det(D) = 0 (6)

In phase analysis one compares the phases of exp(iz) with the phases of the roots of

the characteristic equation (6). The following definition is originally formulated by van

der Houwen and Sommeijer [2].

Definition 1 (Phase-lag). Apply the RKN method (2) to the general method (4). Then

we define the phase-lag Φ(z) = z − arccos(tr(D)/2
√
det(D)). If Φ(z) = O(zq+1), then

the RKN method is said to have phase-lag order q. In addition, the quantity a(z) =

1−√
det(D) is called amplification error.

Let us denote

R(z2) = tr(D) = A(z2) + Ḃ(z2)

Q(z2) = det(D) = A(z2)Ḃ(z2)− Ȧ(z2)B(z2) (7)

where z = wh. From definition 1 it follows that

Φ(z) = z − arccos

(
R(z2)

2
√

Q(z2)

)
, a(z) = 1−

√
Q(z2). (8)

If at a point z, a(z) = 0, then the Runge-Kutta-Nyström method has zero dissipation

at this point.

We can also put forward an alternative definition for the case of infinite order of phase

lag.

Definition 2 (Phase-lag of order infinity). To obtain phase-lag of order infinity the

relation Φ(z) = z − arccos

(
R(z2)

2
√

Q(z2)

)
= 0 must be hold.

From definition 2 we have the following theorem.

Theorem 1 If we have phase-lag of order infinity and at a point z, α(z) = 0 then,

z − arccos

(
R(z2)

2
√

Q(z2)

)
= 0

1−√
Q(z2) = 0

}
⇒ R(z2) = 2cos(z)

Q(z2) = 1
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Proof.

Φ(z) = z − arccos

(
R(z2)

2
√

Q(z2)

)
= 0 ⇔

arccos

(
R(z2)

2
√

Q(z2)

)
= z ⇔

cos

(
arccos

(
R(z2)

2
√
Q(z2)

))
= cos(z) ⇔

(
R(z2)

2
√
Q(z2)

)
= cos(z) ⇔

(
R(z2)√
Q(z2)

)
= 2cos(z). (9)

Now for

a(z) = 0 ⇔ 1−
√

Q(z2) = 0 ⇔
√

Q(z2) = 1. (10)

From the above relation and the expression (9) we have

R(z2) = 2cos(z). (11)

Lemma 1 For the construction of a method with phase lag of order infinity and ampli-

fication error of order infinity, we must satisfy the conditions

R(z2) = 2cos(z), Q(z2) = 1

Lemma 2 For the construction of a method with nullification of phase lag, amplification

error and their derivatives, we must satisfy the conditions

R(z2) = 2cos(z), Q(z2) = 1, R′(z2) = −2sin(z), Q′(z2) = 0

3 Derivation of the new RKN method

In this part we present the derivation of the new algorithm, which is a four-stage

explicit Runge-Kutta-Nyström method with the FSAL technique (first stage as last), so

the method actually uses three stages at each step for the function evaluations. It is

based on R(z2) = 2cos(z), Q(z2) = 1, R′(z2) = −2sin(z), Q′(z2) = 0 and on the following
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coefficients that have been used by Dormand, El-Mikkawy and Prince in [1] :

α21 =
1

32
, α31 =

7

1000
, α32 =

119

500
,

α41 = b1, α42 = b2, α43 = b3

c2 =
1

4
, c3 =

7

10
, c4 = 1,

b1 =
1

14
, b2 =

8

27
, b3 =

25

189
, b4 = 0,

(12)

In order to evaluate the variable coefficients b̂i, i = 1(1)4, first we compute the poly-

nomials A, Ȧ, B, Ḃ in terms of RKN parameters. From these polynomials we obtain

the expressions of R(z2) and Q(z2). Then we evaluate their derivatives (R′(z2), Q′(z2)).

Through these calculations we lead to a system of four equations (R(z2) = 2cos(z),

Q(z2) = 1, R′(z2) = −2sin(z), Q′(z2) = 0). Solving this system we obtain the coefficients

b̂i, i = 1(1)4 , which are fully depended from the product z of the step-length h and the

frequency ω.

b̂1 = − 1

252
(62679 z12 − 4328370 z10 − 1956632 z9 sin(z) + 109558632 z8

−11739792 z8 cos(z) + 95584320 z7 sin(z) + 490636800 z6 cos(z)

−1290787200 z6 − 1585664640 z5 sin(z) + 8157715200 z4

−6226156800 z4 cos(z) + 10911283200 z3 sin(z) + 29884723200 z2 cos(z)

−29884723200 z2 − 24186470400 z sin(z) + 48372940800

−48372940800 cos(z))/

(z4(289 z8 − 12240 z6 + 203040 z4 − 1555200 z2 + 4665600))

b̂2 =
2

9
(4373232 z8 − 483072 z8 cos(z)− 80512 z9 sin(z) + 2040422400

+389145600 z3 sin(z)− 54777600 z5 sin(z) + 3429440 z7 sin(z)−
1020211200 z sin(z)− 1118361600 z2 + 308021760 z4 + 17166720 z6 cos(z)

−214709760 z4 cos(z) + 1118361600 z2 cos(z)− 193800 z10 + 3315 z12

−2040422400 cos(z)− 49307520 z6)

/(z4(289 z8 − 12240 z6 + 203040 z4 − 1555200 z2 + 4665600))
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b̂3 = −125

63
(211248 z8 − 14688 z8 cos(z)− 2448 z9 sin(z) +

36218880 z3 sin(z)− 3870720 z5 sin(z) + 173696 z7 sin(z) + 248832000−
124416000 z sin(z)− 113909760 z2 + 26150400 z4 + 938496 z6 cos(z)−

16819200 z4 cos(z) + 113909760 z2 cos(z)− 5916 z10 + 51 z12 −
248832000 cos(z)− 3297216 z6)

/(z4(289 z8 − 12240 z6 + 203040 z4 − 1555200 z2 + 4665600))

b̂4 = −(1/8) (289 z12 − 192153600 z3 sin(z)− 619315200 z2 cos(z)

−12240 z10 − 22320 z8 + 1857945600 cos(z)− 293760 z7 sin(z)

−1857945600− 1175040 z6 cos(z) + 6877440 z6 + 13532160 z5 sin(z)

−99855360 z4 + 56309760 z4 cos(z) + 619315200 z2 + 928972800 z sin(z))

/(z4(289 z8 − 12240 z6 + 203040 z4 − 1555200 z2 + 4665600))

For small values of x the following Taylor series expansions are used

b̂1 =
1
14

+ 163
22680

z2 − 979
169344

z4 − 233483
587865600

z6 − 2318623
67898476800

z8 − 6628679977
4448708199936000

z10

b̂2 =
32
81

− 14
405

z2 + 13837
1837080

z4 + 18353
55112400

z6 + 1458319
43649020800

z8 + 20065057
11916182678400

z10

b̂3 =
250
567

+ 425
6804

z2 − 7915
5143824

z4 − 1805
8817984

z6 − 984869
24443451648

z8 − 128490611
26692249199616

z10

b̂4 =
5
54

− 341
9720

z2 − 97
51840

z4 − 2147
18370800

z6 + 7697
2217093120

z8 + 30952913
15131660544000

z10

4 Numerical results

4.1 Schrödinger equation

The one-dimensional or radial time-independent Schrödinger equation has the form

y′′(x) +
(
E − l(l + 1)

x2
− V (x)

)
y(x) = 0, where 0 ≤ x < ∞ (13)

We call the term l(l+1)/x2 the centrifugal potential, and the function V (x) the electric

potential. In (13), E is a real number denoting the energy, and l is a quantum number. The

functionW (x) = l(l+1)/x2+V (x) denotes the effective potential, where limx→∞ V (x) = 0

and so limx→∞ W (x) = 0. The boundary condition are y(0) = 0 together with a second

boundary condition, for large values of x, determined by the physical considerations.
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4.1.1 Resonance problem

For the purpose of our numerical illustration we will take the domain of integration as

x ∈ [0, 15], using the Woods-Saxon potential:

V (x) =
u0

1 + q
+

u1q

(1 + q)2
, q = exp

(
x− x0

α

)
, where (14)

u0 = −50, α = 0.6, x0 = 7, u1 = −u0

α

In the case of positive energies (E = k2), the potential (V (x)) dies away faster than

the centrifugal potential (l(l + 1)/x2), so for a large number for x, Schrödinger equation

effectively reduces to

y′′(x) + (k2 − l(l + 1)

x2
)y(x) = 0 (15)

The above equation (15) has two linearly independent solutions, kxjl(kx) and

kxnl(kx), where jl and nl are the spherical Bessel and Neumann functions, respectively.

When x → ∞, the solution of equation (13) take the following asymptotic form

y(x) � Akxjl(kx)− Bkxnl(kx)

� D

[
sin

(
kx− lπ

2

)
+ tan(δl)cos

(
kx− lπ

2

)]
, (16)

where δl is the scattering phase shift that may be calculated from the bellow formula

tan(δl) =
y(xi)S(xi+1)− y(xi+1)S(xi)

y(xi+1)C(xi)− y(xi)C(xi+1)
, (17)

where S(x) = kxjl(kx), C(x) = kxnl(kx) and xi < xi+1 both exist in the asymptotic

region.

For positive energies and for l = 0, we calculate the phase shift (δl) and then we

compare it with the accurate value which is π/2. The boundary conditions for this

eigenvalue problem are y(0) = 0 and y(x) = cos(
√
Ex) for large x.

We use the following eigenenergies

E1 = 53.588872

E2 = 163.215341

E3 = 341.495874

E4 = 989.701916
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We also consider the case where l �= 0. Specifically we use the Lennard-Jones potential

given by the formula V (x) = m
(

1
x12 − 1

x6

)
, where m = 500, for l = {0, 1, 2, . . . , 10},

E = {25, 100} and step-length of integration h = 0.1. We compare the phase-shifts with

the values found at [27] and present the decimal digits that the approximate solutions

agree with the reference solution. The results are given in the two tables of subsection

4.3.

4.1.2 Bound-states problem

In the case of negative energies (E < 0), we consider the eigenvalue problem with

boundary conditions

y(0) = 0 and y(x) = exp(−√−Ex) for large x.

In order to solve this problem numerically, by a chosen eigenvalue, we integrate forward

from the point x = 0, backward from the point x = 15 and matching up the solution at

some internal point in the range of integration.

For the Bound-states problem we use the following eigenenergies

E1 = −49.457788728

E2 = −41.232607772

E3 = −26.873448915

E4 = −8.676081670

The frequency is given by the suggestion of Ixaru and Rizea [4]

ω =

{ √
E + 50, x ∈ [0, 6.5]√
E, x ∈ [6.5, 15]

4.2 Nonlinear problem

y′′ = −100y+sin(y), with y(0) = 0, y′(0) = 1, t ∈ [0, 20π], y(20π) = 3.92823991·10(−4)

and ω = 10 as frequency of the problem.

4.3 Comparison

We are going to compare our results to those derived by using the high order method

of embedded Runge-Kutta-Nyström 4(3)4 method, of DEP (see [1]), as well as to other

methods derived for the numerical solution of second order differential equations. The

methods used in the comparison have been denoted by:
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• DPAFRKN4: The new fourth-order RKN method with four stages (three effective stases

with FSAL property), derived in Section 3.

• RKN4: The high order method of pair RKN 4(3)4 method of Dormand, El-Mikkawy

and Prince with four stages (three effective stases with FSAL property)[1].

• VDVEFRKN4: The fourth-order RKN method with four stages (three effective stases

with FSAL property), derived by Vyver [7] (Section 3.1).

• FREFRKN4: The exponentially fitted, fourth-order RKN method with four stages

(three effective stases with FSAL property), derived by Franco [5] (Section 3.3).

One way to measure the efficiency of the method is to compute the accuracy in the

decimal digits, that is −log10(error at the end point) when comparing the phase shift to

the actual value π/2 versus the computational effort measured by the log10(number of

function evaluations required). In the figures we display the efficiency curves, that is the

accuracy versus the computational cost measured by the number of function evaluations

required by each method.

l (E=25) Kobeissi et al. NEW FREF RKN4 VDVEF
0 −0.48302543 2.13 1.74 1.88 1.75
1 0.92824634 2.14 1.75 1.89 1.75
2 −0.96354014 2.17 1.77 1.91 1.77
3 0.12073704 2.20 1.79 1.93 1.79
4 1.03290370 2.25 1.82 1.97 1.82
5 −1.37840550 2.31 1.85 2.01 1.86
6 −0.84398975 2.39 1.90 2.07 1.90
7 −0.52543971 2.48 1.95 2.13 1.95
8 −0.45743790 2.57 2.00 2.19 2.00
9 −0.75702397 2.65 2.05 2.26 2.05
10 1.41486080 2.96 2.17 2.42 2.18

l (E=100) Kobeissi et al. NEW FREF RKN4 VDVEF
0 −0.43100436 1.92 0.60 0.88 0.62
1 1.04500840 1.93 0.61 0.88 0.62
2 −0.71580773 1.95 0.61 0.88 0.62
3 0.56880667 1.98 0.61 0.89 0.63
4 −1.38576670 2.02 −0.46 0.90 −0.46
5 −0.29834254 2.07 0.62 0.90 0.64
6 0.68682901 2.13 0.63 0.92 0.65
7 1.56630270 2.20 0.64 0.93 0.66
8 −0.80594020 2.28 0.66 0.95 0.67
9 −0.15240790 2.36 0.67 0.96 0.68
10 0.37789982 2.44 0.68 0.98 0.69
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Figure 1: Efficiency for the Schrödinger equation using E=53.588872

Figure 2: Efficiency for the Schrödinger equation using E=163.215341
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Figure 3: Efficiency for the Schrödinger equation using E=341.495874

Figure 4: Efficiency for the Schrödinger equation using E=989.701916
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Figure 5: Efficiency for the Schrödinger equation using E=-49.457788728

Figure 6: Efficiency for the Schrödinger equation using E=-41.232607772
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Figure 7: Efficiency for the Schrödinger equation using E=-26.873448915

Figure 8: Efficiency for the Schrödinger equation using E=-8.676081670
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Figure 9: Efficiency for the Nonlinear equation

5 Conclusions

The optimized RKN method, derived in this paper is much more efficient than the clas-

sical one in all cases. Moreover, we observe that for the bound-states problem the three

methods (DPAFRKN4, VDVEFRKN4 and FREFRKN4) achieved almost the same accu-

racy. When integrating the resonance problem and the nonlinear equation, the numerical

results show the superiority of the new technique.
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