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Abstract: This paper deals with the structure of essentially dis-
connected benzenoid systems. The normal components induced
digraph is introduced. It is proved that for an essentially discon-
nected benzenoid system, its normal components induced digraph
is acyclic and connected. The lower bond for the number of nor-
mal components of an essentially disconnected benzenoid system
is investigated. Moreover, the essentially disconnected benzenoid
systems with two or three normal components are classified and
constructed.

1. Introduction

A benzenoid system [1] is a finite 2-connected plane graph in which each interior face

is bounded by a regular hexagon (cf. Fig.1). Since benzenoid systems aptly represent

the skeleton of benzenoid hydrocarbons, in the study of benzenoid hydrocarbons [1–4],

benzenoid systems are extensively used. Note that each benzenoid system is bipartite

and 2-colorable. In the following, we use a convention that all the vertices of a benzenoid

system H in question have been colored black and white so that the end vertices of

any edge have different colors, and we denote H by H = (W,B), where W and B are

the sets of white vertices and black vertices of H, respectively. A perfect matching of

H is an independent edge set such that each vertex of H is incident with one of the
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edges of the independent edge set. For benzenoid systems perfect matchings correspond

to the notion of Kekulé structures, which play a distinguished role in the theory of

benzenoid hydrocarbons. A Kekuléan benzenoid system is a benzenoid system with

Kekulé structures. An edge of a Kekuléan benzenoid system H is called a fixed double

(fixed single) bond if it belongs to each (no) Kekulé structure of H. A fixed bond is either

a fixed single bond or a fixed double bond.

A Kekuléan benzenoid system without (with) fixed bonds is said to be normal (essen-

tially disconnected). Let H be an essentially disconnected Kekuléan benzenoid system.

The normal subgraph of H, denoted by N(H), is the subgraph induced by the non-fixed

bonds of H. Each connected component of N(H) is called a normal component. Simi-

larly, we define the fixed subgraph F (H) of H to be the subgraph induced by the fixed

bonds of H, each connected component of F (H) is called a fixed component (cf. Fig.1,

the normal components are shown in shadow, while the fixed double bonds are shown by

double lines.).

fixed components
normal components

B

Fig. 1 A benzenoid system B and its normal components and fixed components

Clearly, N(H) can be obtained by deleting the fixed double bonds together with their

end vertices and deleting the fixed single bonds without their end vertices. The concepts

“essentially disconnected” and “normal component” have proved to be very useful in

certain enumeration techniques for Kekulé structures, and in the classification and enu-

meration of benzenoid hydrocarbons [6,7]. It is known that an essentially disconnected

Kekuléan benzenoid system H has at least two normal components each of which is a nor-

mal benzenoid system [1], [2, p51]. P. Hansen and M. Zheng found that if an essentially

disconnected benzenoid system has a single hexagon as one of its normal components,
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then it has at least three normal components [8]. No more results about the structure of

essentially disconnected benzenoid systems have been known.

In this paper we introduce the concept of normal components induced digraph (NC-

induced digraph). Investigations are made for the structure feature of essentially discon-

nected benzenoid systems by means of NC-induced digraphs . It is proved that for an

essentially disconnected benzenoid system G, its NC-induced digraph, denoted by IN(G),

is acyclic and connected. A lower bond is given for the number of normal components

of an essentially disconnected benzenoid system G which possesses a normal component

without vertex lying on the boundary of G. The classification and construction of essen-

tially disconnected benzenoid systems with 2 or 3 normal components are discussed.

2. Structure of essentially disconnected benzenoid
systems

Let G be a graph. A boundary vertex (edge) of G is a (an) vertex (edge) that lies on

the boundary of G. Let H a subgraph of G. G−H denotes the subgraph of G obtained

by deleting the vertices of H and their incident edges.

Definition 2.1 Let v a vertex of an essentially disconnected benzenoid system G. Vertex

v is called a spreading vertex if it belongs to a normal component N of G, and is adjacent

to a vertex of G−N .

Definition 2.2 Let N be a normal component of an essentially disconnected benzenoid

system G = (W,B). N is said to be of type B (W ), if all the spreading vertices of N

are black (white); N is said to be of type M , if N contains both white spreading vertices

and black spreading vertices; N is said to be of type I, if none of the vertices of N is a

boundary vertex of G.

1
N

2
N

3
N1

v

3
v

2
v

4
v

5
v

6
v

1 2 3 4 5 6
,v v v v v v

6 5 4 3 2 1
v v v v v v

Strict
1 2 3 4 5 6

v v v v v v

F - :paths

F - :paths

Fig.2 Illustrations for definition 2.2 and definition 2.4.

As depicted in Fig.2 , N1, N2 and N3 are of type B,W and M , respectively.
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Definition 2.3 Denote by Gn the set of essentially disconnected benzenoid systems with

exactly n normal components. For G ∈ Gn, denote by nW (G), nB(G) and nM(G) the

number of normal components of type W,B and M , respectively.

Note that a normal component of type I is certainly a normal component of type M .

For any G ∈ Gn, we have nW (G) + nB(G) + nM(G) = n.

Definition 2.4 Let G = (W,B) be an essentially disconnected benzenoid system. A path

P of G is said to be an F-path of G (cf. Fig.2) if it satisfies : 1. the edges of P are

alternately fixed single bonds and fixed double bonds; 2. the end vertices of P are spreading

vertices.

Definition 2.5 Let G be an essentially disconnected benzenoid system, N1 and N2 be

two normal components of G. N1 is said to be incident with an F -path P if one of the

end vertices of P belongs to N1 . We say N1 connects to N2 if N1 and N2 are incident

with the same F -path. We say N1 properly connects to N2 if N1 and N2 are incident with

the same F -path P ; and N1 ∩ P is a black vertex, while N2 ∩ P is a white vertex.

Let G = (W,B) ∈ Gn, N1, N2, . . . , Nn the normal components of G. We construct the

normal components induced digraph (NC−induced digraph) of G , denoted by IN(G),

as follows (cf. Fig. 3):

1. the vertex set of IN(G) is {N1, N2, . . . , Nn};
2. for any two vertices Ni, Nj ∈ {N1, N2, . . . , Nn}, there is an arc from Ni to Nj (Ni

is said to be the tail of the arc and Nj is said to be the head of the arc) if and only if Ni

is properly connected to Nj.

1
N

2
N

3
N

1
N

2
N

3
N

G ( )
N

I G

Fig.3 Benzenoid system G and its NC-induced digraph IN (G).

The indegree d−IN (G)(N) of a vertex N in IN(G) is the number of arcs with head N ;

the outdegree d+IN (G)(N) of N in IN(G) is the number of arcs with tail N . We have:
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Theorem 2.6 Let G be an essentially disconnected benzenoid system, N a normal com-

ponent of G. Then we have:

1. d+IN (G)(N) = 0 if and only if N is of type W ;

2. d−IN (G)(N) = 0 if and only if N is of type B;

3. d+IN (G)(N) > 0 and d−IN (G)(N) > 0 if and only if N is of type M .

Lemma 2.7 ( [8]) Each normal component of an essentially disconnected benzenoid sys-

tem is a normal benzenoid system.

Lemma 2.8 ( [8]) If a benzenoid system H with more than one hexagon has a normal

component which is a single hexagon, then H has at least three normal components.

Lemma 2.9 Let G be an essentially disconnected benzenoid system, and v be a vertex of

G. Then v is a spreading vertex if and only if v is incident with two non-fixed bonds and

a fixed single bond.

Proof. Suppose that vertex v is a spreading vertex. By the definition of spreading vertex,

v belongs to a normal component N of G. By lemma 2.7, N is a normal benzenoid system.

Thus v is incident with two edges in N which are non-fixed bonds. Note that any edge

between N and G − N is a fixed single bond. Hence v is incident with one fixed single

bond.

Conversely, suppose that v is incident with two non-fixed bonds and a fixed single

bond. Evidently, the two non-fixed bonds are adjacent and belong to a normal component

N of G. Moreover, the other end vertex of the fixed single bond is in G − N . By the

definition of spreading vertex, v is a spreading vertex. Therefore, the lemma holds. �

Lemma 2.10 ( [13]) A hexagonal system H is normal if and only if H possesses a

perfect matching M such that the boundary of H is an M-alternating cycle.

Theorem 2.11 For any G ∈ Gn (n ≥ 2), IN(G) is acyclic.

Proof. By contradiction. Assume that there is a directed cycle C = Ni1Ni2 · · ·NikNi1

in IN(G), where i1, i2, . . . , ik are pairwise different. For any 1 ≤ s ≤ k, by lemma 2.10,

there is a Kekulé structure Mis of Nis such that the boundary of Nis is an Mis-alternating

cycle since Nis is a normal benzenoid system. Let M =
k∑

s=1

Mis ∪M∗, where M∗ is the

set of fixed double bonds of G. No doubt, M is a Kekulé structure of G such that for

each 1 ≤ s ≤ k, the boundary of Nis is an M -alternating cycle. Note that i1, i2, . . . , ik are

pairwise different. One can check that there is an M -alternating cycle containing some
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fixed bonds, a contradiction. The contradiction is caused by our assumption that there

is a directed cycle in IN(G), so the assumption is false. Therefore, the theorem holds. �

Corollary 2.12 For any G ∈ Gn(n ≥ 2), we have: nB(G) ≥ 1, nW (G) ≥ 1.

Proof. By theorem 2.11, IN(G) is acyclic. So there are two vertices Ni, Nj ∈ IN(G) such

that the indegree d−IN (G)(Ni) = 0 and the outdegree d+IN (G)(Nj) = 0. By theorem 2.6,

the normal component Ni is of type B , and the normal component Nj is of type W .

Therefore, nB(G) ≥ 1, nW (G) ≥ 1. �

Corollary 2.13 Let G = (W,B) be an essentially disconnected benzenoid system. If G

has a normal component of type M , then G has at least three normal components.

Proof. By corollary 2.12, nB(G) ≥ 1, nW (G) ≥ 1. If nM(G) ≥ 1, then the number of

normal components of G equals nW (G) + nB(G) + nM(G) ≥ 3.�

The known theorem due to P. Hansen and M. Zheng [8] is a direct consequence of the

above corollary:

Theorem 2.14 ( [8]) If an essentially disconnected benzenoid system H with more than

one hexagon has a normal component which is a single hexagon, then H has at least three

normal components.

Proof. Let s be a single hexagon which is a normal component of G. Since G is a

benzenoid system and s is a subgraph of G, there is another hexagon s′ adjacent to s.

Since s is a normal component of G, the two vertices belonging to both s and s′ are

spreading vertices. Note that these two vertices are adjacent to each other. Thus they

are of different colors. Therefore, the normal component s is of type M . By corollary

2.13, G has at least three normal components. �

Theorem 2.15 For each positive integer triple (a, b, c) subject to⎧⎨
⎩

a ≥ 1
b ≥ 1
a+ b+ c = n

there is an essentially disconnected benzenoid system G ∈ Gn(n ≥ 2) such that

(nW (G), nB(G), nM(G)) = (a, b, c).

Proof. Case 1. c = 0. Without loss of generality, we may assume that a ≤ b. Then we

can construct as depicted in Fig. 4. There are b normal components of type B on the

top, and there are a = n− b normal components of type W on the bottom.
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Fig. 4 An illustration for the construction for Case 1

Case 2. c = n − 2. Then we can construct as depicted in Fig. 5. The normal

components with two hexagons are of typeW and B, respectively; the normal components

with only one hexagons are of type M .

Fig. 5 An illustration for the construction for Case 2

Case 3. 0 < c < n− 2. Then we can construct by combining the construction ways

in Cases 1 and 2. For the essentially disconnected benzenoid system G depicted in Fig.

6, (nW (G), nB(G), nM(G)) = (a, b, c) = (1, 2, 3), �

Fig. 6 An illustration for the construction for Case 3

Lemma 2.16 Let G be an essentially disconnected benzenoid system. Then each fixed

bond of G belongs to an F -path.
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Proof. Direct each fixed single (double) bond of G from its black (white) end vertex to

its white (black) end vertex. It is not difficult to see that by our direction way, each fixed

bond e is contained in a maximum directed path P such that the end vertices of P are

spreading vertices (otherwise we can expand P at its end vertices). And the edges of P

are alternately fixed single bonds and fixed double bonds. Therefore, by the definition of

F -path, the lemma holds. �

Lemma 2.17 Let G be an essentially disconnected benzenoid system, and let P1, P2 be

two F-paths. If there is a fixed single bond e such that one of its end vertices is on P1 and

the other one is on P2, then the normal components incident with P1 or P2 are connected

in IN(G).

Proof. Let N1, N2 (N3, N4) be the two normal components incident with P1 (P2). Clearly,

N1 (N3) is connected to N2 (N4). Since e is a fixed single bond, e can not be incident

with end vertices of P1 or P2. In fact, the end vertices of e are incident with a fixed

double bond of P1 and a fixed double bond of P2, respectively. One can check that in the

subgraph P1∪P2∪{e}, there is an F -path P3 different from P1, P2 such that P3 connects

one of N1, N2 and one of N3, N4 (cf. Fig. 7). Therefore, N1, N2, N3, N4 are connected

and the lemma holds. �

1
N

2
N

3
N

4
N

1
P

2
P

1
N

2
N

3
N

4
N

Fig. 7 Illustrations for the proof of lemma 2.17

Theorem 2.18 Let G be an essentially disconnected benzenoid system. Then IN(G) is

connected.

Proof. Note that the normal components of G are connected by fixed components of

G. It suffices to prove that for each fixed component F of G, the normal components

N 1
F , N

2
F , . . . , N

k
F incident with F are connected. For any 1 ≤ t ≤ k, there is a fixed single

bond et of F incident with a spreading vertex of N t
F . By lemma 2.16, et belongs to an

F -path Pt. Evidently, one of the components incident with Pt is N
t
F . Thus each normal

component incident with F is connected to another one by an F -path which is a subgraph

of F . Note that all the F -paths in the fixed component F are connected by fixed single

bonds of F . By lemma 2.17, the theorem holds. �
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Lemma 2.19 ( [9]) For a benzenoid system G, the number of vertices of degree 2 is

equal to the number of vertices of degree 3 on the boundary of G plus 6.

Let N and N ′ be two normal components of a benzenoid system G = (W,B), P and

P ′ be two F -paths connecting N and N ′, P ∩ N = u, P ′ ∩ N = u′, P ∩ N ′ = v and

P ′∩N ′ = v′. Evidently, u and u′ are spreading vertices of N ; while v and v′ are spreading

vertices of N ′. The closed region bounded by N,P,N ′ and P ′ is a subgraph of G the

boundary of which consists of F -paths P and P ′; the section of boundary of N between

u and u′ and the section of boundary of N ′ between v and v′ .

Lemma 2.20 Let N and N ′ be two normal components of a benzenoid system G =

(W,B), P and P ′ be two F -paths connecting N and N ′, P ∩ N = u, P ′ ∩ N = u′. Let

v be a spreading vertex of N in the closed region bounded by N,P,N ′ and P ′. Then v, u

and u′ have the same color.

Proof. By contradiction. Since IN(G) is acyclic, u and u′ has the same color (Otherwise,

in IN(G) there would be an arc from N to N ′ and an arc from N ′ to N , which make a

directed cycle of IN(G)). Assume that v has different color with u and u′. Without loss of

generality, let u, u′ be black and v white. By lemma 2.9 and lemma 2.16, v belongs to an

F -path which connects N to another normal component N1. As argued above, N1 �= N ′.

One can check that N1 must be inside the closed region bounded by N,N ′, P and P ′,

say R , otherwise there would be a direct loop on vertex N of IN(G), which contradicts

theorem 2.11 (cf. Fig. 8).

N 'N N 'N

P

'P

R

1
N

2
N

k
N

u

'u

v

u

'u

v

R

P

'P

1
N

Fig. 8 Illustrations for the proof of lemma 2.20

Note that normal component N1 has black and white vertices of degree 2 in N1 on

its boundary which are certainly spreading vertices in G. Thus the normal component

N1 in R is of type M . Hence there is another normal component N2 in R such that N2

properly connects to N1. Again N2 is of type M . Continue this discussion, we can find in
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R a series of normal components N1, N2, ..., Nk, ... satisfying that Ni+1 properly connects

to Ni, i = 1, 2, .... Since R is finite, the number of different normal components in R is

finite. Therefore, we can find two integers s and t such that 1 ≤ s < t and Ns = Nt.

One can check that there is a cycle in IN(G): Ns = Nt → Nt−1 → ... → Ns+1 → Ns, a

contradiction. This contradiction is caused by our assumption that v has different color

with u and u′. Therefore, the assumption is false and the lemma holds. �
By theorem 2.11 and the above lemma, we have the following immediately:

Lemma 2.21 Let N be a normal component of type I of a benzenoid system G = (W,B),

w and b be two spreading vertices on the boundary of N such that w is white and b is

black. Let Nw and Nb be normal components connecting N by F -paths with end vertices

w and b, respectively. Then Nw and Nb are different.

In the following we give a lower bond for the degree of a normal component of type I

in IN(G).

Theorem 2.22 Let N be a normal component of type I of a benzenoid system G =

(W,B). Then the degree of N is at least 6 in IN(G).

a
v

b
v

a
v

b
v

a
v

b
v

a
vb

v

1
u

2
u

3
u

1
u 2

u
1

u

2
u 3

u
4

u

1
u

Fig. 9 Illustrations for the proof of theorem 2.22

Proof.We know that for normal component N of G there are black and white vertices of

degree 2 in N on its boundary. Consider a section of the boundary of N : vau1u2 · · · ujvb,

where dN(va) = dN(vb) = 2 and dN(ui) = 3, i = 1, 2, . . . , j. Clearly 0 ≤ j ≤ 4 (when

j = 0, the section is just two adjacent vertices vavb). We claim that j ≤ 3. In fact,

if j = 4 (cf. Fig.9), then edge vavb belongs to G and is a fixed single bond of G.

By lemma 2.10, N has a perfect matching M such that vau1, u2u3 and u4vb belong to

M . Then vau1u2u3u4vbva is an M -alternating cycle containing fixed single bond vavb, a

contradiction.

It is obvious that all the vertices of degree 3 on the boundary of N are not spreading

vertices (lemma 2.9), while each vertex of degree 2 in N on the boundary of N is a

spreading vertex and is connected to a normal component of G by an F -path (lemma

2.16). Consider a section vau1...ujvb on the boundary of N , where dN(va) = dN(vb) = 2
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and dN(ut) = 3, t = 1, ..., j. For the cases j = 1, 3; it is clear that va and vb are of the

same color. Then the normal component incident with va need not be different from the

normal component incident with vb (lemma 2.21). While for the cases j = 0, 2, va and

vb have different colors. Then the normal component incident with va and the normal

component incident with vb are different (lemma 2.21).

Let kj(j = 1, 2, 3) be the number of the sections of type vau1...ujvb on the boundary

of N , where dN(va) = dN(vb) = 2 and dN(ut) = 3, t = 1, ..., j. Let mi the number of

vertices of degree i on the boundary of N , i = 2, 3. We have the following equalities:

m2 = m3 + 6 (by lemma 2.19),m3 = k1 + 2k2 + 3k3

Therefore, the lower bound for the degree of N in IN(G) is

dIN (G)(N) ≥ m2 − k1 − k3 = m3 + 6− k1 − k3 = 2k2 + 2k3 + 6

Consequently, the degree of N is at least 6 in IN(G). �
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Fig. 10 The smallest benzenoid system G with a

normal component of type I and the correspond IN (G)

Corollary 2.23 Let G be a benzenoid system. If G has a normal component of type I ,

then G has at least seven normal components.

The smallest benzenoid system G with a normal component of type I is given in Fig. 10.

3. Classification and construction of Gn

Let G be a benzenoid system with boundary C, E be a subset of the edge set E(G)

of G. E is said to be an edge-cut of G if G− E is disconnected. In order to classify and

construct G2 and G3, we need the following definitions.
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Definition 3.24 ( [11]) A straight line segment P1P2 is called a cut segment if

1. Pi is the center of an edge ei on C, i = 1, 2;

2. P1P2 is orthogonal to both e1 and e2;

3. any point of P1P2 is either an interior or a boundary point of some hexagon of G.

Definition 3.25 ( [12]) A broken line segment P1QP2 is called a generalized cut (g-

cut) segment if

1. Pi is the center of an edge ei on C, i = 1, 2;

2. P1Q and P2Q are orthogonal to e1 and e2, respectively;

3. Q is the center of a hexagon of G; P1Q and P2Q from an angle of π/3 or 5π/3;

4. Any point of P1QP2 is either an interior or a boundary point of some hexagon of

G.

A special cut segment is either a cut segment or a g-cut segment. A special edge-cut

E is the set of edges of G intersected by a special cut segment. In Fig. 11, P1aP2a is a

cut segment, while P1dQdP2d is a g-cut segment.

0
C

2a
P

1b
P

2b
P

a
Q

1a
P

Fig. 11 An illustration for definitions 3.24 and 3.25

It is known [14] that an edge of an essentially disconnected benzenoid system is a fixed

single bond if and only if it is contained in some special edge-cut. Based on the concept

of special edge-cuts, a construction method for the benzenoid systems of Gn(n = 2, 3) is

given in the following.

Let N be a normal component of a benzenoid system G. Denote by G − N the

subgraph of G obtained by deleting all the vertices of N together with their incident

edges. Clearly, all the edges each of which has one end vertex in N and the other end

vertex in G−N form an edge cut of G, denoted by (N,G−N).

Definition 3.26 Let N be a normal component of a benzenoid system G ∈ Gn. An edge

cut E incident with N is labeled by I (L) if the edges of E correspond to a cut segment

(g-cut segment) of G; otherwise, E is labeled by K.
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One can check that if N is of type B or W , edge cuts incident with N can only be

labeled by I or L. Then we classify and construct benzenoid systems of G2,G3 according

to the labels of edge cuts.

1. For benzenoid systems of G2:

By our results, each member of G2 has exactly two normal components N1 and N2,

one being of type W and the other being of type B. So benzenoid systems of G2 can

be classified into three types : II, LL and IL, where XY means that the edge cut

adjacent to N1 is labeled by X, while the edge cut adjacent to N2 is labeled by Y ;

X ∈ {I, L}, Y ∈ {I, L}. It is easy to check that all the benzenoid systems of G2 have the

same NC-induced digraph.

1
N

2
N 1

N 2
N 1

N
2

N

1
N

2
N

Fig. 12 Illustrations for benzenoid systems of G2 and their NC-induced digraph

2. For benzenoid systems of G3:

For benzenoids of G3 with label K, they have only three types: IKI, IKL,LKL.
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N
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Fig. 13 Illustrations for benzenoid systems of G3 with label K

and their NC-induced digraphs

Theorem 3.27 The NC-induced digraphs of benzenoids in G3 with label K are the same.

Proof. Evidently, for each benzenoid system G in G3, IN(G) is a digraph with three

vertices. By theorem 2.18, IN(G) is connected. Moreover, IN(G) is acyclic (theorem
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2.11). Therefore, IN(G) is a digraph as shown in (cf. Fig. 13), the underlying graph of

which is a cycle with three vertices. �

For benzenoid systems of G3 without label K, they have ten types as follows:

IIII, IIIL, IILI, IILL, ILIL, ILLI, ILLL, LIIL, LILL, LLLL.

1
N

2
N

3
N

1
N

2
N

3
N

1
N

2
N

3
N

1
N

2
N

3
N

1
N

2
N

3
N

2
N

3
N

1
N1

N

2
N

3
N

1
N

2
N

3
N

2
N

3
N

1
N

1
N

2
N

3
N

IIII

IIIL

IILI
IILL

ILIL

ILLI

ILLL

LIIL LILL LLLL

2
N

3
N

1
N

2
N

3
N

1
N

2
N

3
N

2
N

3
N

1
N

1
N

2
N

3
N

1
N

2
N

3
N

1
N

2
N

3
N

1
N

2
N

3
N

1
N

2
N

3
N

1
N 2

N

3
N

1
N

Fig. 14 Illustrations for benzenoid systems of G3 without label K

and their NC-induced digraphs

-510-



References

[1] I. Gutman, S. J. Cyvin, Introduction to the Theory of Benzenoid Hydrocarbons,

Springer–Verlag, Berlin, 1989.
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