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Abstract

The general connectivity index Rα(G) of a graph G = (V,E) is defined as∑
uv∈E(d(u)d(v))α, where d(v) denotes the degree of a vertex v and α �= 0 is a

real number. In this paper, we give the expressions for computing the general con-
nectivity indices of benzenoid systems and phenylenes, and a relation between the
general connectivity indices of a phenylene and its corresponding hexagonal squeeze,
and the extremal values of Rα(G) in benzenoid systems with h hexagons for some
real numbers α.

1 Introduction

In 1998, Bollobás and Erdős [1] introduced the general connectivity index or the general

Randić index of a simple undirected graph G = (V,E):

Rα(G) =
∑
uv∈E

(d(u)d(v))α

where d(v) denotes the degree of a vertex v. It generalized the connectivity index or

the Randić index of a molecular structure graph. The latter, invented by the chemist

M. Randić [2] in 1975, is the graph-based molecular structure descriptor that is most

frequently applied in quantitative structure-property and structure-activity studies [3-5].

Some publications related to the general connectivity index Rα can be found in [6-8] and

the references cited therein.

A benzenoid system (or a hexagonal system) ([9]) is a connected geometric figure

obtained by arranging congruent regular hexagons in a plane, so that two hexagons are
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either disjoint or have a common edge. This figure divides the plane into one infinite

(external) region and a number of finite (internal) regions. All internal regions must be

regular hexagons. Benzenoid systems are of considerable importance in theoretical chem-

istry because they are the natural graph representation of benzenoid hydrocarbons. A

vertex of a hexagonal system belongs to, at most, three hexagons. A vertex shared by

three hexagons is called an internal vertex. A benzenoid system is said to be catacon-

densed (or tree-type) if it does not possess internal vertices, otherwise it is said to be

pericondensed. The catacondensed benzenoid systems are the graph representations of

an important subclass of benzenoid molecules, i.e., catacondensed benzenoids.

Phenylenes are a class of chemical compounds in which the carbon atoms form 6-

and 4-membered cycles. Each 4-membered cycle(=square) is adjacent to two disjoint

6-membered cycles(=hexagons), and no two hexagons are adjacent. Their respective

molecular graphs are also referred to as phenylenes. By eliminating, squeezing out, the

squares from a phenylene, a catacondensed benzenoid system (which may be jammed)

is obtained, called the hexagonal squeeze of the respective phenylene. Clearly, there is

a one-to-one correspondence between a phenylene (PH) and its hexagonal squeeze (HS).

Both possess the same number (h) of hexagons. In addition, a phenylene with h hexagons

possesses h − 1 squares. The number of vertices of such a PH and its HS are 6h and

4h+ 2, respectively.

Throughout this paper, the notation and terminology about benzenoid systems, pheny-

lenes and their hexagonal squeezes are mainly taken from [9-11].

Recently, Zheng [12] studied the general connectivity index Rα of a catacondensed

benzenoid system and characterized the catacondensed benzenoid systems with the first

three extremal general connectivity indices.

In this paper, we will give the the expressions for computing the general connectivity

indices of benzenoid systems (not only catacondensed benzenoid systems) and phenylenes,

and a relation between the general connectivity indices of a phenylene and its correspond-

ing hexagonal squeeze, and also discuss the extremal values of the general connectivity

indices of benzenoid systems with h hexagons.

2 The general connectivity index of benzenoid sys-

tems and phenylenes

For a simple graph G = (V,E), n is the number of it vertices, mjk is the number of

(j, k)-edges connecting a vertex of degree j with a vertex of degree k. Then, the general
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connectivity index of any graph G with n vertices can be denoted by mjk

Rα(G) =
∑

1≤j≤k<n

mjk(jk)
α (1)

In the cases of a benzenoid system (S) and a phenylene (PH), which possess only

(2, 2)-, (2, 3)-, and (3, 3)-edges, the equation (1) reduces to

Rα(G) = m224
α +m236

α +m339
α (2)

In a benzenoid system, fissures, bays, coves and fjords are structural characteristics of

the perimeter of the benzenoid systems playing some role in their theory [10]. If one goes

along the perimeter of a benzenoid system, then a fissure is a structural feature formed

by a 2-vertex, followed by a 3-vertex, followed by a 2-vertex. A simple bay is formed by a

2-vertex, followed by two 3-vertices, followed by a 2-vertex. A cove and a fjord are features

formed, respectively, by three and four consecutive 3-vertices, lying between 2-vertices.

In addition, the lagoon is a feature of the perimeter, formed by a 2-vertex, followed by

five 3-vertices, followed by a 2-vertex. Lagoons cannot occur in (geometrically planar)

benzenoids, but only in helicenic systems.

The number of fissures, bays, coves, fjords and lagoons will be denoted by f,B, C, F, L.

Fissures, bays, coves, fjords and lagoons are various types of inlets. The total number of

inlets on the perimeter of a benzenoid system, f +B +C + F + L, will be denoted by r.

In the case of phenylenes, a fissure, bay, cove, fjord, and lagoon are defined in full

analogy to the benzenoid systems. An illustrative example is depicted in Figure 1.

�

��

�
fissure

bay

cove

fjord

�

�

�

�

�

fissure

bay

cove fjord

lagoon

Figure 1. Types of inlets occurring on the perimeter

of a benzenoid system and a phenylene.

Lemma 1([9]). (i) Let S be a benzenoid system with n vertices, h hexagons and r

inlets. Then m22 = n− 2h− r + 2, m23 = 2r, m33 = 3h− r − 3;
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(ii) Let PH be a phenylene with h hexagons and r inlets. Then m22 = 2h − r + 4,

m23 = 2r, m33 = 6h− r − 6.
Now, we can express the general connectivity index of S and PH in terms of the

numbers of vertices and inlets.

Theorem 2. (i) Let S be a benzenoid system with n vertices, h hexagons and r inlets.

Then

Rα(S) = (n− 2h− r + 2) · 4α + 2r · 6α + (3h− r − 3) · 9α (3)

(ii) Let PH be a phenylene with h hexagons and r inlets. Then

Rα(PH) = (2h− r + 4) · 4α + 2r · 6α + (6h− r − 6) · 9α (4)

If ni is the number of internal vertices of S0, then n = 4h+ 2− ni and so

Rα(S) = (2h− r − ni + 4) · 4α + 2r · 6α + (3h− r − 3) · 9α.

Note that the connectivity index of a benzenoid system is obtained by substituting

α = −1
2
to (3), and also n = 4h+2 for a catacondensed benzenoid system with n vertices

and h hexagons. So, we have

Corollary 3. (i)([10]) If G is a benzenoid system or a phenylene with n vertices and

r inlets, then the connectivity index of G is

R− 1
2
(S) =

n

2
− 5− 2√6

6
;

(ii)([12]) If S is a catacondensed hexagonal system (i.e., ni = 0) with h hexagons and

r inlets, then the general connectivity index of S is

Rα(S) = (2h− r + 4) · 4α + 2r · 6α + (3h− r − 3) · 9α. (5)

From the equations (3)-(5) above, we can see that (i) the general connectivity index

of a benzenoid system is completely determined by the numbers of vertices, hexagons and

inlets; (ii) the general connectivity indices of a catacondensed benzenoid system and a

phenylene are completely determined only by the numbers of hexagons and inlets, and

(iii) among all catacondensed benzenoid systems and all phenylenes with an equal number

of hexagons (or vertices, since n = 4h + 2 for a catacondensed benzenoid system with n

vertices and h hexagons, and n = 6h for a phenylene with n vertices and h hexagons),

the general connectivity indices are monotone decreasing over the number of inlets, since

the coefficient of r in (4) and (5) is −(4α − 2 · 6α + 9α) = −(2α − 3α)2 < 0 for α �= 0.
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Corollary 4. (i)([12]) Let S1 and S2 be two catacondensed benzenoid systems with

an equal number of hexagons (or vertices), and r1 and r2 inlets, respectively. Then

Rα(S1) < Rα(S2) if and only if r1 > r2 for α �= 0;
(ii)Let PH1 and PH2 be two phenylenes with an equal number of hexagons (or ver-

tices), and r1 and r2 inlets, respectively. Then Rα(PH1) < Rα(PH2) if and only if r1 > r2

for α �= 0.

3 A relation between the general connectivity indices

of a phenylene and its hexagonal squeeze

Several properties of a phenylene (PH) are found to be closely related to the analogous

properties of the corresponding hexagonal squeeze (HS). For instance, the algebraic struc-

ture count of PH is equal to the Kekulé structure count of HS [13]; A relation between

the Wiener indices of PH and HS was discovered [14]; A relation between the connectivity

indices of PH and HS was established [10]; A relation between the second order Randić

indices of PH and HS was also established [15]. Here, we also give a relation between the

general connectivity indices of PH and HS.

From Theorem 2(ii) and Corollary 3(ii), we obtain a relation between the general

connectivity indices of a phenylene and its corresponding hexagonal squeeze.

Theorem 5. Let PH be a phenylene with h hexagons and r inlets, HS its hexagonal

squeeze. The general connectivity indices of PH and HS are related as

Rα(PH) = Rα(HS) + 3(h− 1) · 9α.
By substituting α = −1

2
to the equation above, it was obtained in [10] thatR− 1

2
(PH) =

R− 1
2
(HS) + (h− 1).
From Theorem 5, we know that

(i) If PH1 and PH2 are two phenylenes with an equal number of hexagons (or vertices),

HS1 and HS2 are their hexagonal squeezes, respectively. Then Rα(PH1) < Rα(PH2) if

and only if Rα(HS1) < Rα(HS2);

(ii) If PH has the smallest (or largest) general connectivity index among all phenylenes

with h hexagons if and only if its hexagonal squeeze HS has the smallest (or largest)

general connectivity index among all catacondensed benzenoid systems with h hexagons;

(iii) It is known in [12] that a catacondensed hexagonal system has the smallest (or

largest, respectively) general connectivity index among all catacondensed benzenoid sys-

tems with h hexagons if and only if it is the linear hexagonal chain Lh (or it has �h
2
� − 1

branched hexagons and �h
2
− �h

2
�� kinks, respectively). So, we have
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Corollary 6. Among all phenylenes with h hexagons, a phenylene has the smallest

(or largest, respectively) general connectivity index if and only if its hexagonal squeeze is

the linear hexagonal chain Lh (or has �h
2
� − 1 branched hexagons and �h

2
− �h

2
�� kinks,

respectively).

4 The extremal values of Rα in benzenoid systems

with h hexagons

In this section, we approach the extremal values of Rα in benzenoid systems with h

hexagons.

4.1 The smallest general connectivity index in benzenoid sys-
tems with h hexagons

Let n, ni, B, C, F be the numbers of vertices, internal vertices, bays, coves and fjords of a

benzenoid system S with h hexagons, respectively. Then b = B +2C +3F is the number

of bay regions. It is deduced in [9,11] that

r = n− 2h− 4− b, n = 4h+ 2− ni

and so by the equation (3) in Theorem 2,

Rα(S) = 3
α(2α+1 − 3α)n+ (2α − 3α)2b+ 6× 4α − (4h+ 8)× 6α + (5h+ 1)× 9α (6)

Rα(S) = −3α(2α+1 − 3α)ni + (2
α − 3α)2b+ 6× 4α + (h− 1)(4× 6α + 9α). (7)

If 2α+1 − 3α < 0, approximately, α ∈ (1.70951,+∞), then, from (7), we know that in

benzenoid systems with h hexagons, the smaller ni and b are, the smaller Rα is. Moreover,

ni ≥ 0 and b ≥ 0. So, we have

Theorem 7. For any real number α with 2α+1 − 3α < 0, a benzenoid system S0 has

the smallest general connectivity index in the benzenoid systems with h hexagons if and

only if ni(S0) = b(S0) = 0, i.e., S0 = Lh.

If 2α+1 − 3α > 0, approximately, α ∈ (−∞, 1.70951), then, from (6), we know that in

benzenoid systems with h hexagons, the smaller (or larger, respectively) n and b are, the

smaller (or larger, respectively) Rα is. This will rely on a result of Harary and Harborth

[16]:

For every benzenoid system with h hexagons,

2h+ 1 + u ≤ n ≤ 4h+ 2 (8)
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where u = �√12h− 3� and �x� denotes the smallest integer greater or equal to x. More-
over, the lower bound is reached in the spiral hexagon system Th, the upper bound is

reached in the benzenoid system Eh (see Figure 2) and the hexagonal chains.

�

T18 E12 E11

Figure 2. Benzenoid systems Th and Eh

By (6) and (8), we have

Theorem 8. Let α be a real number with 2α+1 − 3α ≥ 0. If S0 is a benzenoid system

with h hexagons such that {
n(S0) = 2h+ 1 + u

b(S0) = 0,
(9)

then S0 has the smallest general connectivity index in the benzenoid systems with h

hexagons, and Rα(S0) = 6× 4α + (2u− 6)× 6α + (3h− u)× 9α.
It is showed in [11] that the set of relations in (9) is equivalent to the following system

of equations having a solution (q, r, s, t) ∈ N∗ ×N ×N∗ ×N{
rq + 1

2
(r − 1)r + (s+ t)(q + r)− 1

2
t(t+ 1) = h

2q + 3r + 2s+ t− 1 = u
(10)

where N = {0, 1, 2, 3, · · ·} is the set of natural numbers and N∗ = N − {0}.
A precise description of benzenoid systems with h hexagons such that b = 0 and an

effective algorithm for finding all solutions of (10) can be found in [11]. Given a positive

integer h, it can be constructed a benzenoid system with the smallest general connectivity

index in the benzenoid systems from a solution of (10).

Problem 1. If α is a real number such that 2α+1− 3α ≥ 0, and h is a positive integer

such that the system of equations (10) has no solution, what is the smallest general

connectivity index Rα in the benzenoid systems with h hexagons?
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When α = −1
2
, Rada [11] showed that the spiral Th has the smallest connectivity

index R− 1
2
in the benzenoid systems with h hexagons. Here, we will show that the spiral

Th also has the smallest general connectivity index Rα in the benzenoid systems with h

hexagons for any real number α such that{
2α+1 − 3α ≥ 0

4× 6α − 4α − 2× 9α > 0
(11)

approximately, α ∈ (−3, 1.318).
Theorem 9. If α is a real number satisfying (11), and h is a positive integer such that

the system of equations (10) has no solution, then the spiral Th has the smallest general

connectivity index in the benzenoid systems with h hexagons. In this case, Rα(Th) =

7× 4α + (2u− 8)× 6α + (3h+ 1− u)× 9α.
Proof. Note that b(Th) = 0 or 1. If the system of equations (10) has no solution, then

b(Th) = 1 since n(Th) = 2h+ 1 + u. By the equation (6),

Rα(S)−Rα(Th) = 3
α(2α+1 − 3α)(n(S)− (2h+ 1 + u)) + (2α − 3α)2(b(S)− 1)

If b(S) = 0, then n(S)− (2h+ 1 + u) ≥ 1 and

Rα(S)−Rα(Th) ≥ 3α(2α+1 − 3α)− (2α − 3α)2 > 0;

if b(S) ≥ 1, then Rα(S) − Rα(Th) ≥ (2α − 3α)2(b(S) − 1) ≥ 0, since the real number α

satisfies (11). Hence, Rα(S) ≥ Rα(Th).

4.2 The largest general connectivity index in benzenoid systems
with h hexagons

In the following, we will discuss the largest general connectivity index in the benzenoid

systems with h hexagons.

Rada [11] showed that the benzenoid system Eh has the largest general connectivity

index among all catacondensed benzenoid systems with h hexagons. We will show that Eh

also has the largest general connectivity index in the benzenoid systems with h hexagons

for any real number α satisfying 2α+1 − 3α > 0.
Theorem 10. If α is a real number such that 2α+1 − 3α > 0, and S is a benzenoid

system with h hexagons, then

Rα(S) ≤ Rα(Eh)

= 9α
(
h− 1 + �3h−6

2
�)+ 6α (4h− 2�3h−6

2
� − 4)+ 4α (�3h−6

2
�+ 6)
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with equality if and only if S is a catacondensed benzenoid system with �h
2
�− 1 branched

hexagons and �h
2
− �h

2
�� kinks.

Proof. We use induction on the number of internal vertices ni(S).

If ni(S) = 0, then S is a catacondensed benzenoid system and the result follows from

[12]. Assume as inductive hypothesis, the result is true for ni(S) ≤ k, k ≥ 0. Let S0 be

a benzenoid system with h hexagons and ni(S0) = k + 1. We choose an internal vertex v

such that v is as far to the center of S0 as possible. Then not all adjacent vertices of v

are internal. We consider the following cases:

Case I. All the three adjacent vertices a, b, c of v are external vertices (see Figure 3).

At least one of t, u, w, x, y, z has degree 2 since v is as far to the center of S0 as possible.

Without loss of generality, we assume that the d(z) = 2.

a

b c
v

x

y

z t

u

w

S0

S1

a

v
b

a

v
b c

S2

Figure 3.

S0 can be split into two benzenoid systems S1 and S2 with h1 and h2 hexagons,

respectively, and h1 + h2 = h.

Rα(S0)

= Rα(S1) +Rα(S2)− ((2d(x))α + 2× 4α + (2d(y))α)
−((2d(w))α + 2× 6α + (2d(z))α) + (3d(x))α + (3d(y))α

+(3d(w))α + (3d(z))α + 2× 9α

= Rα(S1) +Rα(S2) + (3
α − 2α)(dα(x) + dα(y) + dα(z) + dα(w))

+2(9α − 6α − 4α)
≤ 9α(h1 − 1 + �3h1−6

2
�) + 6α(4h1 − 2�3h1−6

2
� − 4) + 4α(�3h1−6

2
�+ 6)

+9α(h2 − 1 + �3h2−6
2

�) + 6α(4h2 − 2�3h2−6
2

� − 4) + 4α(�3h2−6
2

�+ 6)
+(3α − 2α)(dα(x) + dα(y) + dα(z) + dα(w)) + 2(9α − 6α − 4α)
(by the inductive hypothesis).
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If h1 and h2 are even, then

Rα(S0) ≤ 9α(h− 1 + �3h−6
2

�) + 6α(4h− 2�3h−6
2

� − 4) + 4α(�3h−6
2

�+ 6)
+(3α − 2α)(dα(x) + dα(y) + dα(z) + dα(w))− 2× 9α + 4α

= Rα(Eh) + (3
α − 2α)(dα(x) + dα(y) + dα(z) + dα(w))

−2× 9α + 4α.
Note that

min{4× 2α, 3× 3α + 2α} ≤ dα(x) + dα(y) + dα(z) + dα(w) ≤ max{4× 2α, 3× 3α + 2α},

and

(3α − 2α)× 4× 2α − 2× 9α + 4α = −2(2α − 3α)2 − 4α < 0,
(3α − 2α)(3× 3α + 2α)− 2× 9α + 4α = 3(3α − 2α+1) < 0

since 2α+1 − 3α > 0. So, Rα(S0) < Rα(Eh).

If h1 and h2 are odd, then

Rα(S0) ≤ Rα(Eh) + (3
α − 2α)(dα(x) + dα(y) + dα(z) + dα(w))

−3× 9α + 2× 6α

≤ Rα(Eh) + (3
α − 2α)(dα(x) + dα(y) + dα(z) + dα(w))

−2× 9α + 4α − (3α − 2α)2

< Rα(Eh).

If h1 and h2 have opposite parity, then

Rα(S0) ≤ Rα(Eh) + (3
α − 2α)(dα(x) + dα(y) + dα(z) + dα(w))

−2× 9α + 4α

< Rα(Eh).

Case II. v has two adjacent external vertices a and c (see Figure 4).

S0 can be split into two benzenoid systems S1 and S2 with h1 and h2 hexagons,

respectively, and h1 + h2 = h.

a

b c
v

x

t

u

w

S0

S1

a

v
b c

a

v
c

S2

Figure 4.
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Rα(S0)

= Rα(S1) +Rα(S2)− ((2d(x))α + 2× 4α + (2d(y))α)
−((2d(w))α + 2× 6α + (2d(z))α) + (3d(x))α + (3d(y))α
+(3d(w))α + (3d(z))α + 2× 9α

= Rα(S1) +Rα(S2) + (3
α − 2α)(dα(x) + dα(y) + dα(z) + dα(w))

+2(9α − 6α − 4α).
An analogous argumaent as in Case I can show that Rα(S0) < Rα(Eh).

Case III. If S0 does not have internal vertices satisfying Cases I or II, then S0 has an

internal vertex with adjacent vertex a as shown in Figure 5.

In this case,

Rα(S0) = Rα(S1)− ((2d(x))α + 4× 6α + (2d(y))α)
+(3d(x))α + 4× 9α + (3d(y))α) + 4× 6α + 2× 4α + 9α

= Rα(S1) + (3
α − 2α)(dα(x) + dα(y))

+5× 9α + 2× 4α

≤ Rα(Eh−2) + (3
α − 2α)(dα(x) + dα(y))

+5× 9α + 2× 4α (by the inductive hypothesis)

= 9α(h− 3 + �3h−12
2

�) + 6α(4h− 2�3h−12
2

� − 12) + 4α(�3h−12
2

�+ 6)
+(3α − 2α)(dα(x) + dα(y)) + 5× 9α + 2× 4α

= 9α(h− 1 + �3h−6
2

�) + 6α(4h− 2�3h−6
2

� − 4) + 4α(�3h−6
2

�+ 6)
+(3α − 2α)(dα(x) + dα(y))− 2× 6α − 4α

= Rα(Eh) + (3
α − 2α)(dα(x) + dα(y))− 2× 6α − 4α

< Rα(Eh)

since min{2× 2α, 2× 3α} ≤ dα(x) + dα(y) ≤ max{2× 2α, 2× 3α}.
Therefore, the result is true by the induction and the proof is completed.

Problem 2. If α is a real number such that 2α+1−3α ≤ 0, what is the largest general

connectivity index Rα in the benzenoid systems with h hexagons?

S0 S1

v

a

b cx y

a

v
b c

v
b c

Figure 5.
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