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Abstract

Fowler–Manolopoulos criterion, that is defined as the second moment of the
hexagon neighbor signature, is one of the most powerful predictors for fullerene
stability. In this note, we present a relationship between Fowler–Manolopoulos
predictor and another hexagonal parameter, which could give Fowler–Manolopoulos
predictor a graphical explanation. This result can be regarded as an understanding
of Fowler–Manolopoulos criterion.

1 Introduction

A fullerene Cn is a polyhedral carbon cage with n atoms arranged in 12 pentagonal

and n
2
− 10 hexagonal rings. The stability issues of the fullerene isomers are concerned in

a plenty of literatures [1–3]. Using the topological invariants based on chemical graph is

one of the basic approaches to predict the fullerene stability. [4].

Very early it became clear that the fullerene stability is related to the pentagon

structure in the corresponding graphs. The celebrated isolated-pentagon rule (IPR) is

proposed by Kroto and Schmalz et al [4, 5]. This rule successfully gives a criterion of

fullerene stability. Both the stable structures with 60 and 70 carbon atoms, i.e. C60(Ih)

and C70(D5h), are the unique IPR-satisfying fullerenes among 1812 and 8149 possible
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structures, respectively. The rule still works for the fullerene isomers with more than 70

atoms. However the number of IPR isomers increases rather rapidly with the number

of carbon atoms, and the IPR rule does not have discriminating power among such iso-

mers. Hence some other graph-theoretical invariants have been proposed as predictors of

fullerene stability [6–10]. The Fowler–Manolopoulos predictor is one of them [6], which

shows a strong correlation with the fullerene stability [7, 8].

In this note, we present a relationship between Fowler–Manolopoulos predictor [6]

and another hexagonal parameter [11], which gives this predictor a graphical explanation.

This result would be helpful in further understanding Fowler-Manolopoulos criterion for

IPR isomers.

2 Hexagonal indices for predicting the stability of

fullerene

Raghavachari defines the neighbor index of each hexagon in a fullerene as the number of

other hexagons to which it is adjacent [12]. Every fullerene isomer can be characterized

by a signature of the form (h0, h1, h2, h3, h4, h5, h6), where hk is the number of hexagons

with neighbor index k. In an isolated-pentagon fullerene, every hexagon is adjacent to a

minimum of three others. We can therefore write the hexagon neighbor index signature

of an isolated-pentagon fullerene as (h3, h4, h5, h6).

Fowler and Manolopoulos introduce the standard deviation σh of the hexagon neigh-

bor index distribution as a predictor of fullerene stability [6]. That is

σh =
√
〈k2〉 − 〈k〉2,

where

〈k〉 =

6∑
k=0

khk

6∑
k=0

hk

and

〈k2〉 =

6∑
k=0

k2hk

6∑
k=0

hk

.
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The sum of the entries in the hexagon neighbor index signature
6∑

k=0

hk is simply

the total number of hexagons, which is n
2
− 10 in any fullerene Cn. Hence in some

literatures [7, 8], the σh is also used in the form of the second moment of the hexagon

neighbor signature

H =
6∑

k=0

k2hk.

In the IPR case,

H =
6∑

k=3

k2hk.

The hexagon indices u, v and w, are introduced and discussed in [11]. The u and v

enumerate, respectively, the number of edges common to two hexagons and the number

of vertices common to three hexagons. The parameter w counts the number of pairs

of nonadjacent hexagon edges shared with two other hexagons. Figure 1 helps in the

understanding of those indices. Thus, v and w complement each other by counting the

two possible arrangements of three contiguous hexagons.

u v w

Figure 1: Substructures that contribute to the u, v and w counts

Lemma 2.1. For the isolated-pentagon fullerenes, the parameters u and v are only de-

pendent on n, the number of atoms, and there are

u =
3

2
n− 60, v = n− 60.

Proof. For an isolated-pentagon isomer with n atoms, there are exactly two types of

edges. One is those fusing hexagon to hexagon, and the other is those fusing hexagon to

pentagon. Note that there are 5× 12 of these latter case. This leads to u = 3
2
n− 60. In

the similar way, we have v = n− 60.

-421-



3 The Main Result

Theorem 3.1. For the isolated–pentagon fullerenes, one has

H =
6∑

k=3

k2hk = 2u+ 6v + 2w = 2w + 9n− 480.

Proof. Denote the numbers of u, v, w structures produced by every hexagon face as a

signature of the form (su, sv, sw). This index signature is counted for hexagon faces with

different number k as follows. Note here that there are two possible configurations for

k = 4.

• Hexagon with k = 3, the signature (su, sv, sw) = (3, 0, 3), referring to Figure 2(a).
• Hexagon with k = 4, the signature (su, sv, sw) = (4, 2, 4), referring to Figure 2(b)

and 2(c).

• Hexagon with k = 5, the signature (su, sv, sw) = (5, 4, 6), referring to Figure 2(d).
• Hexagon with k = 6, the signature (su, sv, sw) = (6, 6, 9), referring to Figure 2(e).

(e)(d)

Figure 2: the structures of hexagon face and its neighbors

To sum the signatures over all the hexagon faces, one should note that every u structure

is counted 2 times, every v structure is counted 3 times, and very w structure is counted

just once. Hence

3h3 + 4h4 + 5h5 + 6h6 = 2u,

2h4 + 4h5 + 6h6 = 3v,

3h3 + 4h4 + 6h5 + 9h6 = w.
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Then
2u+ 6v + 2w = 9h3 + 15h4 + 25h5 + 36h6 = H.

According to the Lemma 2.1, u = 3
2
n − 60 and v = n − 60 for all isolated-pentagon

fullerenes with n atoms. Hence Fowler–Manolopoulos predictor has the following even

simpler form

H = 2w + 9n− 480.

Remark 1: For isolated-pentagon fullerenes, the original form of Fowler–Manolopoulos

predictor σh can be expressed in term of n and w. From the proof of theorem 3.1, we

have
6∑

k=3

khk = 2u = 3n− 120, hence

σh =
√

〈k2〉 − 〈k〉2 =
√
4w + 18n− 960

n− 20 −
(
6n− 240
n− 20

)2

.

Remark 2: In this note, only IPR case is discussed. Our results hold for all isolated-

pentagon fullerenes. However, it is not clear so far that the relations between H, σh

and pentagon and/or hexagon indices in the general fullerenes where some pentagons are

adjacent to each other. This is an interesting problem for future research.
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