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Abstract

The Randić index of a graph G, denoted by R(G), is defined as the sum of

1/
√
d(u)d(v) over all edges uv of G, where d(u) denotes the degree of a vertex

u in G. In this paper, we partially solve two conjectures on the Randić index

R(G) with relations to the diameter D(G) and the average distance μ(G) of a

graph G. We prove that for any connected graph G of order n with minimum

degree δ(G), if δ(G) ≥ 5, then R(G) −D(G) ≥ √
2 − n+1

2 ; if δ(G) ≥ n/5 and

n ≥ 15, R(G)
D(G) ≥ n−3+2

√
2

2n−2 and R(G) ≥ μ(G). Furthermore, for any arbitrary real

number ε (0 < ε < 1), if δ(G) ≥ εn, then R(G)
D(G) ≥ n−3+2

√
2

2n−2 and R(G) ≥ μ(G)

hold for sufficiently large n.

1 Introduction

The Randić index R(G) of a (molecular) graph G was introduced by the chemist

Milan Randić [8] in 1975 as the sum of 1/
√
d(u)d(v) over all edges uv of G, where

d(u) denotes the degree of a vertex u in G, i.e., R(G) =
∑

uv∈E(G)

1√
d(u)d(v)

. Recently,

many results on the extremal theory of the Randić index have been reported (see [6]).

Given a connected, simple and undirected graph G = (V,E) of order n. The

distance between two vertices u and v in G, denoted by dG(u, v) (or d(u, v) for short),

is the length of a shortest path connecting u and v in G. The diameter D(G) of G

is the maximum distance d(u, v) over all pairs of vertices u and v of G. The average
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distance μ(G), an interesting graph-theoretical invariant, is defined as the average

value of the distances between all pairs of vertices of G, i.e.,

μ(G) =

∑
u,v∈V d(u, v)(

n
2

) .

For terminology and notations not given here, we refer to the book of Bondy and

Murty [2].

There are many results on the relations between the Randć index and some other

graph invariants, such as the minimum degree, the chromatic number, the radius,

and so on. In this paper, we will consider the relations of the Randić index with the

diameter and the average distance.

In [1], Aouchiche, Hansen and Zheng proposed the following conjecture on the

relation between the Randić index and the diameter.

Conjecture 1.1 ([1]). For any connected graph of order n ≥ 3 with Randić index

R(G) and diameter D(G),

R(G)−D(G) ≥
√
2− n+ 1

2
and

R(G)

D(G)
≥ n− 3 + 2√2

2n− 2 ,

with equalities if and only if G ∼= Pn.

In [4], Fajtlowicz proposed the following conjecture on the relation between the

Randić index and the average distance.

Conjecture 1.2 ([4]). For all connected graphs G, R(G) ≥ μ(G), where μ(G) denotes

the average distance of G.

In the following, we will prove that for any connected graph G of order n with

minimum degree δ(G), if δ(G) ≥ 5, then R(G) − D(G) ≥ √
2 − n+1

2
; if δ(G) ≥ n/5

and n ≥ 15, R(G)
D(G)

≥ n−3+2
√
2

2n−2
and R(G) ≥ μ(G). Furthermore, for any arbitrary real

number ε (0 < ε < 1), if δ(G) ≥ εn, then R(G)
D(G)

≥ n−3+2
√
2

2n−2
and R(G) ≥ μ(G) hold for

sufficiently large n.

2 Main results

At first, we recall some lemmas which will be used in the sequel.

Lemma 2.1 (Erdös et al. [3]). Let G be a connected graph with n vertices and

minimum degree δ(G) ≥ 2. Then D(G) ≤ 3n
δ(G)+1

− 1.
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Lemma 2.2 (Kouider and Winkler [5]). If G is a graph with n vertices and minimum

degree δ(G), then the average distance satisfying μ(G) ≤ n
δ(G)+1

+ 2.

Lemma 2.3 (Li, Liu and Liu [7]). Let G be a graph of order n with minimum degree

δ(G) = k. Then

R(G) ≥
⎧⎨
⎩

k(k−1)
2(n−1)

+ k(n−k)√
k(n−1)

if k ≤ n
2

(n−p)(n−p−1)
2(n−1)

+ p(p+k−n)
2k

+ p(n−p)√
k(n−1)

if k > n
2

where p is an integer given as follows:

p =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n
2

if n ≡ 0 (mod 4)⌊
n
2

⌋
or

⌈
n
2

⌉
if n ≡ 1 (mod 4) and k is even⌊

n
2

⌋
if n ≡ 1 (mod 4) and k is odd

n−2
2

or n+2
2

if n ≡ 2 (mod 4) and k is even
n
2

if n ≡ 2 (mod 4) and k is odd⌊
n
2

⌋
or

⌈
n
2

⌉
if n ≡ 3 (mod 4) and k is even⌈

n
2

⌉
if n ≡ 3 (mod 4) and k is odd.

It is easy to see from Lemma 2.3 that p is among the numbers n−2
2
, n−1

2
, n

2
, n+1

2

and n+2
2
.

Lemma 2.4. Denote by g(n, k) = 2k−1
2(n−1)

+ n−3k

2
√

k(n−1)
. Then for 1 ≤ k ≤ n/2, g(n, k) ≥

0.

Proof. If n ≥ 3k, we can directly obtain that g(n, k) > 0. Now we assume that

2k ≤ n < 3k. Then

g(n, k) =
1

2
√
n− 1

(
2k − 1√
n− 1 − 3k − n√

k

)
=

1

2
√
n− 1

(
2k − 1√
n− 1 − 3

√
k +

n√
k

)
.

Since

∂g(n, k)

∂k
=

1

2
√
n− 1

(
2√
n− 1 − 3

2
√
k
− n

2k
√
k

)

<
1

2
√
n− 1

(
2√
n− 1 − 3

2
√
k
− 2k

2k
√
k

)
< 0,

for n ≥ 2, we have

g(n, k) > g(n,
n

2
) =

√
n− 1−

√
n

2
≥ 0.

Therefore, the lemma follows.
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Theorem 2.5. For any connected graph G of order n with minimum degree δ(G).

(1) If δ(G) ≥ 5, then R(G)−D(G) ≥ √
2− n+1

2
;

(2) If δ(G) ≥ n/5 and n ≥ 15, then R(G)
D(G)

≥ n−3+2
√
2

2n−2
. Furthermore, for any

arbitrary real number ε (0 < ε < 1), if δ(G) ≥ εn, then R(G)
D(G)

≥ n−3+2
√
2

2n−2
holds for

sufficiently large n.

(3) If δ(G) ≥ n/5 and n ≥ 15, then R(G) ≥ μ(G). Furthermore, for any arbitrary

real number ε (0 < ε < 1), if δ(G) ≥ εn, then R(G) ≥ μ(G) holds for sufficiently

large n.

Proof. Let G be a connected graph of order n with minimum degree δ(G) = k. By

Lemma 2.1, we have D(G) ≤ 3n
k+1

− 1.
(1) Suppose k ≥ 5, we will show R(G) − D(G) ≥ √

2 − n+1
2
. We consider the

following two cases:

Case 1. k ≤ n
2
.

By Lemma 2.3, we only need to consider the following inequality,

k(k − 1)
2(n− 1) +

k(n− k)√
k(n− 1) ≥

3n

k + 1
− 1 +

√
2− n+ 1

2
.

Let

f(n, k) =
k(k − 1)
2(n− 1) +

k(n− k)√
k(n− 1) −

3n

k + 1
−

√
2 +

n+ 3

2
.

Then by Lemma 2.4, ∂f(n,k)
∂k

> 2k−1
2(n−1)

+ n−3k

2
√

k(n−1)
> 0. If k ≥ 5, we have f(n, k) ≥

f(n, 5) = 10
n−1

+ 5(n−5)√
5(n−1)

−√
2 + 3

2
> 0.

Case 2. n
2
< k ≤ n− 1.

Let q(n, p) = (n−p)(n−p−1)
2(n−1)

+ p(p+k−n)
2k

+ p(n−p)√
k(n−1)

. In the following, we will show that

for every p ∈ {n−2
2
, n−1

2
, n
2
, n+1

2
, n+2

2
},

q(n, p) ≥ 3n

k + 1
− 1 +

√
2− n+ 1

2
.

In fact, if p = n−2
2
, denote by

h(n, k) = q(n,
n− 2
2

)− 3n

k + 1
−

√
2 +

n+ 3

2

=
n(n+ 2)

8(n− 1) +
(n− 2)(2k − (n+ 2))

8k
+

n2 − 4
4
√
k(n− 1)

− 3n

k + 1
−

√
2 +

n+ 3

2
.
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Notice that
∂h(n, k)

∂k
=
n2 − 4
8k2

− n2 − 4
8k
√
k(n− 1) +

3n)

(k + 1)2
> 0,

since 8k2 ≤ 8k
√
k(n− 1), i.e., √k ≤ √

n− 1. Thus, we have

h(n, k) > h(n,
n

2
) =

n(n+ 2)

8(n− 1) −
n− 2
2n

+
n2 − 4

2
√
2n(n− 1) −

6n

n+ 2
−

√
2 +

n+ 3

2

>
n

8
+
n− 2
8

− n

4
+
n2 − 4
n

− 6−
√
2 +

n+ 3

2

=
2n+ 5

4
+
n2 − 4
2
√
2

− 6−
√
2.

By some calculations, we have that 2n+5
4
+ n2−4

2
√
2
−6−√

2 > 0 for n ≥ 8. For 4 ≤ n ≤ 7,

it is easy to verify h(n, n
2
) > 0.

In a similar way, we can verify the inequality for each of the cases for p = n−1
2
, n

2
,

n+1
2
or n+2

2
. The details are omitted.

(2) Similarly, we consider the following two cases:

Case 1. k ≤ n
2
.

By Lemma 2.3, we only need to consider the following inequality,

k(k − 1)
2(n− 1) +

k(n− k)√
k(n− 1) ≥

(
3n

k + 1
− 1

)
n− 3 + 2√2
2n− 2 .

Let

f(n, k) =
k(k − 1)
2(n− 1) +

k(n− k)√
k(n− 1) −

(
3n

k + 1
− 1

)
n− 3 + 2√2
2n− 2 .

Then by Lemma 2.4, ∂f(n,k)
∂k

> 2k−1
2(n−1)

+ n−3k

2
√

k(n−1)
> 0.

If k ≥ n
5
and n ≥ 15, we have f(n, k) ≥ f(n, n

5
) = n(n−5)

50(n−1)
+ 4n2

5
√

5n(n−1)
−

(14n−5)(n−3+2
√
2)

2(n−1)(n+5)
> 0. Actually, for any arbitrary positive number ε (0 < ε < 1),

if k ≥ εn, then f(n, k) > f(n, εn) > ε(1−ε)n2√
εn(n−1)

− (
3n

εn+1
− 1) n−3+2

√
2

2n−2
> 0 for suffi-

ciently large n.

Case 2. n
2
< k ≤ n− 1.

Let q(n, p) = (n−p)(n−p−1)
2(n−1)

+ p(p+k−n)
2k

+ p(n−p)√
k(n−1)

. In the following, we will show that

for every p ∈ {n−2
2
, n−1

2
, n
2
, n+1

2
, n+2

2
},

q(n, p) ≥
(

3n

k + 1
− 1

)
n− 3 + 2√2
2n− 2 .
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In fact, if p = n−2
2
, denote by

h(n, k) = q(n,
n− 2
2

)−
(

3n

k + 1
− 1

)
n− 3 + 2√2
2n− 2

=
n(n+ 2)

8(n− 1) +
(n− 2)(2k − (n+ 2))

8k
+

n2 − 4
4
√
k(n− 1)

−
(

3n

k + 1
− 1

)
n− 3 + 2√2
2n− 2 .

Notice that
∂h(n, k)

∂k
>
n2 − 4
8k2

− n2 − 4
8k
√
k(n− 1) > 0,

since 8k2 ≤ 8k
√
k(n− 1), i.e., √k ≤ √

n− 1. Thus, we have

h(n, k) > h(n,
n

2
) =

n(n+ 2)

8(n− 1) −
n− 2
2n

+
n2 − 4

2
√
2n(n− 1)

−
(

6n

n+ 2
− 1

)
n− 3 + 2√2
2n− 2

>
n

8
+
n− 2
8

− n

4
+
n2 − 4
n

− (6− 1)n
2n− 2

=
n2 − 4
n

− 11n− 1
4(n− 1) .

By some calculations, we have that n2−4
n

− 11n−1
4(n−1)

> 0 for n ≥ 5.

In a similar way, we can verify the inequality for each of the cases for p = n−1
2
, n

2
,

n+1
2
or n+2

2
. The details are omitted.

By the method similar to (2), we can obtain the result of (3).

The proof is now complete.
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