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Abstract 
Different kinds of Local Vertex Invariants (LOVIs) derived from vertex degrees were reviewed and 
investigated by comparison. Novel LOVIs, based on a multiplicative form of some vertex degrees 
defined in literature were also proposed. A data set comprised of 730 diverse molecules with 383 
different atom types was used to study similarity/diversity of 17 different LOVIs by Principal 
Component Analysis. 
Finally, 12 different kinds of molecular descriptors were derived from each of the LOVIs in analysis, 
obtaining a total of 204 molecular descriptors. These descriptors were used to calculate QSPR models 
for the series of 18 hydrocarbons with 8 carbon atoms (C8). 
The molecular descriptors derived from the new LOVIs gave quite surprising results in correlating the 
physico-chemical properties of octane isomers. 
 

1.  Introduction 
For several decades molecular graph theory has been playing a very important role in theoretical 

chemistry, quantitative structure-activity relationships (QSAR) and structure-property relationships 

(QSPR),  and  similarity/diversity analysis of molecular libraries. In effect, several molecular 

descriptors used in these research fields are derived from molecular graphs, which represent 

chemicals, by the use of well defined algorithms to obtain numbers from graphs and, then, using these 

numbers to describe molecules [1]. 

Local vertex invariants (LOVIs) are among the most important quantities derived from molecular 

graphs, often they being the starting point to calculate molecular descriptors. LOVIs are numerical 
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quantities associated with graph vertices regardless of any arbitrary vertex numbering; they are used to 

characterize local properties in a molecule. They can be either purely topological, if heteroatoms are 

not distinguished from carbon atoms, or chemical, if the heteroatoms are assigned distinct values from 

carbon atoms, even when these are topologically equivalent [2-5]. 

Vertex degree is the most common LOVI used to describe an atom of a molecule, it being related to 

atom connectivity. Several different kinds of formula to calculate vertex degrees were proposed in 

literature so far [1]. Since the graph theory was applied to describe molecules, the concept of vertex 

degree was largely exploited and several molecular descriptors were derived from it. Nowadays, a lot 

of different formulations of vertex degree exist and, accordingly, by means of them new molecular 

descriptors were defined and may be further defined in the future. 

From a topological point of view, there are two distinct ways to calculate vertex degree: a) vertex 

degree takes into account the vertex and its incident edges and b) vertex degree takes into account the 

vertex,  the incident edges and the first neighbour vertices (Figure 1 and Scheme 1). 

 
Figure 1. In structure a) only the i-th vertex and its incident edges are considered; in 
structure b) the j-th first neighbour vertices of the i-th vertex are also considered in the 
vertex degree calculation. 

 

The vertex degree � of an atom (or simple vertex degree) is the count of its � electrons in the H-

depleted molecular graph, i.e., the number of incident edges. This quantity is a local vertex invariant 

which is easily calculated from the adjacency matrix A as the sum of the entries aij in a matrix row: 
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where A is the number of graph vertices and VS is the general symbol for matrix row sum. 

The bond vertex degree, , is another local invariant, which accounts for atom connectedness and 

also for bond multiplicity. It is calculated from the atom connectivity matrix C as the sum of row 

entries [6]: 
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where �* is the conventional bond order, equal to one for single bonds, two for double bonds, three for 

triple bonds, 1.5 for conjugated bonds, and zero otherwise; aij are the adjacency matrix elements equal 

to one only for vertices adjacent to the i-th vertex. E(G) is the set of graph edges. 

In order to take into account all valence electrons of an atom, the simple vertex degree can be replaced 

by the valence vertex degree, , (also called vertex valence) defined as: v
i�

Z nv v
i i i i i ih h� �  � � � � �  i  

where  is the number of valence electrons (� electrons, � electrons and lone pair electrons n) of the 

i-th atom and hi is the number of hydrogen atoms bonded to it [6]. This definition holds for atoms of 

the second principal quantum level (C, N, O, F). For atoms of higher principal quantum levels (P, S, 

Cl, Br, I), Kier and Hall proposed to account for both valence and non-valence electrons, as the 

following: 
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where Zi is the total number of electrons of the i-th atom, i.e., its atomic number.  encodes the 

electronic identity of the atom in terms of both valence electron and core electron counts; it is a 

valence electron descriptor. 

v
i�

A modification of the valence vertex degree, still proposed by Kier and Hall [7;8] and used in 

electrotopological state indices, is the intrinsic state Ii defined as: 

Ii
i i

v

i
�
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where Li is the principal quantum number, is the valence vertex degree and �i is the simple vertex 

degree of the i-th atom; the term (2/Li)2 is equal to one for the elements of the second principal 

quantum level. For elements of higher levels, L is used to account for the increase in the screening 

effect of the inner electrons.  

� i
v

The vertex degree, defined by Kupchik [9;10] and denoted as �het, is the following: 

� �het C CZv v
i i i

i i

R Rh
R R

� � 
  � 
 �i  

where Ri and RC are the covalent radius of the i-th atom and the carbon atom, respectively; Z  is the 

number of valence electrons and hi the number of hydrogen atoms bonded to the i-th atom. As the 

valence vertex degree, Kupchik's vertex degree accounts both for heteroatoms and bond multiplicity. 

The second equality holds only for the atoms of the second principal quantum number.  

v
i

The vertex degree defined by Hu and Xu [11] is calculated according to the following: 
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where Zi is the atomic number of the considered atom and �i the simple vertex degree. 

In order to prevent possible degenerative cases where vertex degrees are summed (e.g. 

1 4� � 9 ), Alikhanidi et al. [12], modified Hu-Xu vertex degree as the following: 

ZA
i i i�� � � 
  

where Z' is a function of the atomic numbers Zj of the atoms adjacent to the i-th atom; this function 

was called consecutive AT number and defined as: 
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aij being the elements of the adjacency matrix, which take value of one only for pairs of bonded atoms. 

The vertex degree, defined by Ren [13] and denoted as �m, is a modification of Kier-Hall intrinsic state 

Ii defined above : 
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where �i is the simple vertex degree of the i-th atom, Li the principal quantum number, and v
i�  the 

valence vertex degree. This formula is applied only to heteroatoms or carbon atoms with multiple 

bonds and/or bonded to heteroatoms; otherwise, the Ren vertex degree coincides with the simple 

vertex degree �i. 

The vertex degree defined by Li et al. [14], denoted as �Li, is the following: 
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A further modification of Kier-Hall vertex degree definition is the vertex degree conceived by Yang in 

order to better describe atoms also in complex organic compounds by using the Yang's Electronegative 

Force Gauge Y [15]. It is denoted as �Y and defined as [16]: 
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where bi is the bonding electron number (i.e., the vertex degree in the H-filled molecular graph) and Yi 

is the Yang's Electronegative Force Gauge, which reflects the atomic ability of attracting charge in the 

formed bond. 

The perturbation delta value was defined in terms of the valence vertex degree �v modified by the 

atomic environment as [17]: 
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where the perturbation term of the i-th atom is the sum of the valence vertex degrees of its first 

neighbours (aij being the elements of the adjacency matrix equal to one for vertices adjacent to the i-th 

vertex), each weighted by parameter �ij accounting for the type of the bond i-j.  � values should be 

functions of the properties of the connected atoms i and j (e.g. between –0.30 and +0.30). For � = 0, 

perturbation delta values coincide with the corresponding valence vertex degrees.  

The chemical degree, defined by Madan et al. [18-20] and denoted as �c, is calculated by summing up 

relative atomic weights of all the vertices j adjacent to i: 

1 C

m
m

A
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where mj and mC are the atomic weights of the j-th atom and the carbon atom, respectively; aij are the 

elements of the adjacency matrix, which are equal to one only for vertices adjacent to vertex i. 

A vertex degree, called CT vertex degree, accounting for the number of adjacent atoms, heteroatoms, 

multiple bonds and conjugation was defined [1] as: 
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where aij are the elements of the adjacency matrix, �* the conventional bond order, Z the atomic 

number. The term � accounts for multiple bonds and conjugation, while the term for heteroatoms. 

For saturated hydrocarbons, , � being equal to 1 and �  equal to �i. Unlike the other vertex 

degree definitions, this vertex degree distinguishes conjugated atoms from non-conjugated atoms.  

�
CT
i� � �i

T

In Figure 2, the main features of the 13 different vertex degrees defined above are collected. 

Note that for hydrocarbons not containing multiple bonds, the values of valence vertex degree, bond 

vertex degree, Kupchik's vertex degree, Li's vertex degree, Ren's vertex degree, Madan's vertex 

degree, and CT vertex degree coincide with the simple vertex degree, that is: 
v b K Li m c C

i i i i i i i i� � � � � � � � � � � � � � �  

 

2.  New local vertex invariants 
A new LOVI that accounts for the degree of a vertex is here defined based on the same expression as 

the perturbation delta value, where the valence vertex degree is replaced with the intrinsic state as: 

1

A
I
i i ij

ji

I a
�

�
jI� � � 
 


� �  

 

-363-



This LOVI is here termed perturbation intrinsic state. Note that, unlike the perturbation delta value 

definition, the � parameter here is a constant not accounting for the type of bond (i-j). 

Moreover, substituting the summation with the product into the formula of perturbation delta value, 

Alikhanidi vertex degree, and perturbation intrinsic state above defined, novel LOVIs can be 

calculated. These are summarized in Table 1, together with the original additive versions. They are 

called the multiplicative perturbation delta value, the multiplicative Alikhanidi vertex degree, and the 

multiplicative perturbation intrinsic state. In functions of type 1 and 3, � is a real user-defined 

parameter. 

 

 
Figure 2. Partition of the considered 13 different vertex degrees, based on the algorithm for their calculations. 
On the top of the figure, # incident bonds, atom type and bond type refer to the focused i-th atom; on the 
bottom, first neighbour atom and bond types refer to the j-th atoms bonded to the i-th atom. 
 
Table 1. LOVIs based on the perturbation scheme. In the third column LOVIs based on an additive scheme, are 
collected, while in the last column those based on a multiplicative scheme. aij are the elements of the adjacency 
matrix equal to one for vertices adjacent to the i-th vertex; � is areal user-defined  parameter. 
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3.  Molecular descriptors 
From the LOVIs early defined, 12 molecular descriptors were calculated. The former group (Table 2, 

ID 1-5) includes molecular descriptors derived from the classical algorithms applied to local vertex 

invariants of a molecular graph. The latter group (Table 2, ID 6-12) consists of spectral indices derived 

from a diagonal matrix V where LOVIs are located on the main diagonal: 

�  if
0 if

i
ij

i j
i j

�!
� " #$

V
L

  

Li being one of the different vertex degrees of the i-th atom.  

12 molecular descriptors were calculated for each of the 17 LOVIs considered in this study (i.e., 13 

classical LOVIs defined in the introduction plus the 4 new LOVIs), thus obtaining a total of 204 

descriptors. For both perturbation delta value and its multiplicative version, the parameter �ij was 

selected equal to 0.1, regardless the bond type, whereas for perturbation intrinsic state and its 

multiplicative version, the parameter � has was fixed to 0.5. 

 

Table 2. Molecular descriptors defined in terms of LOVIs (L) (ID 1-5) and derived from the eigenvalues (%) 
obtained from the V matrix (ID 6-12). V is a diagonal matrix where LOVIs are located on the main diagonal. 

ID Formula generalized molecular descriptors 
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4.  Similarity/diversity analysis 
In order to evaluate relationships among the different vertex degrees here considered, a data set of 730 

diverse chemicals was selected and for each atom of each molecule the whole set of vertex degrees 

was calculated. A total of 7268 row vectors each containing the values of the 17 LOVIs were derived 

from all the atoms of all the data set molecules. Then, only the diverse row vectors were selected, thus 

finally obtaining 483 atom types. Some information about the data set used for this analysis are given 

in Table 3. 
Table 3. Basic descriptive statistics of the data set comprised of 730 diverse compounds. 

 Mean Min Max Std. Dev. 
Molecular Weight 156.10 26.04 578.65 87.46 
No. heavy atoms 9.97 2 40 5.21 
No. cycles 1.11 0 11 1.41 
No. circuits 3.43 0 552 23.83 
No. benzene rings 0.91 0 11 1.30 
Rotatable Bond Number 1.34 0 21 2.41 
No. double bonds 0.41 0 6 0.74 
No. triple bolds 0.03 0 2 0.17 
No. aromatic bonds 5.45 0 50 6.87 
No. nitrogen atoms 0.23 0 4 0.57 
No. oxygen atoms 0.86 0 8 1.15 
No. phosphorus atoms 0.01 0 1 0.08 
No. sulphur atoms 0.04 0 2 0.21 
No. fluorine atoms 0.21 0 7 0.88 
No. chlorine atoms 0.62 0 8 1.43 
No. bromine atoms 0.07 0 5 0.45 
No. iodine atoms 0.01 0 2 0.13 
 

In order to denote the defined LOVIs in the most simple way, the following notations were adopted in 

subsequent analysis: simple vertex degree (d), valence vertex degree (vd), bond vertex degree (bd), 

 

-366-



Hu-Xu vertex degree (HX), Kupchik vertex degree (Kup), Alikhanidi vertex degree (Alik), Li vertex 

degree (Li), Ren vertex degree (Ren), Madan chemical degree (Mad), Yang vertex degree (Yang), CT 

vertex degree (CT), perturbation delta value (p), intrinsic state (I), multiplicative perturbation delta 

value (mp), perturbation intrinsic state (pI), multiplicative perturbation intrinsic state (mI), and 

multiplicative Alikhanidi index (mAlik). Moreover, symbols for molecular descriptors were composed 

by two distinct pairs, the former indicating the type of descriptor operator and the latter the type of 

LOVI (e.g., SpAD-mp refers to the spectral absolute deviation of the matrix collecting the 

multiplicative perturbation delta values of non-H atoms). 

A Principal Component Analysis (PCA) was then performed on the resulting matrix of dimension 

483×17. The loading plots of PC1 vs PC2, PC3 vs PC4, and PC5 vs PC6 are reported in Figures 3, 4, 

and 5, respectively. The first six principal components explain 96.8% of the total variance. 

The first component (E.V. 49.4%), which represents the maximum variance direction, is determined 

by the majority of the vertex degrees, i.e., simple, bond, Alikhanidi in both additive and multiplicative 

versions, Ren, Hu-Xu, Yang, CT vertex degrees, all partially in contrast to the vertex degrees based on 

the instrinsic state, e.g. intrinsic state together with its additive and multiplicative versions); the second 

component (E.V 27.6%) characterizes the remaining group of the vertex degrees, i.e. valence vertex 

degree, perturbation delta value, Li vertex degree, and Kupchik vertex degree) still together with the 

vertex degree based on the intrinsic state. The third component (E.V. 7.9%) is strongly characterized 

by the multiplicative version of the perturbation delta value (mp) together with some contributions of 

the Madan chenical degree (Mad), the multiplicative version of the Alikhanidi vertex degree (mAlik), 

and the additive (pI) and multiplicative (mI) versions of the intrinsic states. The fourth component 

(E.V. 6.0%) reveals the different behaviour between perturbation (p) and Yang vertex degree (Yang) 

on one side and the valence vertex degree (vd) on the other side. The fifth component (E.V. 3.4%) 

specifically characterizes the difference between the Madan chemical degree (Mad) and the 

multiplicative perturbation delta value (mp); finally, the sixth component (E.V. 2.6%)  collects some 

residual specific information of the bond vertex degree (bd), both additive (pI) and multplicative 

perturbation intrinsic state (mI), and the CT vertex degree (CT). 

In conclusion, it is possible to say that the first PC highlights a group of largely correlated LOVIs 

which explain almost the same information as the simple vertex degree, whereas the second PC 

identifies those LOVIs that behave similarly to the valence vertex degree. 

LOVIs based on the intrinsic states seem to constitute a third group that gives a quite different 

information. Moreover, looking at the remaining components, both multiplicative and additive 

versions of the perturbation delta value, Madan chemical degree, multiplicative version of Alikhanidi 

degree, and Yang vertex degree, show some peculiarities not accounted for by the first two principal 

components. 
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Figure 3. Loading plot of the first and second principal components for the 
17 considered LOVIs. Symbols are explained in the text. 
 

 
Figure 4. Loading plot of the third and fourth principal components for the 17 
considered LOVIs. Symbols are explained in the text. 
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Figure 5. Loading plot of the fifth and sixth principal components for the 17 
considered LOVIs. Symbols are explained in the text. 

 

5.  QSAR/QSPR modeling 
In order to check the modeling ability of the novel LOVIs, a simple congeneric data set was chosen 

constituted by the 18 isomers of the C8 hydrocarbons. Five physico-chemical properties were studied: 

boiling point (bp), heat of formation (Hf), motor octane number (MON), total surface area (TSA), and 

molar refractivity (MR). The molecular descriptors used in this analysis are the 12 molecular 

descriptors defined above calculated by means of the 17 vertex degrees, for a total of 204 molecular 

descriptors. For each property, the Q2 leave-one-out technique was used to select the best models. 

Only univariate regression models were considered in this analysis. 

Before discussing results, it should be noted that the molecular descriptors SpAD and SpMAD are 

correlated one in the case of a congeneric series of compounds, thus SpAD was arbitrary chosen in the 

subsequent analysis. Moreover, remember that the following relationship  
v b K Li m c C

i i i i i i i i� � � � � � � � � � � � � � � T  

holds for this data set and, accordingly, the molecular descriptors derived from them all coincide. 

Therefore, only descriptors based on the simple vertex degree (d) were considered. 
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As it can be easily observed, for all the properties, except for the heat of formation (Hf), the new 

descriptors based on the multiplicative approach to generate LOVIs gave the best results. In particular, 

for the boiling point (bp), the eigenvalue absolute deviation calculated by the multiplicative version of 

the perturbation delta value (SpAD-mp) showed a prediction ability about 21% larger than that of the 

most predictive old descriptor, i.e., the second Zagreb-like index calculated using the intrinsic state as 

the local vertex invariant (M2-I). 

 
Table 4. QSPR models for the 5 studied properties of C8 compound series. For each property, the 3 best 
models obtained by using both the old and new LOVIs (13 + 4) are collected, while the remaining models 
are the 3 best models constituted by the 13 old LOVIs. Descriptors based on the new LOVIs are 
highlighted in boldface. 

bp (all) Q2 (R2) MR (all) Q2 (R2) TSA (all) Q2 (R2)

SpAD-mp 80.4 (85.1) 1�-mI 89.0 (92.3) 1�-mI 83.5 (86.9) 

EE-mp 67.5 (74.3) M2-mp 87.8 (90.8) M2-mp 80.9 (85.6) 

SpDiam-mp 66.7 (72.5) 1�-mp 86.7 (89.8) 1�-mp 79.9 (84.7) 

M2-I 59.6 (73.3) Ho-p 60.6 (70.8) Ho-p 76.0 (80.8) 
1�-Alik 59.5 (73.3) M2-Alik 49.5 (58.4) SpSum-1-p 55.8 (65.2) 
1�-HX 53.1 (67.4) Ssqinv-p 35.8 (49.7) Ssqinv-p 52.8 (63.4) 

      

MON (all) Q2 (R2) Hf (all) Q2 (R2)   

SpSum-1-mp 92.8 (94.6) M2-I 74.6 (79.3)   

Ssqinv-mp 92.7 (94.5) 1�-Alik 74.5 (79.2)   

Ho-mI 89.8 (92.6) 1�-mAlik 73.7 (78.1)   
1�-I 88.7 (92.0) 1�-HX 67.0 (72.4)   

SpAD-p 83.0 (87.1) 1�-d  66.9 (72.3)   

M2-p 79.9 (85.7) 1�-p 61.6 (67.6)   
 

For molar refractivity (MR), an even more surprising result was obtained: the predictive ability of the 

Randic-like index calculated by the multiplicative version of the intrinsic state (1�-mI) resulted 28% 

larger than the predictive ability of any other old molecular descriptor. Similar results were also 

obtained for total surface area (TSA) and motor octane number (MON), even if with less significant 

difference in predictive ability than the other descriptors. 

In the case of the heat of formation (Hf), the second Zagreb index calculated by the intrinsic state (M2-

I) and the Randic-like index calculated using the Alikhanidi vertex degree (1�-Alik) gave a little bit 

larger predictive ability than the first multiplicative descriptors, i.e., the first order Randic-like index 

based on the multiplicative version of Alikhanidi vertex degree (1�-mAlik).  
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For what it is concerned with the descriptors based on the perturbation intrinsic state (pI), we can say 

that, even if it does not appear within the 3 best models, it gave interesting predictive results for molar 

refractivity (1�-pI: Q2 = 73.1), total surface area (1�-pI: Q2 = 77.8), and motor octane number (Ssqinv-

pI: Q2 = 87.7). 

 

6.  Conclusions 
Due to the basic role of the vertex degree in graph theory and in deriving well-known molecular 

descriptors, such as connectivity and Zagreb indices, some new vertex degrees were defined, derived 

from the perturbation delta value. 

Comparison of 17 vertex degrees performed on a data set of diverse molecules showed the existence 

of different classes of vertex degrees, for which the prototypes are simple vertex degree, valence 

vertex degree, perturbation delta value, Madan chemical degree and intrinsic state. Moreover, in 

modeling some physico-chemical properties of a set of isomeric compounds, namely the hydrocarbons 

with eight carbon atoms, quite surprising results were obtained. Indeed, molecular descriptors based 

on the newly defined vertex degrees showed higher prediction ability than that obtained by the 

classical vertex degrees. In particular, the multiplicative version of the perturbation delta value and the 

multiplicative version of the perturbation delta value where the valence vertex degree was replaced by 

the intrinsic state showed high predictive ability in modeling physico-chemical properties of C8 data 

set. 

It should be expected that, for non-congeneric data sets and/or for modeling biological activities, other 

global descriptors may be taken into account in multivariate models, in order to better explain holistic 

behaviour of molecules; however, interesting contributions of the descriptors derived from the new 

vertex degrees may be also expected to be useful. 
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