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Abstract 
In this paper, a general mechanism of autocatalytic zymogen activation and the simultaneous 

action of two different, mutually exclusive, two-step inhibitors acting on both the enzyme (which 
simultaneously is both the activating and the activated enzyme) and the complex enzyme-zymogen is 
suggested and kinetically analyzed. This generalization offers the advantages of being applicable to a 
high number of real cases since most mechanisms of autocatalytic zymogen activation involving 
reversible or irreversible, one or two step, equal or different inhibitors, with reversible steps in rapid 
equilibrium or not, are particular cases of the general model here studied. The number and type of the 
particular cases arising from the general model are obtained in a systematic way. Finally, as an 
example, the results obtained for the general model are applied to one of the thousands of its particular 
cases.  
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1. Introduction 

An important number of proteases are normally synthesized and secreted as inactive 

precursors in a suitable time and place with the aim of protecting the cells that produce them. 

They are termed proenzymes or zymogens and must undergo an activation process, usually 

consisting of a limited proteolysis involving selective cleavage of a peptide bond, to attain 

their catalytic activity. This is a very important phenomenon in many fundamental 

physiological processes, such as digestion, metabolism, immunity, blood coagulation, 

fibrinolysis, cell apoptosis, tumor growth and metastasis [1-13]. 

In those cases in which the activating enzyme coincides with the activated one, the 

process is autocatalytic. Autocatalytic zymogen activation is a very important phenomenon to 

understand some fundamental physiological processes involved in regulation of enzymes in 

the gastrointestinal tract [14,15], on blood coagulation and fibrinolysis [16-18]. Specific 

examples of physiological processes of interest include the activation of trypsinogen to 

trypsin [9,19-21], the conversion of pepsinogen to pepsin [22-26] and prekallikrein to 

kallikrein [27-29], all of them controlled by natural inhibitors of proteases present in cells and 

body fluids. Therefore an important incentive is the research of inhibitors of proteolysis 

control because it has been shown that they are very effective in many human therapeutic 

processes [17,30,31]. A pathological increase in fibrinolysis, such as in leukemia or 

interventions involving organs with a high content of activator of fibrinolysis such as uterus, 

prostate or lungs, can be controlled by using inhibitors such as �-aminocaproic acid, p-

aminomethylbenzoic acid or aprotinin. These products inhibit plasmin, trypsin, chymotrypsin 

and kallikrein, the latter being the most important protein responsible for the release of 

bradykinin [17]. 

When working with protease inhibitors, the importance of reaction kinetics must be 

stressed. Analysis of the kinetics of autocatalytic activation of a zymogen overlapped with 

inhibition can indicate the most likely control point in complex biological media [32]. If one 

wishes to suppress the activity of a given protease and know the kinetic constants for the 

reaction of this protease with an inhibitor, it is possible to determine how much inhibitor to 

add and how much time to allow a wanted inhibition.  
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Scheme 1 
Z is the zymogen, E is the activating (and activated) enzyme, W is the peptide(s) released during 
autocatalytic activation of Z, i.e. in the limited proteolysis of Z by E, I is a competitive inhibitor, I’ 
is a uncompetitive inhibitor, EI and EZI’ are the complex resulting of the binding of the inhibitors 
I and I’ to E and EZ, respectively, EI* is a isomeric form of EI and EZI’* is a isomeric form of 
EZI’. The inclusion in the inhibition processes of steps in which the complexes containing I 
undergo an isomerisation to another complex is frequent in the literature to give a wider generality 
to the model under study [33-36]. 

Manjabacas et al. [37] obtained the kinetic equations for both the transient phase and 

the steady-state for a model of autocatalytic activation of zymogens. Furthermore, these 

authors established a new kinetic parameter that can predict if the route of activation or 

inhibition will prevail at steady state. They extended this analysis to different particular cases 

of the studied system. Subsequently, they carried out the analysis of this same scheme 

coupled to an enzymatic reaction of the activated enzyme on one substrate to yield a 

chromophore product [38]. In addition, Manjabacas et al. [20] conducted a study of an 

autocatalytic mechanism in the presence of a reversible inhibitor, illustrated with the 

experimental study of the inhibition by p-aminobenzamidine of trypsin activity in its action 

on trypsinogen. The results showed that the apparent activation rate constant decreased non-

linearly with increasing the inhibitor concentration, according to the theoretical results. More 

recently Manjabacas et al. [39] extended the previous analysis so that the mixed inhibitor 

acted irreversibly in two steps on both the activating enzyme and the enzyme-zymogen 

complex in a general reaction scheme from which different particular cases could be obtained, 

to which they applied, as a limiting case, the overall results achieved. To our knowledge, the 

latest contribution in the scientific literature on the kinetics of inhibition of autocatalytic 

zymogen activation dates from 2006 [33] and we shall analyze the action of two different 

inhibitors, one competitive and the other one uncompetitive. Specifically these authors 

studied the reaction mechanism described in Scheme 1. 
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It remained to be done an analysis of a general model involving two, mixed or not, 

mutually exclusive inhibitors as shown in Scheme 2. This model is much more general and 

includes that shown in Scheme 1 as one of their thousands of particular cases. This 

generalization is reasonable if one considers the large number of inhibitors available in the 

cell, for a specific enzymatic process involved in autocatalytic activation of zymogens. 

Moreover, it has the advantage that it is applicable to a large number of real cases, because 

most of the autocatalytic activation mechanism of zymogens in the presence of inhibitors, 

competitive noncompetitive, uncompetitive or mixed, reversible or irreversible, in one or two 

steps, equal or different, can be considered particular cases of the general model proposed  

here (Scheme 2). Similarly, from the equations for the general mechanism or any of its 

particular cases the corresponding equations for those cases in which reversible steps are in 

rapid equilibrium can be obtained. 

The aim of the present paper is to analyze the kinetic behaviour of an autocatalytic 

zymogen activation process overlapped with the action of two different inhibitors, in 

agreement with the general scheme reaction shown in Scheme 2. The specific objectives are: 

1) To establish the initial and final conditions that allow linearizing the set of differential 

equations describing the kinetic behaviour of enzymatic systems whose reaction mechanism 

is indicated in Scheme 2. 2) To obtain the kinetic behaviour of the enzymatic species 

involved, valid for both the transient phase and the steady state by analytical integration of the 

differential equations system, once linearized, using the Laplace transform method. 3) To 

obtain, in a systematic way, the number of particular cases from Scheme 2. 4) To establish the 

method for applying the concentration-time equations obtained for Scheme 2, to the large 

number of processes whose reaction mechanisms are particular cases of this general scheme, 

using the example shown in Scheme 1, where the inhibitor I is competitive and I’

uncompetitive, both of them irreversible in two steps, being all reversible steps in rapid 

equilibrium. 
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Scheme 2 
 Z, E, W, EI, EZI’, EI* and EZI’* have the same meaning that in Scheme 1, I and I’ are two non-
competitive and mutually exclusive inhibitors, EI’ and EZI are the complexes resulting of the 
binding of I’ and I to E and EZ, respectively and EI’* and EZI* are isomeric forms of EI’ and EZI, 
respectively. 

2. Materials and methods 

 Approximated analytical solutions from the set of differential equations corresponding 

to Scheme 2, once linearized, were obtained by using the well-known mathematical method 

of Laplace transform, which turns linear systems of differential equations in algebraic systems 

of linear equations [40]. In Appendix B we show a flowchart to schematically summarise this 

method that we have applied it to the set of linear differential eqns. (27)-(36) below. 

 Numerical solutions of the set of differential equations corresponding to Scheme 2, 

without resort to its linearization, were obtained by means of the classical fourth-order Runge-

Kutta formula, but applying an adaptive stepsize control originally invented by Fehlberg 

[41,42], using algorithms developed previously by our working group [43-47]. The 

programming language used was the Visual C++ 6.0 for Windows included in Microsoft 

Visual Studio 6.0 Professional Edition package. The above programs were run on a PC 

compatible computer based Pentium IV/2 GHz processor with 512 Mbytes of RAM. 
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Finally, data obtained from analytical and numerical solutions were plotted using the 

SigmaPlot Scientific Graphing System for Windows version 8.02. 

3. Theory 

3.1. Notation 

The following notation will be used in the present paper: 

[E], [Z], [I], [I’], [EZ], [EI], [EI’], [EI*], [EI’*], [EZI], [EZI’], [EZI*], [EZI’*]: Instantaneous 

concentrations of the species indicated. 

[�,E]: Sum of the instantaneous concentrations of all enzymatic species involved in Scheme 

2, i.e.: 

[ ], [ ] [ ] [ *] [ '] [ '*] [ ] [ '] [ '*] [ ] [ *]E E EI EI EI EI EZ EZI EZI EZI EZIΣ = + + + + + + + + +  (1) 

[E]0, [Z]0, [I]0, [I’]0: Initial concentrations of the species E, Z, I and I’, respectively. 

rt: reaction time. 

Km: Michaelis-Menten constant for the zymogen in relation with the activating protease, i.e.: 

121 /)( kkkK m += −           (2) 

Kj (j =1,3,4,5,6): Equilibrium constants defined as: 

jjj kkK /−=            (3) 

'
jK  (j =3,4,5,6): Equilibrium constants defined as: 

''' / jjj kkK −=            (4) 

D (�) : 

the determinant: 
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   0 0 2 0 0 0 0

   [ ] 0 0 0 0 0 0 0

   0 0 0 0 0 0 0 0
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   0 0 0 0 0 0 0 0
( )

   [ ] 0 0 0 0 0 0

   0 0 0 0 0 [ ] 0 0

   0 0 0 0 0 0

K k k k k
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k K
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k K
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−

−

− −

−
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−

−

−

−
=

−

−

−

5 0 9 ,9 6

6 10 ,10

0 0

   0 0 0 0 0 [ ] 0 0

   0 0 0 0 0 0 0 0

k I K k

k K

λ

λ
−

−

−

 (5) 

where: 

' '
1,1 3 0 5 0 1 0( [ ] [ ] [ ] )K k I k I k Z= − + +         (6) 

2,2 3 4( )K k k−= − +           (7) 

3,3 4K k−= −            (8) 

' '
4,4 5 6( )K k k−= − +           (9) 

'
5,5 6K k−= −            (10) 

' '
6,6 1 2 3 0 5 0( [ ] [ ] )K k k k I k I−= − + + +         (11) 

' '
7,7 3 4( )K k k−= − +           (12) 

'
8,8 4K k−= −            (13) 

'
8,7 4K k−=            (14) 

9,9 5 6( )K k k−= − +           (15) 

10,10 6K k−= −            (16) 

Gq (q =1,2,...,10): 

The coefficients of the polynomial obtained in the development of D(�), resulting in: 

10 9 8 7 6 5 4 3 2
1 2 3 4 5 6 7 8 9 10( )D G G G G G G G G G Gλ λ λ λ λ λ λ λ λ λ λ= + + + + + + + + + +   (17) 
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These coefficients are the sum of terms each of them being products of rate constants and, 

where appropriate, of [Z]0, [I]0 and [I’]0 and, of course, are obtained simply by developing the 

determinant and putting it into the polynomial form (17). Just as an example of the 

complexity of these coefficients, the expression of G10 is given in the Appendix C, eqn. (C1).  

1λ , 2λ , . . . , 10λ :  

The roots of the polynomial D(�), none of them null because G10 � 0. 

D1,i (�): 

Determinant obtained by deleting in the determinant D(�) the first row and the i-th column. Its 

development is a polynomial whose degree and coefficients depend on the value of i. 

fh (h =1,2,...,9):  

The coefficients indicated in the development of D1,1 (�). 

( )9 8 7 6 5 4 3 2
1,1 1 2 3 4 5 6 7 8 9( )D f f f f f f f f fλ λ λ λ λ λ λ λ λ λ= − + + + + + + + + +   (18) 

bh (h=2,...,9): 

The coefficients indicated in the development of D1,3 (�). 

( )7 6 5 4 3 2
1,3 2 3 4 5 6 7 8 9( )D b b b b b b b bλ λ λ λ λ λ λ λ= − + + + + + + +     (19) 

ah (h =2,...,9): 

The coefficients indicated in the development of D1,6 (�). 

8 7 6 5 4 3 2
1,6 1 2 3 4 5 6 7 8 9( ) ·D a a a a a a a a aλ λ λ λ λ λ λ λ λ= + + + + + + + +     (20) 

ch (h=3,...,9): 

The coefficients indicated in the development of D1,8 (�). 

6 5 4 3 2
1,8 3 4 5 6 7 8 9 9( )D c c c c c c c cλ λ λ λ λ λ λ λ= + + + + + + +      (21) 

These coefficients are expressions of the same characteristics as Gq (q=1,2 ,...,10) and 

they are sums of terms which in turn are products of rate constants and, where appropriate, of 

[Z]0, [I]0 and [I’]0 and, of course, are obtained simply by developing the corresponding 

determinant and putting it into polynomial form [eqns. (18)-(21)]. Just as an example of the 
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complexity of these coefficients, the expressions of f8, b8, a8 and c8 are shown in the 

Appendix C, eqns. (C2)-(C5). 

3.2. Kinetic behaviour 

 The set of differential equations describing the kinetic behaviour corresponding to 

the mechanism shown in Scheme 2 is indicated in the Appendix A [eqns. (A1)-(A14)]. This 

set is nonlinear and so does not admit any analytical solution. However, under certain 

reasonable assumptions that are easy to implement experimentally, it is possible to linearize it 

to obtain approximate analytical solutions. To do this, we shall assume that the only species 

present at the onset of the reaction are E, Z, I and I’. In addition, we will assume the following 

initial conditions: 

0 0 0 0[ ] ,  [ ] ,  [ ']   [ ]Z I I E>>          (22) 

0 0[ ],  [ ']   [ ]I I Z>>           (23) 

We shall consider a reaction time, rt,  during which [E] is much smaller than [Z]0, i.e. 

0[ , ]  [ ]E Z� <<  during time rt        (24) 

 This condition should be the next one, less restrictive: 

[E] << [Z]0 during the time rt         (25) 

but taking into account that the evolution of [ ], EΣ  is easy to measure experimentally by a 

discontinuous method, we have chosen condition (24) which, in agreement with eqn. (1) 

includes the condition (25). 

The above assumptions, which transform the set of differential equations (A1)-(A14) 

in linear, imply that during the reaction time considered, the instantaneous concentrations [Z], 

[I] and [I’] do not significantly differ (for example, no more than 10%) of [Z]0, [I]0 and [I’]0, 

respectively, i.e. at any reaction time less than or equal to rt, it is satisfied that: 

                                      

      (26) 
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In particular, eqns. (A1)-(A10) are now the following system of ordinary differential 

equations, linear, homogeneous and with constant coefficients: 

' '
1 0 3 0 5 0 1 2 3 5

[ ] [ ][ ] [ ] [ ] [ '] [ ] ( 2 )[ ] [ ] [ ']d E k E Z k I E k I E k k EZ k EI k EI
dt − − −= − − − + + + +   (27) 

3 0 4 3 4
[ ] [ ][ ] [ *] ( )[ ]d EI k E I k EI k k EI
dt − − −= + − +       (28) 

4 4
[ *] [ *] [ ]d EI k EI k EI
dt −= − +          (29) 

' ' ' '
5 0 6 5 6

[ '] [ ][ '] [ '*] ( )[ ']d EI k E I k EI k k EI
dt − −= + − +       (30) 

6 6
[ '*] ' [ '*] ' [ ']d EI k EI k EI

dt −= − +         (31) 

'
5 0 5 1 2 3 0 3 1 0

[ ] [ ][ ] [ ] ( )[ ] ' [ '] [ ] [ '] [ ][ ]d EZ k EZ I k EZI k k EZ k I EZ k EZI k E Z
dt − − −= − + − + − + +  (32) 

4 3 3 0 4
[ '] ( ' ' )[ '] ' [ ][ '] ' [ '*]d EZI k k EZI k EZ I k EZI

dt − −= − + + +      (33) 

4 4
[ '*] ' [ '*] ' [ ']d EZI k EZI k EZI

dt −= − +         (34) 

6 5 5 0 6
[ ] ( )[ ] [ ][ ] [ *]d EZI k k EZI k EZ I k EZI
dt − −= − + + +       (35) 

6 6
[ *] [ ] [ ]d EZI k EZI k EZI

dt −= − +         (36) 

This system of differential equations can be analytically solved by any method. We 

have used the Laplace transform method [40,42] (the details of the derivation are given in 

Appendix B). 

3.3. Time course of the free enzyme concentration 

The result obtained for the species E from the above set of differential equations is the 

following: 
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10

1,
1

[ ] ht
h

h
E A eλ

=
=�           (37) 

where: 

( )
( )

9 8 7 6 5 4 3 2
1 2 3 4 5 6 7 8 9 0

1, 10

1

[ ]h h h h h h h h h
h

p h
p
p h

f f f f f f f f f E
A

λ λ λ λ λ λ λ λ λ

λ λ
=
≠

+ + + + + + + + +
=

−∏
 (h=1,2,...,10)   (38) 

 From polynomial theory, the following relations between the roots 1λ , 2λ , . . ., 10λ

arise, that will be useful later: 

1 2 10 1··· Gλ λ λ+ + + = −                    (39) 

1 2 1 3 9 10 2··· Gλ λ λ λ λ λ+ + + =          (40) 

1 2 3 1 2 4 8 9 10 3··· Gλ λ λ λ λ λ λ λ λ+ + + = −         (41) 

1 2 3 4 1 2 3 5 7 8 9 10 4··· Gλ λ λ λ λ λ λ λ λ λ λ λ+ + + =        (42) 

1 2 3 4 5 1 2 3 4 6 6 7 8 9 10 5··· Gλ λ λ λ λ λ λ λ λ λ λ λ λ λ λ+ + + = −       (43) 

1 2 3 4 5 6 1 2 3 4 5 7 5 6 7 8 9 10 6··· Gλ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ+ + + =      (44) 

1 2 3 4 5 6 7 1 2 3 4 5 6 8 4 5 6 7 8 9 10 7··· Gλ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ+ + + = −     (45) 

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 9 3 4 5 6 7 8 9 10 8··· Gλ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ+ + + =    (46) 

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 10 2 3 4 5 6 7 8 9 10 9· ··· Gλ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ+ + + = −   (47) 

1 2 3 4 5 6 7 8 9 10 10Gλ λ λ λ λ λ λ λ λ λ =          (48) 

3.4. Time course of other enzymatic forms 

 Analogously, the variation with time of the concentration of any other species from 

Scheme 2 can be obtained from the analytical solution of the set of differential eqns. (27)-

(36). Just as examples, and because they will be useful later, the expressions for [EZ], [EI*] 

and [EZI’*] are given here: 
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10

6,
1

[ ] ht
h

h
EZ A eλ

=
=�           (49) 

where: 

( )
( )

8 7 6 5 4 3 2
1 2 3 4 5 6 7 8 9 0

6, 10

1

[ ]h h h h h h h h
h

p h
p
p h

a a a a a a a a a E
A

λ λ λ λ λ λ λ λ

λ λ
=
≠

+ + + + + + + +
= −

−∏
(h=1,2,...,10) (50) 

In turn: 

10

3,
1

[ *] ht
h

h
EI A eλ

=
=�           (51) 

where: 

( )
( )

7 6 5 4 3 2
2 3 4 5 6 7 8 9 0

3, 10

1

[ ]h h h h h h h
h

p h
p
p h

b b b b b b b b E
A

λ λ λ λ λ λ λ

λ λ
=
≠

+ + + + + + +
= −

−∏
(h=1,2,...,10)  (52) 

Finally: 

10

8,
1

[ *] ht
h

h
EZI A eλ

=
=�           (53) 

where: 

( )
( )

6 5 4 3 2
3 4 5 6 7 8 9 0

8, 10

1

[ ]h h h h h h
h

p h
p
p h

c c c c c c c E
A

λ λ λ λ λ λ

λ λ
=
≠

+ + + + + +
= −

−∏
(h=1,2,...,10)   (54) 

3.5. Time course equation of the enzyme activity, , E� �� �Σ

 If eqns. (27)-(36) are added member to member, and the definition of [ ], EΣ , given by 

eqn. (1), is taken into account,  then it results: 

2
[ , ] [ ]d E k EZ
dt
Σ =           (55) 
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 If eqn. (49) is taken into account into eqn. (55) and one integrates with the initial 

condition 0 0[ , ] [ ]E EΣ = , it is obtained: 

10

1
[ , ] ht

h
h

E eλγ
=

Σ =�           (56) 

where: 

( )
( )

8 7 6 5 4 3 2
2 1 2 3 4 5 6 7 8 9 0

10

1

[ ]h h h h h h h h
h

h p h
p
p h

k a a a a a a a a a Eλ λ λ λ λ λ λ λ
γ

λ λ λ
=
≠

+ + + + + + + +
= −

−∏
(h=1,2,...,10) (57) 

4. Results and Discussion 

In this contribution, a complete kinetic analysis of the general model shown in Scheme 

2 has been performed. This model corresponds to an enzymatic system of autocatalytic 

zymogens activation in the presence of two different inhibitors for both the activating enzyme 

and the complex enzyme-zymogen. Approximated analytical solutions have been obtained for 

each enzymatic species involved in the mechanism (we have shown here those corresponding 

to E, EI*, EZI'* and [ ], EΣ . These equations are valid during the transient phase and the 

steady-state, provided that the conditions assumed are fulfilled. 

The instantaneous concentration of the free enzyme, [E], is described by eqn. (37), 

which consists of a sum of ten exponential terms. The same holds for all enzymatic species 

and for the total enzyme activity [ , ]EΣ .  

Since the product of the ten roots, 1 2 10···λ λ λ , is negative [see eqns. (48) and (A15)] 

there are an odd number, n (n =1,3,5,7 or 9) of roots  which must be positive or complex with 

a positive real part and another odd number, 10-n, of roots negative or complex with a 

negative real part. This means that for high values of time, i.e., at steady state of reaction, the 

concentration of enzyme forms involved in the Scheme 2 is given by an equation n-
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exponential because the 10-n exponential terms corresponding to the 10-n roots with negative 

values of the real part become negligible compared with the other ones. 

The kinetic analysis we carried out here is based both on the numerical integration  of 

the set of non-linear differential equations  (A1)-(A14) as well as in the approached analytical 

solutions of the linear set of differential equations (27)-(36) obtained from the former one 

under the linear assumptions (22)-(24). The approached analytical solutions are fulfilled 

during a reaction time in which assumptions (22)-(24) remain valid.  

The analysis carried out here is applicable not only to Scheme 2 but also to its 

numerous particular cases. Thus, this analysis offers a useful tool to characterize kinetically 

most of the enzyme reaction involving autocatalytic zymogen activation, at present known or 

not, overlapped with reversible or irreversible, competitive, non-competitive or uncompetitive 

inhibitions.  

4.1. Comparison between data obtained and simulated progress curves  
The goodness of the approximate analytical solutions obtained can be assessed by 

comparing them with the corresponding particular numerical solutions obtained from the 

system of differential eqns. (A1)-(A14) in Appendix A. This has been done for the species [E] 

and [ , ]EΣ  for an arbitrary set of rate constants and initial conditions (Fig.1). As can be seen, 

there is good agreement between the analytical and numerical solutions until approximately 

the first 40 s. Obviously, the deviation of theoretical data from the analytical solutions respect 

to the numerical solutions will be greater as the time considered increases. 

4.2. Particular cases of the general model  

In this contribution we have made a kinetic analysis of a general model of proenzyme 

autocatalytic activation in the presence of two different, mutually exclusive, inhibitors 

(Scheme 2). Besides its physiological interest, this analysis will address, systematically, all 

the particular cases of the same Scheme 2. Indeed, one of the most important applications of 

the present paper is that the results obtained for the general model are applicable, without 

much mathematical effort, to any of its many particular cases (16724 as we shall see later). 

Therefore, for the first time, this study offers researchers on this topic a method based on 
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general solutions that only need to be particularized to their specific problem of zymogen 

activation. 

 Generally, from any reaction mechanism, other simpler reaction mechanisms can be 

obtained after setting some changes in the first one. The original reaction mechanism is also 

called primitive mechanism and the particular cases arising from it, derived mechanism [48]. 

The kinetic equations of any of the derived mechanism can be easily obtained setting in the 

kinetic equations of the primitive one the same changes that reduce it to the derived 

mechanism under study.   

The most common changes to be made in the primitive mechanism to transform it into 

any of its particular cases, and which have been made in the present study, are the following: 

(A) make certain rate constants zero, (B) make one or more of the rate constants much greater 

than the others, i.e. let them tend to infinity and (C) match two different ligand species (in our 

case this change will be I � I’ when they do not act on the same enzymatic species). Of course 

combinations of changes, AB, AC, BC and ABC, are also possible. For example, an AB 

change type means that certain constants are made zero in the primitive mechanism and, 

moreover, others tend to infinity.  

4.2.1. Systematic retrieval of particular cases 

In this section we shall systematically establish those mechanisms which can be 

considered particular cases of the mechanism shown in Scheme 2. So, we shall distinguish 

four inhibition routes (two for the activating enzyme and two for the enzyme-zymogen 

complex) and one route for zymogen activation (Fig. 2A). Fig. 2B shows the number of 

possibilities for each route. The following six situations indicated in Fig. 3 will be 

distinguished: (a) Particular cases where the inhibition routes of I’ on E and of I on EZ are 

missing. (b) Particular cases where none of the inhibition routes is missing. (c) Particular 

cases where the inhibition route of I on EZ is missing. (d) Particular cases where the 

inhibition route of I’ on E is missing. (e) Particular cases where both inhibition routes on EZ

are missing. (f) Particular cases where both inhibition routes on E are missing.  
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Figure 1. Time progress curve of  [E] and [ , ]EΣ obtained from plots of eqns. (37) and (56) derived by using  
the Laplace transform method (dashed lines) and  from numerical integration of the set of differential equations 
(A1)-(A14) by using the numerical 4th-order Runge-Kutta method (solid lines) (A) and time progress curves 
corresponding to the consumption  of Z,  I and I’ obtained by numerical integration of the set of differential 
equations (B1)-(B10) (B) for a same reaction time equal to 100 s and a same arbitrary set of values for the rate 
constants and initial concentrations: k1 =104 M-1 s-1,  k-1=0.1 s-1,  k2 =1 s-1,  k3 =105 M-1 s-1,  k-3 =103 s-1, k4=10-2 s-1, 

k-4 =100 s-1, 
'

3k =105 M-1 s-1, 
'

3k− =10 s-1, 
'

4k =10-2 s-1, 
'

4k− =10 s-1,  k5=103  M-1 s-1,  k-5=1 s-1,  k6 =0.1 s-1, k-6=0.01 s-1, 
'

5k =103 M-1 s-1, 
'

5k− =50 s-1, 
'

6k =0.01 s-1, 
'

6k− =0.1 s-1, [E]0=1 µM, [I]0= [I’]0=1 mM and [Z]0=0.1 mM. Note that 
the plots of the equations overlap practically with the simulated progress curves whenever the zymogen and 
inhibitors concentrations remain simultaneously and approximately constants, condition under which the 
equations have been derived. This approximated constancy is observed during the first 40 s approximately, so 
that the equations can be considered valid during this time. As the time increases, the deviation of the plots of the 
equations with respect to the simulated progress curves increases. Therefore, any experimental design and 
kinetic data analysis suggested for this enzyme system must be carried out in the time scale in which both 
methods approximately coincide. 
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Figure 2A. Indication of the four inhibition routes (two routes for the 
activating enzyme and two for the activated one) and the activation route for 
the zymogen. 

Figure 2B. Indication of the number of possibilities in each route. 
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Figure 3. Different diagrams used to obtain the total number of cases of Scheme 2 can be 
obtained. Under each diagram the corresponding number of its particular cases, obtained as 
it is detailed in the main text, is shown. The algebraic operations giving them are: (a) 
324+18+18+2=362; (b) 162x9x9=13122; (c) 162x9=1458; (d) 162x9=1458; (e) 18x9=162 
and (f) 18x9=162.     

(a) Particular cases where the inhibition routes of I’ on E and of I on EZ are missing.  

This case involves all the particular cases corresponding to the simplified mechanism shown 

in Scheme 3. 

Scheme 3 

E + Z EZ 2 E +  W
+ +

I’I

EI EI* EZI' EZI'*

k1

k-1

k2

k3 k-3

k-4

k4 k’4

k’-4

k’-3k’3

(a) (b) (c)

(d) (e) (f)

362 13122 1458

1621458 162

(a) (b) (c)

(d) (e) (f)

362 13122 1458

1621458 162

-530-



It is possible to distinguish three routes in this scheme. In the activation route, which is 

a particular type A case (k3=k’3=0), it is only possible a change type B, yielding the two 

following possibilities: 

(a) 

                     (b)

In turn, in each of the two inhibition routes there are nine possibilities corresponding 

to A, B and AB changes. Scheme 4 shows these in the case of inhibition of the activating 

enzyme. The nine possibilities for EZ can be established in a similar way. 

Scheme 4 
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We could have included more possibilities in each of the inhibition routes, for example 
*E I EI EI+ → → , but these steps are non-viable. Nevertheless, the inclusion of more 

possibilities, whether they make sense or not does not change the analysis being carried out, 

although it does influence the number of particular cases, which would be greater. We have 

preferred to limit the possibilities to those which have an accepted meaning in the literature.  

We shall now determine all the particular cases from Scheme 2. Then, four situations 

will be distinguished: a1) Particular cases where none of the inhibition routes is missing; a2) 

particular cases where the inhibition route on E is missing; a3) particular cases where the 

inhibition route on EZ is missing and a4) particular cases where both inhibition routes are 

missing. 

a1) Particular cases where none of the inhibition routes is missing 

The number of particular  type A, B or AB cases, which will be denoted as NI,I’, is the 

product of the number of possibilities of each one of the three routes (two inhibition and one 

activation), i.e. NI,I’ =9x9x2=162, including the starting mechanism (Scheme 3). It is also 

possible that both inhibitors will match in each one of these mechanisms, so that the total 

number of particular cases with  type C changes, which will be denoted as NI,I , will also be 

162, which indicates that the total number of cases is NI,I’ + NI,I =162+162 =324. 

a2) Particular cases where the inhibition route on E is missing

The number of particular type A, B or AB cases, which will be denoted as NI’, is the 

product of the different number of possibilities of both the inhibition and the activation routes, 

i.e. NI’ =9 x 2=18.  In this case, it is not possible to make type C changes because there is only 

one inhibitor. 

a3) Particular cases where the inhibition route on EZ is missing

The number of particular  type A, B or AB cases, which will be denoted as NI, is the 

product of the different number of possibilities of both the inhibition and the activation routes, 

i.e. NI =9x2=18. In this case, it is not possible to do type C changes because there is only one 

inhibitor. 
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a4) Particular cases where both inhibition routes are missing

In this case, there are only two possibilities and so two particular cases, one type A 

and the other one type AB. This number will be denoted as N0 (N0 =2). No particular type C 

case is possible because there is no inhibitor. 

Therefore, the total number of particular cases which can be derived from Scheme 2, 

including itself is: NI,I’ + NI,I + NI’ + NI + N0 =324+18+18+2=362, of which NI,I’ + NI’ + NI + 

N0 =162+18+18+2=200 correspond to  type A, B and AB changes, and the other 162 (NI,I) 

correspond to particular cases involving a  type C change, i.e. C, AC, BC and ABC changes. 

b) Particular cases from Scheme 1 where none of the inhibition routes is missing 

In agreement with the above, the number of particular cases in this situation will be, 

NI,I’x9 x9=162x9x9=13122, a result obtained by combining the data obtained in point a1) with 

the 9 possibilities of each inhibition route. 

(c) Particular cases where the inhibition route of I on EZ is missed 

Analogously, the number of particular cases is NI,I’ x9=162x9=1458. 

(d) Particular cases where the inhibition route of I’ on E is missed  

The number of particular cases is NI,I’ x9=162x9=1458. 

(e) Particular cases where both inhibition routes on EZ are missed 

The number of particular cases is NI x9 =8x9=162. 

(f) Particular cases where both inhibition routes on E are missed 

The number of particular cases is NI’ x9=18x9=162. 

Therefore, the number of particular cases derived from the general model shown in 

Scheme 2, including itself, is: 362+13122+1458+1458+162+162=16724. In this way, this 

study offers (for the first time) to the scientific community working on limited proteolysis 

regulation, a method based on general solutions which only needs to be particularized to the 

specific problem of zymogen activation. 
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4.2.2. Obtaining the kinetic equations for the particular cases 

Each one of the particular cases derived from a primitive mechanism can be analyzed, 

in an individualized way, from its corresponding set of differential equations, taking into 

account the initial conditions and the reaction time allowing their linearization. However, this 

procedure would lose the power provided by having kinetic equations available for a model 

that includes the mechanism under study as a particular case, which constitutes a considerable 

saving of time and effort. In turn, usually, any of the particular cases of a primitive 

mechanism can be analyzed from the results of another particular case of the primitive 

mechanism if the mechanism under study is a particular case of the derived one. 

When in the kinetic equations of a mechanism acting as primitive mechanism of 

another, one cancels the same rate constants allowing the primitive mechanism becomes the 

derived one under study, type 0/0 uncertainties can arise. Most of these possible uncertainties 

can be solved setting equal to a same quantity, ε , all of the rate constants to be annulled, 

cancelling with respect ε  and then, if necessary making 0ε → . Nevertheless, in some cases 

it can happen that, following this procedure, an unexpected, absurd result is obtained. In these 

cases one must proceed in the following two steps: 1) In the equation of the primitive 

mechanism, to cancel the minimum set of rate constants that, under the initial conditions used, 

convert it into an kinetically equivalent mechanism to the derived mechanism under study 

(whenever the initial conditions are the same) and 2) then to cancel, in the resulting equation, 

all other remaining rate constants that must be set equal to zero in the primitive mechanism. 

For more details about acquisition of the kinetic equations of a derived mechanism from any 

of its primitive mechanisms see reference [48]. 

4.2.2.1. Example. Mechanism shown in Scheme 1 

 The kinetic analysis of the enzyme system shown in Scheme 1 was carried out in an 

individualized way by Varon et al. [33]. Note that this enzyme system is one of the thousands 

particular cases of the general model shown in Scheme 2 and therefore, the kinetic behaviour 

of enzyme system in Scheme 1 can be obtained more easily from the kinetic equations 

corresponding to the general model by setting in the kinetic equations of the last one the same 

changes yielding Scheme 1 from Scheme 2. Analogously, the kinetic behaviour of the enzyme 

system shown in Scheme 1 could also have been obtained from those ones corresponding to 
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any other enzyme system from which that shown in Scheme 1 could been considered a 

particular case (e.g. that shown in Scheme 3).   

 In this section Scheme 1 is treated as a particular case of Scheme 2 to support the 

advantage of the kinetic analysis of a reaction mechanism of great complexity, such as that in 

Scheme 2 in order to derive from the results of this analysis, in easy and quick way, the 

kinetic behaviour of other enzyme systems which can be considered particular cases of the 

general complex model. 

 Kinetic equations for Scheme 1 can be obtained from those in Scheme 2 by setting in 

the latter: 

' ' ' ' '
4 4 5 5 5 5 6 6 6 6 0k k k k k k k k k k− − − − − −= = = = = = = = = =      (58) 

Moreover, the first or pseudofirst order reaction rate constants involved in the reversible 

steps, all of them assumed in rapid equilibrium, must be much higher than the other ones and 

mutually not very different [49]: 

' '

1 0 1 3 0 3 3 0 3 2

' '

1 0 1 3 0 3 3 0 3

'
4 4[ ] , , [ ] , , [ '] ,

[ ] , , [ ] , , [ '] ,  mutually not very different
, ,k Z k k I k k I k k

k Z k k I k k I k

k k− − −

− − −

>> �
�
	

    (59) 

 The first of the above two conditions (59) is equivalent to state that from the point of 

view of the rate constants k2, k4 and k’4, the remaining first or pseudofirst order reaction rate 

constants go to infinite. Therefore, condition (59) can also been written as: 

' '

1 0 1 3 0 3 3 0 3

' '

1 0 1 3 0 3 3 0 3

[ ] , , [ ] , , [ '] ,

[ ] , , [ ] , , [ '] ,  mutually not very different
k Z k k I k k I k

k Z k k I k k I k
− − −

− − −

→ ∞ �
�
	

     (60) 

 If conditions (59) or (60) are inserted in eqns. (37), (49), (51) and (53) corresponding 

to the general model (Scheme 2) the following eqns. (61)-(64) are obtained after some 

algebraic considerations (we omit the details in order to reduce the length of the paper, but a 

detailed derivation is available from the authors for the interested readers, on request): 

[ ] 1

'
1 3 3 0

' ' '
1 3 3 1 3 0 3 3 0 3 0 0

[ ]
[ ] [ ] [ ] [ ']

tK K K EE e
K K K K K I K K Z K Z I

λ=
+ + +

                                            (61) 
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[ ] ( )1

'
2 3 3 0 0

0 ' ' '
4 1 3 0 4 3 0 0 2 3 3 0

[ ] [ ], [ ] 1
[ ]   [ ] [ ']  [ ]

tk K K Z EE E e
k K K I k K Z I k K K Z

λΣ = − −
+ −

    (62) 

[ ] ( )1

'
4 1 3 0 0

' ' '
4 1 3 0 4 3 0 0 2 3 3 0

[ ] [ ]* 1
[ ]   [ ] [ ']  [ ]

tk K K I EEI e
k K K I k K Z I k K K Z

λ= − −
+ −

     (63) 

[ ] [ ]
[ ] [ ] [ ] ( )1

'
4 3 0 00

' ' '
4 1 3 4 3 2 3 3 00 0 0 

[ '] [ ]
'* 1

  '  [ ]
tk K Z I E

EZI e
k K K I k K Z I k K K Z

λ= − −
+ −

    (64) 

where 1λ  is given by: 

[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

' ' '
4 3 4 1 3 3 3 20 0 0 0

1 ' ' '
1 3 3 1 3 3 3 30 0 0 0

'
'

k K Z I k K K I K K k Z
K K K K K I K K Z K Z I

λ
+ −

= −
+ + +      (65) 

Note that for this particular case it is observed: 

[Σ,E]= [E] + [EZ] + [EI] + [EI*] +[EZI']+[EZI'*]                                              (66) 

Residual enzyme activity 

The instantaneous residual enzyme activity, [ET], in Scheme 1 is defined as the sum of 

the instantaneous concentrations of all of the enzyme forms involved in Scheme 1 minus  the 

sum of the instantaneous concentrations of the inactive enzyme forms, i.e.: 

( )[ ] [ , ] [ *] [ '*]TE E EI EZI= Σ − +         (67) 

If in eqn. (67), eqns. (62)-(64) are taken into account, we have: 

1
0[ ] [ ] t

TE E eλ=            (68) 

 Note that, according to eqns. (66) and (67) it is also observed that: 

[ET] = [E] +[EZ] +[EI] + [EZI’]     (69) 

 From eqn. (68) it results [ET]0 = [E]0, as expected.    

 Note that the approached analytical solution for the time course of the residual enzyme 

activity [eqn. (68)] has been obtained from the kinetic results for the general model in Scheme 

2 as previously indicated, i.e., as a particular case of this Scheme.  
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4.3. Final Remarks 

Eqns. (65) and (68) for the residual enzyme activity corresponding to Scheme 1 were 

obtained by our group [39] in an individualized analysis  exclusively devoted to this Scheme. 

From the results obtained by these authors, the use of a dimensionless kinetic parameter 

giving the relative weight of both the activation and inhibition routes was suggested. In the 

present and in regard with Scheme 1 we want only point out that the kinetic results for a 

general model can serve as source to obtain the kinetic behaviour of any of the particular 

cases of the general model by only inserting in the time course equations for the general 

model the same changes reducing the last one to the particular cases under study.  

Once obtained the equations corresponding to a determined mechanism, it is possible 

to make [I]0 = 0 and/or [I’]0 = 0 to analyze the behaviour of the enzymatic system under study 

in the absence of one or the two inhibitors. The kinetic behaviour of any of the particular 

cases, allows to suggest experimental designs and analysis of kinetic data to estimate all or 

part of the kinetic parameters involved in the system, i.e., to characterize it.  

 The kinetic behaviour of any of the particular cases allows suggesting experimental 

design and kinetic data analysis to evaluate all or part of the kinetic parameters involved in 

the enzyme system, i.e. to characterize it and/or to suggest dimensionless kinetic parameters 

which provide the relative weight of the activation and inhibition routes and that of both 

inhibition routes.  

The transient phase kinetic analysis of enzyme systems is a part of enzyme kinetics 

with increasingly importance because of it allows the determination of more kinetic 

parameters than in steady-state analysis. Nevertheless, transient phase kinetics requires to 

carry out kinetic measurements in a short reaction time because either the reaction is very 

rapid or due to, as in the present case, the obtained equations are valid during a short reaction 

time. Therefore, transient phase kinetic analysis requires instrumental allowing measurements 

at short reaction times such as a stopped flow coupled to the measurement instrument, e.g. 

spectrophotometer, spectrofluorimeter, etc. This instrumental allows to obtaining 

measurements from milliseconds.  Thus, the experimental design and kinetic data analysis 

must be carried out at short time to be able to determine the involved parameters. But once 

these parameters have been obtained, the kinetic behaviour of the system for any reaction time 
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can be known from these parameters and the set of non-linear differential equations by 

numerical integration.

 There are not yet  too much reaction schemes of autocatalytic zymogen activation, 

overlapped or not with simultaneous inhibition, the kinetic analysis of which, experimentally, 

theoretically or both,  has been carried out [9-14,31],  some of them by ourselves [9-

11,20,33,37-39].  Most of these contributions on prior work on enzyme-zymogen pairs fit any 

of the 16724 theoretically possible particular cases found from the present computation on 

Scheme 2.  

 Different researchers [9,12,13,20,22,27] have previously analysed experimental results 

corresponding to some schemes of autocatalytic zymogen activation, with or without the 

action of inhibitors, which are particular cases of Scheme 2. The experimental data were 

analysed by fitting them to the corresponding time course equations obtained from an 

individual kinetic analysis by analytically integrating the corresponding set of differential 

equations, once linearized. If these authors of the contributions above had provided the results 

of this paper, they could have particularized general model equations of Scheme 2 to their 

specific enzyme system under study, that is, in most cases, easier than obtaining individually. 

But the present theoretical contribution has not the need for previous experimental 

contributions on reaction schemes being particular cases of Scheme 2. When we began to 

develop this contribution, we did not think of applying the results to any real system as a part 

of the same contribution, but to carry out a kinetic analysis valid for any possible real system 

which fits the model as a particular case. 
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APPENDIX A 
Set of differential equations describing the kinetic behaviour of those enzyme systems 

evolving according to reaction mechanism shown in Scheme 2. 

' '
1 3 5 1 2 3 5

[ ] [ ][ ] [ ][ ] [ '][ ] ( 2 )[ ] [ ] [ ']d E k E Z k I E k I E k k EZ k EI k EI
dt − − −= − − − + + + +  (A1) 

3 4 3 4
[ ] [ ][ ] [ *] ( )[ ]d EI k E I k EI k k EI
dt − − −= + − +       (A2) 

4 4
[ *] [ *] [ ]d EI k EI k EI
dt −= − +          (A3) 

' ' ' '
5 6 5 6

[ '] [ ][ '] [ '*] ( )[ ']d EI k E I k EI k k EI
dt − −= + − +       (A4) 

6 6
[ '*] ' [ '*] ' [ ']d EI k EI k EI

dt −= − +         (A5) 

'
5 5 1 2 3 3 1

[ ] [ ][ ] [ ] ( )[ ] ' [ '][ ] [ '] [ ][ ]d EZ k EZ I k EZI k k EZ k I EZ k EZI k E Z
dt − − −= − + − + − + + (A6) 

4 3 3 4
[ '] ( ' ' )[ '] ' [ ][ '] ' [ '*]d EZI k k EZI k EZ I k EZI

dt − −= − + + +     (A7) 

4 4
[ '*] ' [ '*] ' [ ']d EZI k EZI k EZI

dt −= − +       (A8) 

6 5 5 6
[ ] ( )[ ] [ ][ ] [ *]d EZI k k EZI k EZ I k EZI
dt − −= − + + +      (A9) 

[ ]
6 6

*
[ ] [ ]

d EZI
k EZI k EZI

dt −= − +        (A10) 

3 3 5 5
[ ] [ ][ ] [ ] [ ][ ] [ ]d I k E I k EI k EZ I k EZI
dt − −= − + − +      (A11) 

5 5 3 3
[ '] ' [ ][ '] [ '] ' [ ][ '] ' [ ']d I k E I k EI k EZ I k EZI
dt − −= − + − +     (A12) 

1 1
[ ] [ ][ ] [ ]d Z k E Z k EZ
dt −= − +         (A13) 

2
[ ] [ ]d W k E
dt

=           (A14) 
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APPENDIX B 

Analytical integration of the system of differential equations (27)-(36) in the main text, 
using the Laplace transform method. Obtaining the time course of [E], [EZ], [EI*] and 

[EZI*] 

In Fig. B1 we summarise the steps in the application of the Laplace transform method 
that we detail step by step for the analytical solution of the set of linear differential equations 
(27)-(36) 

                       Figure B1. Simplified flowchart showing the steps in the Laplace transform method 

            For convenience, we denote the species E, EI, EI*, EI’, EI’*, EZ, EZI’, EZI’*, EZI, 

EZI’* as X1,X2,....,X10, respectively. Furthermore, [X1],[X2],....,[X10] denote the instantaneous 

concentrations of X1,X2,....,X10, respectively, and [X1]0,[X2]0,....,[X10]0 denote the initial 

concentrations of X1,X2,....,X10. With this notation, the system of differential equations (27)-

(36) can be written as: 

'
1 1,1 1 3 2 5 4 1 2 6[ ] [ ] [ ] [ ] ( 2 )[ ]X K X K X K X K K X− − −= + + + +               (B1)

2 3 0 1 2,2 2 4 3[ ] [ ][ ] [ ] [ ]X K I X K X K X−= + +       (B2)

3 4 2 3,3 3[ ] [ ] [ ]X K X K X= +         (B3)
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' '
4 5 0 1 4,4 4 5,4 5[ ] [ ][ ] [ ] [ ]X K I X K X K X= + +       (B4)

'
5 6 4 5,5 5[ ] [ ] [ ]X K X K X= +         (B5)

'
6 1 0 1 6,6 6 3 7 5 9[ ] [ ] [ ] [ ] [ ] [ ]X K Z X K X K X K X− −= + + +      (B6)

' '
7 3 0 6 7,7 7 4 8[ ] [ ][ ] [ ] [ ]X K I X K X K X−= + +       (B7)

'
8 4 7 8,8 8[ ] [ ] [ ]X K X K X= +         (B8)

9 5 0 6 9,9 9 6 10[ ] [ ] [ ] [ ] [ ]X K I X K X K X−= + +       (B9)

10 6 9 10,10 10[ ] [ ] [ ]X K X K X= +         (B10)

where Ki,i (i=1,2,…,10) are given by eqns. (6)-(16) in the main text. 

If we apply the Laplace transform method to the linear system of differential equations 

(B1)-(B10) and assuming that the only enzyme species present at the start of the reaction is E, 

i.e. X1 (which means that [X1]0>0), yields, after some rearrangement to the following 

equations: 

{ } { } { } { }'
1 0 1,1 1 3 2 5 4 1 2 6[ ] ( ) [ ] [ ] [ ] ( 2 ) [ ]X K L X K L X K L X K K L Xλ − − −− = − + + + +       (B11)

{ } { } { }3 0 1 2,2 2 4 30 [ ] [ ] ( ) [ ] [ ]K I L X K L X K L Xλ −= + − +     (B12)

{ } { }4 2 3,3 30 [ ] ( ) [ ]K L X K L Xλ= + −        (B13)

{ } { } { }' ' '
5 0 1 4,4 4 6 50 [ ] [ ] ( ) [ ] [ ]K I L X K L X K L Xλ −= + − +     (B14)

{ } { }1 0 4 5,5 50 [ ] [ ] ( ) [ ]K Z L X K L Xλ= + −       (B15)

{ } { } { }' ' '
3 0 6 7,7 7 4 80 [ ] [ ] ( ) [ ] [ ]K I L X K L X K L Xλ −= + − +     (B16)

{ } { }'
4 7 8,8 80 [ ] ( ) [ ]K L X K L Xλ= + −        (B17)
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{ } { } { }5 0 6 9,9 9 6 100 [ ] [ ] ( ) [ ] [ ]K I L X K L X K L Xλ −= + − +     (B18)

{ } { }6 9 10,10 100 [ ] ( ) [ ]K L X K L Xλ= + −       (B19)

where { }[ ]iL X  is the Laplace transform of [Xi] (i=1,2,...,10) and λ  is the operator of Laplace 

transform. 

  The previous system of equations (B11)-(B19) is an algebraic system that can be 

solved by Cramer's rule. Thus { }[ ]iL X (i=1,2,...,10) can be expressed by: 

{ } 1 0 1,( 1) [ ] ( )
[ ]

( )

i
i

i

X D
L X

D
λ

λ
−

=  (i=1,2,...,10)      (B20)

In eqn. (B20) above ( )D λ is the determinant given by eqn. (5) and 1, ( )iD λ is the minor 

that results from deleting the first row and i-th column. The development of the determinant 

( )D λ is given by eqn. (17) in the main text. The polynomial ( )D λ has 10 roots, 1λ , 2λ , . . ., 

10λ , none of them as null because 10 0G ≠ . Furthermore it is assumed that these 10 roots are 

simple, i.e., there is no one repeated, which in the practice is most probably. Therefore, the 

polynomial ( )D λ can be written as: 

1 2 10( ) ( )( )····( )D λ λ λ λ λ λ λ= − − −        (B21)

 At the same time, the expansion of 1, ( )iD λ is a polynomial whose degree and 

coefficients depend on what the value of i be. Specifically, for i=1,3,6 and 8, these expansions 

are given by eqns. (18)-(21) of the main text. ( )D λ  is a polynomial of degree 10, while 

1, ( )iD λ is a polynomial of degree 9 at the most, therefore, the second member of the eqn. 

(B20) can be decomposed into simple fractions. Moreover, taking into account the expression 

of ( )D λ given by eqn. (B21), can be written: 

1 0 1, 1, 2, 10,

1 2 10 1 2 10

( 1) [ ] ( )
···

( )( )···( )

i
i i i iX D A A Aλ

λ λ λ λ λ λ λ λ λ λ λ λ
−

= + + +
− − − − − −

    (B22)
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If the sum of the terms of the second member is made: 

1010

,
1 1

1 0 1,

1 2 10 1 2 10

( )
( 1) [ ] ( )

( )( )···( ) ( )( )···( )

i h p
i h p

p hi

A
X D

λ λ
λ

λ λ λ λ λ λ λ λ λ λ λ λ

= =
≠


 �
� �−� �
� �−  	=

− − − − − −

� ∏
    (B23) 

As the denominators of both sides of the equation above are equal, the numerators 

must be equal too, i.e., 

1010

1 0 1, ,
1 1

( 1) [ ] ( ) ( )i
i i h p

h p
p h

X D Aλ λ λ
= =

≠


 �
� �− = −� �
� � 	

� ∏       (B24)

If in eqn. (B24) we set hλ λ=  (h =1,2,...,10) all summands of the second member 

become null, except the summand 
10

,
1

( )i h h p
p
p h

A λ λ
=
≠

−∏  that will be written for convenience as 

10

,
1

( )i h p h
p
p h

A λ λ
=
≠

− −∏ . So, from eqn. (B24) we have: 

10

1 0 1, ,
1

( 1) [ ] ( ) ( )i
i h i h p h

p
p h

X D Aλ λ λ
=
≠

− = − −∏  (h=1,2,…,10)    (B25)

from which we obtain:: 

1
1 0 1,

, 10

1

( 1) [ ] ( )

( )

i
i h

i h

p h
p
p h

X D
A

λ

λ λ

−

=
≠

−
=

−∏
   (h=1,2,…,10)    (B26)

If in the last eqn. (B26) [X1]0 is replaced for [E]0 and 1, ( )i hD λ  for the expression 

corresponding to each of the different i-values, we obtain the expressions of the ten 
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coefficients Ai,h, for each i.  In particular, for i=1,3,6 and 8 are obtained eqns. (38), (50), (52) 

and (54) in the main text. From eqns. (B20) and (B22) we get:  

{ } 1, 2, 10,

1 2 10

[ ] ···i i i
i

A A A
L X

λ λ λ λ λ λ
= + + +

− − −
      (B27) 

Taking inverse Laplace transform in the above equation we obtain, finally: 

10

,
1

[ ] ht
i i h

h
X A eλ

=
=�          (B28) 

where Ai,h (i=1,2,...,10; h=1,2,...,10) are given by eqn. (B26). Eqn. (B28) provides the 

instantaneous concentration of any of the ten species involved in the enzymatic reaction 

mechanism of Scheme 2.   
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APPENDIX C 

Expressions of the coefficients G10, f8, b8, a8 and c8 involved in eqns. (17)-(21) in the main 
text. The expressions which appear in eqns. (C1)-(C5) as  k1, k2, k3, k’3, k4, k’4, k5, k’5, 
k6, k’6, (k-1), (k-3), (k’-3), (k-4), (k’-4), (k-5), (k’-5), (k-6) and (k’-6) correspond to k1, 
k2, k3, k’3, k4, k’4, k5, k’5, k6, k’6, k-1, k-3, k’-3, k-4, k’-4, k-5, k’-5, k-6 and k’-6. Likewise, the 
expressions [Z]0, [I]0 and [I’]0 correspond to the initial concentrations [Z]0, [I]0 and [I’]0

G10 = - k1k2(k-3)(k-4)(k'-5)(k'-6)(k'-3)(k'-4)(k-5)(k-6)[Z]0  (C1) 

  

f8 = 

 (k-3)(k-4)(k'-5)(k'-6)(k-1+k2)(k'-3)(k'-4)(k-5) + (k-3)(k-4)(k'-5)(k'-6)(k-1+k2)(k'-3)(k'-4)k6 + 

 + (k-3)(k-4)(k'-5)(k'-6)(k-1+k2)(k'-3)(k'-4)(k-6) + (k-3)(k-4)(k'-5)(k'-6)(k-1+k2)(k'-3)(k-5)(k-

6) + (k-3)(k-4)(k'-5)(k'-6)(k-1+k2)k'4(k-5)(k-6) + (k-3)(k-4)(k'-5)(k'-6)(k-1+k2)(k'-4)(k-5)(k-

6) + (k-3)(k-4)(k'-5)(k'-6)k'3[I']0k'4(k-5)(k-6) + (k-3)(k-4)(k'-5)(k'-6)k'3[I']0(k'-4)(k-5)(k-6) + 

+ (k-3)(k-4)(k'-5)(k'-6)k5[I]0(k'-3)(k'-4)k6 + (k-3)(k-4)(k'-5)(k'-6)k5[I]0(k'-3)(k'-4)(k-6) + 

+ (k-3)(k-4)(k'-5)(k'-6)(k'-3)(k'-4)(k-5)(k-6) + (k-3)(k-4)(k'-5)(k-1+k2)(k'-3)(k'-4)(k-5)(k-6) +  

+ (k-3)(k-4)k'6(k-1+k2)(k'-3)(k'-4)(k-5)(k-6) + (k-3)(k-4)(k'-6)(k-1+k2)(k'-3)(k'-4)(k-5)(k-6) 

+ (k-3)(k'-5)(k'-6)(k-1+k2)(k'-3)(k'-4)(k-5)(k-6) + k4(k'-5)(k'-6)(k-1+k2)(k'-3)(k'-4)(k-5)(k-6) 

+ (k-4)(k'-5)(k'-6)(k-1+k2)(k'-3)(k'-4)(k-5)(k-6)                                                             (C2) 

b8 = 

 k3[I]0k4(k'-5)(k'-6)(k-1+k2)(k'-3)(k'-4)(k-5) + k3[I]0k4(k'-5)(k'-6)(k-1+k2)(k'-3)(k'-4)k6 + 

 + k3[I]0k4(k'-5)(k'-6)(k-1+k2)(k'-3)(k'-4)(k-6) + k3[I]0k4(k'-5)(k'-6)(k-1+k2)(k'-3)(k-5)(k-6)  

 + k3[I]0k4(k'-5)(k'-6)(k-1+k2)k'4(k-5)(k-6) + k3[I]0k4(k'-5)(k'-6)(k-1+k2)(k'-4)(k-5)(k-6) + 

 + k3[I]0k4(k'-5)(k'-6)k'3[I']0k'4(k-5)(k-6) + k3[I]0k4(k'-5)(k'-6)k'3[I']0(k'-4)(k-5)(k-6) + 

 + k3[I]0k4(k'-5)(k'-6)k5[I]0(k'-3)(k'-4)k6 + k3[I]0k4(k'-5)(k'-6)k5[I]0(k'-3)(k'-4)(k-6) + 

 + k3[I]0k4(k'-5)(k'-6)(k'-3)(k'-4)(k-5)(k-6) + k3[I]0k4(k'-5)(k-1+k2)(k'-3)(k'-4)(k-5)(k-6) +  

 + k3[I]0k4k'6(k-1+k2)(k'-3)(k'-4)(k-5)(k-6) + k3[I]0k4(k'-6)(k-1+k2)(k'-3)(k'-4)(k-5)(k-6) 

   (C3) 
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a8 = 

 k1[Z]0(k-3)(k-4)(k'-5)(k'-6)(k'-3)(k'-4)(k-5) + k1[Z]0(k-3)(k-4)(k'-5)(k'-6)(k'-3)(k'-4)k6 + 

 + k1[Z]0(k-3)(k-4)(k'-5)(k'-6)(k'-3)(k'-4)(k-6) + k1[Z]0(k-3)(k-4)(k'-5)(k'-6)(k'-3)(k-5)(k-6) +  

 + k1[Z]0(k-3)(k-4)(k'-5)(k'-6)k'4(k-5)(k-6) + k1[Z]0(k-3)(k-4)(k'-5)(k'-6)(k'-4)(k-5)(k-6) + 

 + k1[Z]0(k-3)(k-4)(k'-5)(k'-3)(k'-4)(k-5)(k-6) + k1[Z]0(k-3)(k-4)k'6(k'-3)(k'-4)(k-5)(k-6) + 

 + k1[Z]0(k-3)(k-4)(k'-6)(k'-3)(k'-4)(k-5)(k-6) + k1[Z]0(k-3)(k'-5)(k'-6)(k'-3)(k'-4)(k-5)(k-6) +  

 + k1[Z]0k4(k'-5)(k'-6)(k'-3)(k'-4)(k-5)(k-6) + k1[Z]0(k-4)(k'-5)(k'-6)(k'-3)(k'-4)(k-5)(k-6)

(C4) 

c8 = 

k1[Z]0(k-3)(k-4)(k'-5)(k'-6)k'3[I']0k'4(k-5) + k1[Z]0(k-3)(k-4)(k'-5)(k'-6)k'3[I']0k'4k6 + 

 + k1[Z]0(k-3)(k-4)(k'-5)(k'-6)k'3[I']0k'4(k-6) + k1[Z]0(k-3)(k-4)(k'-5)k'3[I']0k'4(k-5)(k-6) +  

 + k1[Z]0(k-3)(k-4)k'6k'3[I']0k'4(k-5)(k-6) + k1[Z]0(k-3)(k-4)(k'-6)k'3[I']0k'4(k-5)(k-6) + 

 + k1[Z]0(k-3)(k'-5)(k'-6)k'3[I']0k'4(k-5)(k-6) + k1[Z]0k4(k'-5)(k'-6)k'3[I']0k'4(k-5)(k-6) + 

 + k1[Z]0(k-4)(k'-5)(k'-6)k'3[I']0k'4(k-5)(k-6)                                                                    (C5) 
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