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Abstract

Electron configurations of π systems are represented on the HOMO-LUMO

map: a scatterplot of the middle eigenvalues of the n-vertex molecular graph

(For an n-electron π system, with eigenvalues are arranged in non-increasing

order, for even n the HOMO eigenvalue is equal to that at position n/2 and the

LUMO eigenvalue to that at position n/2 + 1, and for odd n the HOMO and

LUMO eigenvalues are necessarily equal to each other and to the eigenvalue at

position (n+1)/2.) Chemically different types of electron configuration appear

in distinct regions, and graphs with equal values of invariants appear along

special lines: isohomal, isolumal and isodiastemal lines are the loci of graphs

that share HOMO eigenvalues, LUMO eigenvalues and HOMO-LUMO gaps,

respectively. A plausible conjecture for chemical graphs (simple, connected

and of maximum degree ≤ 3) is that all but a finite number of exceptions lie

within the ‘chemical triangle ’ of the map, with vertices at (HOMO, LUMO)

= (−1,−1), (+1,−1) and (+1,+1). It is proved that all chemical trees lie
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within the triangle, as do all chemical graphs with up to 12 vertices. The

smallest exceptional chemical graph is the Heawood graph, at (+
√

2,−√
2)

1 Introduction

This contribution introduces a simple diagrammatic representation of electron con-

figurations of π-conjugated systems in terms of graph eigenvalues. The molecular

graphs of fully conjugated π systems are the chemical graphs, i.e., those graphs that

are simple, unweighted, connected, with maximum degree less than or equal to three.

In the simple Hückel model, there is a direct correspondence between adjacency

eigenvalues λi, and eigenvectors xi, of the molecular graph and the orbital energies

and molecular orbitals of the π system.1 Graphs treated here have n vertices and m

edges. If {λi}, i = 1, . . . , n are the eigenvalues of the molecular graph Gn arranged

in non-increasing order,

λ1 > λ2 ≥ . . . ≥ λn, (1)

the orbital energies (from bonding (λ > 0) to antibonding (λ < 0)) are εi = α+λiβ,

where the coulomb integral α and resonance integral β, both negative energies, act as

origin and unit of the energy scale. Multiple eigenvectors with a common eigenvalue

correspond to degenerate orbitals and can be assumed to be an orthonormal set.

Motivated by the notion of the electronic configuration of a molecule, we can

define an ‘electronic configuration of a graph’ as a vector of occupation numbers

e = (n1, n2, . . . , nn) such that 0 ≤ ni ≤ 2 and the entries ni sum to the number of

electrons. An eigenvector xi is ‘unoccupied’ or ‘empty’ if ni = 0, ‘partly occupied’

if ni = 1 and ‘occupied’ or ‘full’ if ni = 2.

Given the set of energy levels, the ground-state electron configuration of the

molecule and hence of the graph is determined by application of three rules: the

Aufbau Principle (fill orbitals in order of decreasing eigenvalue), the Pauli Principle

(no orbital may contain more than two electrons), and Hund’s Rule of Maximum

Multiplicity (no orbital receives second electron before all orbitals degenerate with

it have each received one).2 A molecule and its graph are open shell if any or-

bitals/eigenvectors are partially occupied, closed shell otherwise. For the ground
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state, the entries ni are non-increasing.

For neutral molecules, the order of the molecular graph, n, is equal to the number

of electrons in the π system. The (fully or partly) occupied orbital of highest energy

(least eigenvalue) is the HOMO (‘highest occupied molecular orbital’). The (partly

or fully) occupied orbital of lowest energy (greatest eigenvalue) is the LUMO (lowest

unoccupied molecular orbital).3 If there are partially occupied orbitals, HOMO

and LUMO coincide; a partially occupied orbital is also known as a SOMO (singly

occupied molecular orbital). In terms of the occupation numbers, the HOMO is the

last orbital with ni > 0, and the LUMO is the first with ni < 2. λHOMO is the

eigenvalue of the HOMO and of all orbitals degenerate with it; likewise λLUMO is

the eigenvalue of the LUMO and of all orbitals degenerate with it.

For even n, it is easily seen that λHOMO = λn/2 and λLUMO = λn/2+1, as we can

imagine first filling orbitals with two electrons each, according to the Aufbau and

Pauli Principles, which will lead to en/2 = 2 and en/2+1 = 0, then invoking Hund’s

Rule if the first procedure leaves a degeneracy between occupied and unoccupied

orbitals. As the only effect of Hund’s Rule is to redistribute occupancies within a

set of degenerate orbitals, the HOMO and LUMO eigenvalues are unchanged in the

second stage. A similar argument shows λHOMO = λLUMO = λ(n+1)/2 for odd n.

Within the Hückel approximations, the total π energy of the molecule is the sum

of the orbital energies, weighted by their occupation numbers, Eπ =
∑

k nkλk. A

related quantity, not in general equal to Eπ, is the graph energy,6 EG =
∑

k |λk|. Eπ

and EG are equal for the ground states of bipartite graphs and some others. Eπ is

sometimes denoted EH (H for Hückel).

2 Electronic configurations

One of the basic questions about a molecular system is the characterisation of its

electronic configuration. Electron configurations fall into six natural classes based

on the energies (eigenvalues) of the frontier orbitals.

(i) If all orbitals contain either zero or two electrons, the system is a closed shell.

Clearly, all closed-shell systems have even n. Closed shells fall into three sub-classes:4

-375-



(ia) Pseudo-closed: λLUMO > 0,

(ib) Properly closed: λHOMO > 0 ≥ λLUMO,

(ic) Meta-closed: λHOMO ≤ 0.

(ii) If there is an eigenvalue for which at least one orbital contains exactly one

electron, the configuration is an open shell. Clearly, all systems with odd n are

open-shell. Open-shell cases are not usually subdivided further, but it may be

sometimes be useful to split open-shell systems into sub-classes by analogy with the

closed-shells:

(iia) Pseudo-open: λHOMO = λLUMO > 0,

(iib) Properly open: λHOMO = λLUMO = 0,

(iic) Meta-open: λHOMO = λLUMO < 0.

The classifications have direct physical significance, encapsulated in chemical rules

of thumb. A pseudo-closed or pseudo-open system has unused bonded capacity and

may be expected to gain electrons or rearrange to improve the bonding effect of

its electrons. Conversely, a meta-closed or meta-open system has antibonding (or

nonbonding) electrons and may be expected to lose electrons or rearrange. The

properly closed system matches bonding capacity and electron count and is prima

facie a candidate for a stable π system, as larger gaps | λHOMO − λLUMO | indicate
greater stability. A properly open shell is likely to show facile gain and loss of

electrons, and exhibit radical reactivity.

HOMO and LUMO eigenvalues give estimates of ionisation potentials and elec-

tron affinities, respectively: given the form of total π energy as a sum, at the Hückel

level, a positive HOMO eigenvalue implies that the neutral molecule is more stable

than the cation; a negative LUMO eigenvalue implies that the neutral is more stable

than the anion.

These qualitative statements arise from a simplified analysis, and other effects

may intervene in specific cases. In particular, Hückel theory does not take account of
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Figure 1: The HOMO-LUMO map (a) separates ground from excited states; (b)
gives a geographical representation of the types of open and closed shell, and (c)
groups those graphs that share an eigenvalue invariant along special straight lines.

electron repulsion, which causes the orbital energies to depend on occupation. How-

ever, within the graph theoretical approximation for electronic structure, eigenvalues

give a clear first-order classification of the different types of electronic configuration.

3 The HOMO–LUMO map

The shell classification of electron configurations suggests a simple device for exhibit-

ing characteristics of chemical graphs: a scatterplot of HOMO vs LUMO eigenvalues.

It has the merit that qualitative distinctions between the different types of π shells

emerge naturally as ‘geographical’ separations. Figure 1 shows the skeleton for such

a plot.

The horizontal (HOMO) and vertical (LUMO) axes run from -ve (antibonding)

to +ve (bonding). The 45◦ line λHOMO = λLUMO represents the locus of open

shells, and separates ground- and excited-state configurations: all ground states

must have λHOMO ≥ λLUMO by Aufbau (Figure 1(a)). The region below the open-

shell line defines the three kinds of closed shell: the bottom right quadrant defines

the properly closed shells; the triangular region to the left defines the meta-closed

shells, and the triangular region to the top right defines the pseudo-closed shells

(Figure 1(b)). Other lines also have specific chemical meanings (Figure 1(c)). The

line with slope +1 through the point (λHOMO, λLUMO) is occupied by graphs with
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equal gap λHOMO − λLUMO. Adapting a term from dentistry, such graphs may be

called isodiastemal.1 A vertical line in the map represents graphs with equal λHOMO

(isohomal); a horizontal line represents graphs with equal λLUMO (isolumal). The

line λHOMO = −λLUMO represents balanced graphs, where the bonding effect of the

HOMO and the antibonding effect of the LUMO are equal; by the Pairing Theorem8

all bipartite graphs are balanced in this sense. It is tempting to call the balanced

but non-bipartite graphs pseudo-bipartite.

A special region of the HOMO-LUMO map, which for reasons that will emerge

we call the chemical triangle is the right triangle with vertices (−1,−1), (+1,−1),
(−1,−1) with isolumal base, isohomal perpendicular and open-shell hypotenuse.

4 Bounds on HOMO and LUMO eigenvalues

Chemical graphs have maximum degree ≤ 3, and so the ranges of the axes in the

plot are limited to

+3 ≥ λHOMO ≥ λLUMO ≥ −3. (2)

Calculations on thousands of graphs (see below) support the claim that most chem-

ical graphs fit in the chemical triangle of the HOMO-LUMO map. In other words,

we say that a chemical graph is normal if the following inequality holds:

+1 ≥ λHOMO ≥ λLUMO ≥ −1. (3)

Other chemical graphs are called exceptional.

By analogy with the spectral radius, we can define the HOMO-LUMO radius of

a graph as R = max{|λHOMO|, |λLUMO|}. A chemical graph G is normal if and only

if R(G) ≤ 1.

Chemically, the fact that for normal chemical graphs the inequality (3) holds

1A related phenomenon is termed pseudo-isospectrality by Jiang et al.:7 this is the occurrence
of graphs that have the same HOMO-LUMO gap, the same total π energy and the same even-order
spectral moments. A pair of 16-vertex cubic polyhedral graphs with this combination of properties
is noted in Ref. 7; for this pair, the frontier eigenvalues are not pairwise equal; λHOMO of one graph
is −λLUMO of the other, so the two members of the pair occupy distinct points on the isodiastemal
line.
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corresponds to a claim that HOMO and LUMO orbital energies of every π system

fall between the bonding and antibonding energies of the fixed double bond of ethene,

represented by the chemical graph K2, with eigenvalues ±1. The implied ±1 bounds
are all realised multiple times, with the corners of the triangular region occupied by,

e.g., K3, K4, . . . at (−1,−1), K2, C6, the cube, . . . at (+1,−1), a 9-vertex subdivision
of K3,3, the Petersen graph, . . . at (+1,+1).

Interestingly, both (the presumed vast majority of) chemical graphs (with low

maximum degree) and the complete graph Kn (with degree n − 1 and λHOMO =

λLUMO = −1 for all n ≥ 2) fall in the central region of the map. This observation

might perhaps be taken to indicate that all simple, connected, unweighted graphs

fall in this restricted region of the HOMO-LUMO map, but such an extension would

certainly be incorrect. Computer search (see below) shows that, once the condition

on maximum degree is relaxed, (non-chemical) graphs with λLUMO < −1 appear at
n = 6, and with λHOMO < −1 (and λLUMO < −1) appear at n = 9.

In fact, despite the weight of the numerical evidence (that, e.g., all chemical

graphs on 13 or fewer vertices, and the many millions of fullerene graphs tested

here, are normal), there do exist exceptional chemical graphs, with the smallest

(and so far only) example being the 14-vertex, bipartite, 3-regular Heawood graph,9

which has λHOMO = −λLUMO =
√
2. Chemically, this graph corresponds to the

smallest (highly strained) ‘polyhedral’ polyhex nanotorus.10

However, exceptional chemical graphs seem to be quite difficult to find. For

example, there are no further instances amongst the chemical graphs on 14 to 18

vertices, no more amongst the 3-regular graphs on 20 or fewer vertices, and no more

amongst toroidal polyhex graphs on 100 or fewer vertices. We risk the following

conjecture:

Conjecture 4.1 There are only finitely many exceptional chemical graphs.

The commonality between chemical and complete graphs raises an intriguing

analogy with another graph invariant, the so-called graph energy.6 The complete

graph Kn has EG(Kn) = 2(n− 1) and this is an upper bound for the graph energy
of chemical graphs on n vertices.11 However, it is not a bound for general graphs. If
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Figure 2: Nomenclature for the regions of ground-state space in the HOMO-LUMO
map. Regions A to E are hypolumal (A being also hypohomal), D to H hyperhomal
(H being also hyperlumal), and I to L lie in the chemical triangle (shaded), with I
being meta-closed, J and K properly closed and L pseudo closed.

graphs Gn with EG(Gn) > EG(Kn) are hyperenergetic,12,13 we can define hyperhomal

and hypohomal graphs as those for which λHOMO(Gn) > +1 and λHOMO(Gn) > −1,
respectively. Likewise, hyperlumal and hypolumal graphs have λLUMO(Gn) < −1
or λLUMO(Gn) > +1, respectively. See Figure 2 for the demarcation lines of these

regions.

Although not all chemical graphs are normal, two special families are of interest.

Theorem 4.2 Each chemical tree (a tree with maximal degree at most 3) is normal.

Proof. For a bipartite graph, λHOMO = −λLUMO ≥ 0 and the HOMO-LUMO gap is

2λHOMO. If the graph is singular, λHOMO = λLUMO = 0 and the eigenvalue condition

in the theorem is satisfied, so we need consider only non-singular chemical trees (and

hence even values of n). Amongst the non-singular chemical trees (acyclic chemical

graphs with perfect matchings), the comb has the largest gap.14,15 The comb on

n = 2p vertices is constructed by attaching a leaf to each vertex of the path on p

vertices and has eigenvalues16

λ±k =
1

2
{μk ±

√
μ2
k + 4} for k = 1 . . . p (4)
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where μk is an eigenvalue of the backbone path:

μk = 2 cos(πp/p+ 1). (5)

The HOMO eigenvalue of the comb is therefore

λ+p = cos(πp/p+ 1) +
√
1 + cos2(πp/p+ 1), (6)

decreasing monotonically from 1 to
√
2 − 1 as p runs from 1 to ∞. It follows that

+1 ≥ λHOMO ≥ 0 ≥ λLUMO ≥ −1 holds for all combs, and hence for all chemical
trees. �

An eigenvalue bound for all bipartite and pseudo-bipartite chemical graphs follows

from consideration of the graph energy. For a bipartite or pseudo-bipartite graph

G, the HOMO and LUMO eigenvalues are those with the smallest magnitude, and

the graph energy satisfies

EG(G) ≥ n|λHOMO| for bipartite pseudo− bipartite graphs. (7)

As no chemical graph has an energy EG greater than that of the complete graph,
11

the bounds

(2n− 2) ≥ EG(G) ≥ n|λHOMO| (8)

hold for all bipartite and pseudo-bipartite chemical graphs G, and the eigenvalue

bound +2 ≥ λHOMO ≥ 0 ≥ λLUMO ≥ −2 applies to such graphs. A better upper

bound on graph energy17 improves the eigenvalue bounds:

Theorem 4.3 If G is a bipartite or pseudo-bipartite graph with average degree d̄ =

2m/n, its HOMO and LUMO eigenvalues satisfy
√
d̄ ≥ λHOMO ≥ 0 ≥ λLUMO ≥

−
√
d̄.

Remark 4.4 For chemical graphs, d̄ ≤ 3 and hence for bipartite and pseudo-

bipartite chemical graphs
√
3 ≥ λHOMO ≥ 0 ≥ λLUMO ≥ −√

3.

Proof. The McClelland bound for graph energy17 is EG ≤ √
2mn, with equality
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realised only for graphs with all eigenvalues of equal magnitude.18 The definition of

average degree and the bound (7) give n
√
d̄ =

√
2mn ≥ nλHOMO for both bipartite

and pseudo-bipartite graphs. �

Remark 4.5 For graphs G with properly closed shells, λHOMO > 0 ≥ λLUMO and

EG(G) ≥ n
2
{|λHOMO| + |λLUMO|} = n

2
{λHOMO − λLUMO}. Therefore, the HOMO-

LUMO gap is ≤ 2
√
d̄ and the smaller of λHOMO and |λLUMO| is ≤

√
d̄.

Remark 4.6 The bounds of Theorem 4.2 can be improved for unicyclic bipartite

chemical graphs. It is conjectured18 that for n ≤ 7 and n = 9, 10, 11, 13 and n = 15

the unicyclic chemical graph of maximum energy is a cycle, and at all other values

of n it is the graph P 6
n consisting of a hexagonal cycle with a path attached to one

vertex. It has been proved that of all unicyclic graphs of order n that are not cycles,

the graphs P 6
n maximise the graph energy.19

Exhaustive calculations for chemical graphs with n ≤ 12 show that the bounds

in inequality (3) are satisfied. Numerical calculations on the graphs P 6
n indicate that

EG(G)/n is a monotonically decreasing function of n for this family of graphs, and

hence that

+q ≥ λHOMO ≥ 0 ≥ λLUMO ≥ −q (9)

where q ≈ 1.28525299 is EG(P
6
14)/n.

Remark 4.7 Better (n,m) bounds for EG are available. For bipartite graphs
20

EG ≤ 2(2m/n) +
√
(n− 2)(2m− 2(2m/n)2. (10)

This expression approaches nd̄ from below as n goes to infinity, and in the limit does

not improve the eigenvalue bound derived from McClelland’s theorem.

5 HOMO–LUMO profiles of some classes

of chemical graphs

General chemical graphs were generated with McKay’s program geng.21 Spectra

were calculated by Jacobi numerical diagonalisation, with an estimated absolute
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accuracy of better than 10−12, but for plotting purposes the data points are collected

in bins of width 0.001. Chemical graphs may be classified by electron configuration,

according to the 6 subclasses of open and closed shells, as defined earlier.

They may also be partitioned into five disjoint (δ, δ) classes according to mini-

mum (δ) andmaximum (Δ) degree (Table 1). Table 2 shows both types of breakdown

for chemical graphs with at most 12 vertices. The counts are seen to be dominated

by properly-closed shells for even n and properly-open shells for odd n.

Class Δ δ
a 2 1 paths
b 2 2 cycles
c 3 1
d 3 2
e 3 3 3-regular

Table 1: Chemical graphs classified by minimum (δ) and maximum (Δ) degrees.

Figure 3 shows the HOMO-LUMO maps for the 306 chemical graphs on n ≤ 8

vertices, the 2750 chemical graphs on n ≤ 10 vertices, and the 27524 chemical

graphs on n ≤ 12 vertices. The immediate visual impression is of growing clustering

in the properly-closed quadrant, but with significant proportions of pseudo- and

meta-closed shells. The numerical data in Table 1 show that in the sample of graphs

n N (δ, Δ) classes Open Closed
(c) (d) (e) NO ps pr me NC ps pr me

2 1 0 0 0 0 0 0 0 1 0 1 0
3 2 0 0 0 2 0 1 1 0 0 0 0
4 6 2 1 1 3 0 2 1 3 0 2 1
5 10 5 3 0 10 1 7 2 0 0 0 0
6 29 17 8 2 9 0 9 0 20 0 15 5
7 64 42 20 0 64 7 41 16 0 0 0 0
8 194 133 54 5 52 1 50 1 142 2 103 36
9 531 382 147 0 531 57 321 153 0 0 0 0

10 1733 1274 438 19 453 2 448 3 1280 11 896 373
11 5524 4170 1352 0 5524 622 3330 1572 0 0 0 0
12 19430 14863 4480 85 4851 1 4842 8 14579 155 10170 4254

Table 2: Types of chemical graphs sorted by minimum and maximum degree. N is
the number of chemical graphs on n vertices. Types (a) to (e) are defined in Table
1 At each n > 2, the degree classes (a) and (b) each contain one graph. NO and NC

are the numbers of open and closed shells at each n, respectively, partitioned into
pseudo (ps), proper (pr) and meta (me) sub-classes.
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Figure 3: The HOMO-LUMO map of all chemical graphs with (from left to right)
up to 8, up to 10, and up to 12 vertices. In this figure, eigenvalues are sorted into
bins of width 0.001, each represented on the plot by a circle of diameter 0.005. The
arrow indicates the golden isohomal line at λHOMO = φ−1.

with n ≤ 12 there are 11187 properly closed, 168 pseudo-closed, 4670 meta-closed

(of which 1237 have an antibonding HOMO), and 11499 open shells. Many (6131)

open shells come from the odd-n graphs. Of the open shells, 9051 have λHOMO =

λLUMO = 0.

Inspection of the pattern also reveals line clustering: a scatter of graphs on the

boundary lines λHOMO = +1 and λLUMO = −1, a line of graphs with λHOMO =

(
√
5− 1)/2 = φ−1 ≈ 0.618, as well as heavily populated lines for λHOMO = λLUMO

and λHOMO = −λLUMO. Eigenvalues ±φ and ±φ−1 are often found for chemical

(a) (b)

Figure 4: Some special chemical graphs: (a) the smallest that have HOMO eigen-
value φ−1; (b) the smallest pseudo-bipartite chemical graphs. Graphs drawn with
edge crossings are non-planar.
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Figure 5: Cumulative HOMO-LUMO maps for the types (a) to (e) of chemical
graphs (as defined in Table 1) on n ≤ 12 vertices. The arrow indicates the golden
isohomal line at λHOMO = φ−1.

graphs, and just over 1% of the chemical graphs on n ≤ 12 vertices have λHOMO =

φ−1. The ‘golden’ isohomal line, with λHOMO = φ−1, is clearly visible in Fig. 3

(and later in Fig. 5(c)(d), not only because it is heavily populated, but because it

represents a dividing line, with greater density of dots to the left. It is not clear why

one eigenvalue should stand out in this way. Some small chemical graphs with this

HOMO eigenvalue are illustrated in Figure 4(a). Some small chemical graphs that

are balanced but not bipartite are illustrated in Figure 4(b).

Figure 5 gives an impression of how the different (δ, Δ) degree classes contribute

to the composite HOMO-LUMO map for the chemical graphs on n ≤ 12 vertices.

Clearly, the maps for the two largest classes are strikingly similar to the composite

map. The 3-regular graphs on up to 12 vertices include no examples of pseudo-closed

shells, but these appear at higher vertex count.

Paths (the molecular graphs of linear polyenes) are of course bipartite. Paths Pn

with odd numbers of vertices n all inhabit the origin in the HOMO-LUMO plot,

with λHOMO = λLUMO = 0. The path Pn with an even number of vertices n has

λHOMO = −λLUMO = 2 cos[πn/2(n+ 1)]; with increasing n, the configuration moves

in along the line of balanced properly closed shells, from (+1,−1) for P2, though

(+0.618,−0.618), (+0.445,−0.445), (+0.347,−0.347), . . ., to converge on the origin
(See Figure 5(a)).

Cycles (the molecular graphs of [n] annulenes) have either open or properly closed

shells as neutral systems. The two classes of bipartite cycles are: even cycles Cn with

n = 4p, with two zero eigenvalues and hence properly open shells with λHOMO =
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Figure 6: HOMO-LUMO map for the 7595 20-vertex cubic polyhedra.

λLUMO = 0; even cycles Cn with n = 4p + 2, which have no zero eigenvalue and

so have properly closed shells with λHOMO = −λLUMO = 2 cos[2πp/(4p + 2)]. Odd

cycles all have properly open shells as neutrals: those with n = 4p+1 have λHOMO =

λLUMO = 2 cos[2πp/(4p+ 1)], and those with n = 4p + 3 have λHOMO = λLUMO =

2 cos[2π(p+ 1)/(4p+ 3)]. On the HOMO-LUMO map, the ‘anti-aromatic’ n = 4p

cycles all lie at the origin, the ‘aromatic’ cycles with n = 4p+2 approach the origin

along the 45◦ line from bottom right, and the odd cycles with n = 4p + 1 and

n = 4p + 3 approach the origin along the open-shell line from (+,+) and (−,−)
quadrants, respectively (See Figure 5(b)).

Cubic Polyhedra. These are candidates for the structures of the smaller carbon

clusters Cn and also include the underlying skeletons of polyhedral (CH)n hydro-

carbons. Their graphs were generated using the plantri program.25 The numbers

of cubic polyhedral graphs NP (n) at each vertex count n are: 1 (4), 1 (6), 2 (8), 5

(10), 14 (12), 50 (14), 233 (16), 1249 (18), 7595 (20), 49566 (22), . . . As an example,

Figure 6 shows the map for the 7595 20-vertex cubic polyhedra. Given the large

number of polyhedra with triangular (‘electron-deficient’) faces, it is not surpris-

ing that the meta-closed region of the map is heavily populated, as is the properly

closed quadrant. The numerical data show 2245 meta-closed, 4291 properly closed,

245 pseudo-closed and 76 open shells in this sample. Dodecahedral C20, the smallest

possible fullerene, is only one of 70 graphs at (0, 0).

Fullerenes have molecular graphs that are cubic and polyhedral with 12 pentagonal

-386-



and (n/2 − 10) hexagonal faces. A small subset, including icosahedral C60,
22 have

properly closed shells, but the overwhelmingmajority of fullerenes have pseudo-closed

character,23 with a few large fullerene graphs known to have meta-open character.24

The maps in Figure 7 illustrate this in dramatic fashion: of the 1812 fullerene

isomers with 60 vertices, all but one are found in the pseudo-closed region of the

map (Figure 7(a)); likewise, of the 8149 fullerene isomers of C70, only the unique

isolated-pentagon isomer is properly closed, lying on the λHOMO = 0, boundary line

between pseudo- and properly closed classes (Figure 7(b)). Most isolated-pentagon

fullerenes are also pseudo-closed, as illustrated by the set of the 10774 IPR fullerenes

with n = 120 (Figure 7(c)); just 42 of these have properly closed shells, of which 40

arise as a consequence of the leapfrog rule and the existence of a total of 40 isomers

of the lower fullerene C40, one more (with λLUMO = 0) as an instance of the ‘carbon

cylinder rule’, and one as an instance of a ‘sporadic’ closed shell.23 This last isomer

has a tiny LUMO eigenvalue of −0.0004, and so escapes pseudo-closed status by a
very narrow margin, as of course does the carbon cylinder isomer (λLUMO = 0). In

Ref. 5, HOMO-LUMO maps of fullerenes are studied in more detail.

Beyond chemical graphs. Extending the geng generation process to all connected

graphs, it was possible to find many examples outside the chemical triangle. The

-1  0  1
-1

 0

 1

-1  0  1
-1

 0

 1

-1  0  1
-1

 0

 1

Figure 7: Fullerene HOMO-LUMO maps (a) The 1812 fullerene isomers of C60. The
single point in the closed-shell quadrant corresponds to the experimental icosahedral
isomer of C60. (b) The 8149 70-vertex fullerene isomers of C70. The point on the
line λHOMO = 0 corresponds to the experimental isomer of C70. (c) The 10774
isolated-pentagon fullerene isomers of C120.
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(b)(a)

Figure 8: Graphs that fall outside the ‘chemical triangle’. The two smallest graphs
are of order n = 6, with (a) m = 10, λHOMO = φ−1, λLUMO = 1 − √

6 ≈ −1.4495,
(b) m = 9, λHOMO = φ−1, λLUMO = 1−

√
5 ≈ −1.2361.

connected graphs NG(n) at each vertex count n are:
26 1 (2), 2 (3), 6 (4), 21 (5), 112

(6), 853 (7), 11117 (8),261080 (9), 11716571 (10), 1006700565 (11), 164059830476

(12), 50335907869219(13) . . . All connected graphs with n ≤ 5 or n = 7 fall in the

chemical triangle map. Hyperlumal graphs appear first at n = 6, where there are

two examples (Figure 8). There are 119 with n = 8, and 12 to 22 edges. At n = 9,

37 graphs with 18 to 26 edges are both hypohomal and hyperlumal. At n = 10,

151062 graphs occur outside the chemical region of the HOMO-LUMO map: 151055

are hyperlumal only but 7 are both hypohomal and hyperlumal, all seven having

λHOMO < −1 and λLUMO = −√
2.
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