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Abstract

In this paper, several series of 4-regular polyhedra including triangular, quadri-
lateral and pentagonal faces have been constructed by pasting patches of belts and
hats. The sufficient and necessary condition for their existences are also given by
describing the construction. Our finding is an effective complement to earlier re-
searches most focused on 3-regular polyhedra for carbon molecular models.
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1 Introduction

It is known that polyhedra are widespread as structural models in chemistry. Using the

underlying geometrical and symmetrical principles to envisage and classify polyhedral

molecules and clusters, presents an enormous challenge at an interface between math-

ematics and chemistry [4]. Since the famous fullerene C60 was discovered in 1985 [27],

there have been numerous theoretical progresses in this line of research [14, 19]. A prob-

lem that has been a source of fascination to scientists is building a rich treasure house for

hypothetical candidates of carbon molecules.

First, we introduce some definations. Let P denotes a 3-dimensional (convex) polytope

[20] or a polyhedral graph, i.e., a graph consists with the vertices and the edges of a 3-

polytope. The famous Steinitz’s result [20, 31] shows that a graph is the polyhedral graph

of a 3-polytope if and only if it is planar and 3-connected. A polyhedron is k-regular if

all its vertices have the same degree k. By the planarity and connectivity, we can know

that for a k-regular polyhedral graph, k = 3, 4 or 5. Moreover, the p-vector p(P ) of a

polyhedron P is a sequence (p3, ..., pi, ...), where pi denote the number the i-gons of P .

Then

f =
∑
i≥3

pi, 2e =
∑
i≥3

ipi = kv,

and the Euler formula becomes [16, 20]

∑
i≥3

(2k + 2i− ki)pi = 4k.

If k = 3 then

3p3 + 2p4 + p5 = 12 +
∑
i≥7

(i− 6)pi. (1.1)

If k = 4 then

p3 = 8 +
∑
i≥5

(i− 4)pi. (1.2)

If k = 5 then

p3 = 20 +
∑
i≥4

(3i− 10)pi. (1.3)
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The Euler formula is related to the Gauss-Bonnet formula in differential geometry

[8, 29]. Hence ck(i) =
2k+2i−ki

2k
can be considered as the curvature of a face of size i

in k-regular polyhedra. Note that c3(i) =
6−i
6
, c4(i) =

4−i
4
, c5(i) =

10−3i
10
. Most works

are focused on positive curvature ck(i) > 0, and nonnegative curvature ck(i) ≥ 0. For

example, a 3-regular polyhedron of nonnegative curvature only consists of 3-, 4-, 5- and

6-gons, and 3p3 + 2p4 + p5 + 0p6 = 12.

A sequence of nonegative integer p = (p3, · · · , pi, · · · ) is called a p-vector if it satifies
the Euler formula of plane graph, where pi is considered as the number the i-gons of

the plane graph. For shorter, we write out only the beginning part of a p-vector which

interests us and leaving out the infinite sequence of zeros following it. We say a p-vector

p = (p3, · · · , pi, · · · ) is realizable if there exists a polyhedron P such that p = p(P ). In

general, p is 3-, 4- or 5-realizable if the polyhedral graph is 3-, 4- or 5-regular, respectively.

There some questions about p-vector are arised frequently:

(1) What p-vectors are realizable?

(2) What values of p6 are 3-realizable?

(3) What values of p4 are 4-realizable?

In fact, the 3-realizable of bifaced polyhedra is of major importance in chemical appli-

cation [1]. A bifaced polyhedron is a polyhedron only has faces of two kinds of sizes, pa

a-gons and pb b-gons (3 ≤ a < b), so its p-vector p = (· · · , pa, · · · , pb), where pi = 0, if i �=
a, b. Fullerenes [27] and Pentaheptites [10] are two particular cases of this kind, which have

p = (0, 0, p5, p6) and p = (0, 0, p5, 0, p7), respectively. For p = (0, 0, p5, ..., pb), b ≥ 7 de-

fined as fulleroids [5, 15], Jendrol’ et al. [23] and Kardǒ [25] found necessary and sufficient

conditions for some of their existence. More generally, Deza and coworkers have consid-

ered a number of polyhedra with different vertex degrees and various p-vectors. Their

early work [11] has solved the classification of some bifaced regular polyhedra, whose p-

vectors p = (0, p4, 0, p6), p = (0, 0, p5, p6), p = (p3, p4). Then in 2004 [17], they recalled

the well-known method of Goldberg-Coxeter construction to build a large collection of 3-

and 4-valent plane graphs, while some related structural properties, such as zigzags and

central circuits, are described in [7, 9]. Attention has turned to symmetry as another

important research object, and more recently to some 3-regular polyhedra with face size
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i ≤ 6[8] and some 4-regular self-dual polyhedra with faces of size 2,3, and 4 [16].

Herein, restricting our effort to some 4-regular polyhedral graphs with 5-gons (see

ref.[22] for our previous work on this topic), which are worth of studying in chemical

and biological contexts for at least two reasons. First, 4-valent polyhedra are expected

to appear in some supermolecules and clusters, such as space fullerenes [28] and crystal

structures [6]. Second, polyhedral structures having all pentagal capsomeres are observed

in virus capsids, such as polyoma virus for example[30].

We begin, in the next section, by recalling some preliminaries and listing our main

result, while the proof is given in the third section. Conclusions and references will close

this article.

2 Preliminaries and the main theorem

The progresses of 3- and 4- realizable of polyhedra are summarized in following theorems,

which provide some necessary knowledge for the present paper.

Theorem 2.1 (1) [20, Grünbaum] or [18, Eberhard] For every sequence (pk|3 ≤ k �= 6)
of nonnegative integers satisfying (1.1), there exist values of p6 such that the sequence

(pk|k ≥ 3) is 3-realizable;

(2) [20, Grünbaum] and [24, Jucovic] For every solution (pk|3 ≤ k �= 4) of nonnegative

integers satisfying (1.2), a values p4 exists such that the sequence (pk|k ≥ 3) is

4-realizable.

In the case of 3-realizable of polyhedra of nonnegative curvature, we have pi = 0, if i ≥
7 and the p-vector is shortened by (p3, p4, p5, p6). Let N0 be the set of all natural numbers

and 0, i.e. N0 = {0, 1, 2, · · · }.

Theorem 2.2 [21, Grünbaum and Motzkin] and [29, Plastria] or [20]

(1) The p-vector (0, 6, 0, p6) and (0, 0, 12, p6) is 3-realizable if and only if p6 ∈ N0 \ {1};

(2) The p-vector (4, 0, 0, p6) is 3-realizable if and only if p6 ∈ N
e
0 \ {2};
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(3) The p-vector (3, 1, 1, p6) is 3-realizable if and only if p6 ∈ N
o
0 \ {1},

where N
e
0 and N

o
0 denote the sets of even and odd number of N0, respectively.

In particular, the following theorem relates to the isolated pentagon rule in fullerenes.

Theorem 2.3 [26, Klein and Liu] For every positive integers n(n = 20 or n ≥ 25) there

exist a polyhedra with p5 = 12 and p6 = n such that any two pentagons are disjoint.

Theorem 2.4 [29, Plastria]

(1) The p-vectors (2, 2, 2, p6), (1, 3, 3, p6), (0, 4, 4, p6), (0, 3, 6, p6) and (0, 2, 8, p6) is 3-realizable

for any p6 ∈ N0;

(2) The p-vectors (2, 1, 4, p6) and (1, 2, 5, p6) is 3-realizable if and only if p6 ∈ N0 \ {0};

(3) The p-vectors (2, 0, 6, p6) and (0, 5, 2, p6) is 3-realizable if and only if p6 ∈ N0 \ {1};

(4) The p-vectors (1, 4, 1, p6), (1, 1, 7, p6) and (0, 1, 10, p6) is 3-realizable if and only if

p6 ∈ N0 \ {0, 1};

(5) The p-vector (3, 0, 3, p6) is 3-realizable if and only if p6 ∈ N0 \ {0, 2, 4};

(6) The p-vector (2, 3, 0, p6) is 3-realizable if and only if p6 ∈ N0 \ {1, 3, 7};

(7) The p-vector (1, 0, 9, p6) is 3-realizable if and only if p6 ∈ N0 \ {0, 1, 2, 4}.

These results have solved completely the 3-realizable of p-vectors of nonnegative cur-

vature on the plane or the sphere. Plastria [29] also obtained similar results on the torus,

the projective plane and the Klein bottle almost.

In the case of 4-realizable of polyhedra of nonnegative curvature, the similarly question

becomes easier: pi = 0, i ≥ 5, and the shorter p-vector is (p3, p4).

Theorem 2.5 [20, Grünbaum] The p-vector (8, p4) is 4-realizable if and only if p4 ∈
N0 \ {1}.
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The polyhedra (0, 6, 0, p6), (0, 0, 12, p6),(4, 0, 0, p6) in Theorem 2.2 (1), (2) and (8, p4, 0, 0)

Theorem 2.5 relate to bifaced polyhedra with only a- and b-gonal faces and 3 ≤ a < b. If

both pa and pb are fixed, then the polyhedron is fixed and trival. If pb is variational and

pa is fixed in a bifaced polyhedron, then the curvature of b-gon must be zero. This means

2k + 2b− kb = 0, i.e., 1
b
+ 1

k
= 1

2
. Considering the planarity of the polyhedral graph, this

equation has only two solutions (k, b) = (3, 6) and (4, 4). For k = 3, i.e., 3-regular bifaced

polyhedra, there are three sub-solutions (b = 6): (a, pa) = (5, 12) (the famous family

of fullerenes), (4, 6) (BN-fullerenes) and (3, 4). For k = 4, there only one sub-solution

(b = 4): (a, pa) = (3, 8) (octahedrites [12, 13]). If both pa and pb are variational, the

a-gons must be the positive curvature faces and b-gons must be the negative curvature

faces. No matter what k = 3, 4 or 5, there are infinity sub-solutions:

k = 3 : (6− a)pa = 12 + (b− 6)pb, a = 3, 4, 5, b = 7, 8, · · · ;
k = 4 : p3 = 8 + (b− 4)pb, b = 5, 6, · · · ;
k = 5 : p3 = 20 + (3b− 10)pb, b = 4, 5, · · · .

In this paper, we derive a sufficient and necessary condition on the p-vector of the

family of polyhedra with k = 4, b = 5 and also some zero-curvature 4-gons. Now the

p-vector is (p3, p4, p5) and Euler formula is

p3 = 8 + p5.

Using similarly methods with Grünbaum and Motzkin’s work, we prove the following

main result:

Theorem 2.6 The p-vector p = (p5+8, p4, p5) is 4-realizable if and only if p /∈ {(9, 0, 1),
(11, 0, 3), (13, 0, 5), (8, 1, 0), (9, 1, 1), (9, 2, 1)}.

3 Proof of the main theorem

For certain polyhedra with small number of pentagons, the existence, especially the in-

existence can be proved by the performing computer program–Plantri [2, 3]. Using the

program, we exhaustively enumerate all polyhedra (i.e. all 4-regular and 3-connected

planar graph) for certain small value p5. And obtain the existence and inexistence from

these results.
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The method of proving existence of certain polyhedra with large number of pentagons

is similar to the proof Theorem 2.1 and 2.2.

Our proofs begin with the definition of two families of certain configurations, belts

B and hats H, and the proofs are done by the manipulation of pasting them. The

belts and hats are some patches containing 3-gons, 4-gons and 5-gons, see Fig. 1 and

Fig. 2. In these patches, all 3-valent vertices (which are called boundary vertices) lie

on one or two 4-gonal faces (the boundary cycle of which are called boundary of the

patch), and all other vertices are 4-valent. Thus, a belt is a patch with two boundaries,

whereas a hat is one with a single boundary. In general, belts and hats are labeled Bm
n

and Hm
n , where the superscript m and the subscript n denotes the number of p4 except

boundary 4-cycles and p5, respectively. When doing the manipulation of belts and hats,

we paste their corresponding bounderies together, i.e., the coresponding 4-cycles overlap

each other. Accordingly, all 3-valent (boundary) vertices transform to 4-valent with the

disappearance of 4-gonal boundaries, and therefore a 4-regular polyhedron is constructed.

For example, as shown in Fig. 1, if pasting the boundary of H0
0 to the boundary of H

0
6 ,

then a polyhedron H0
6 +H

0
0 is obtained, and if pasting two boundaries of B

0
8 , respectively,

to the boundary of H0
0 and the boundary of H

0
6 , then a polyhedra H

0
6 + B0

8 +H0
0 is also

obtained. The manipulation of pasting many of belts B4
0 are also called Infaltion [29] and

m-elongation [7, 9] along a central circuit with length 4.

B
0

8
H B H+ +

0 0 0

0 8 6
H H+

0 0

0 6
B

4

0

Fig. 1. Belt B0
8 , B

4
0 and Schlegel projections of polyhedrons H

0
6 +H

0
0 and H

0
6 +B

0
8 +H

0
0 .

Lemma 3.1 The p-vector p = (p5+8, 0, p5) is 4-realizable if and only if p5 ∈ N0\{1, 3, 5}.

Proof: We construct the polyhedron P by belt B0
8 and hats shown in Fig. 2.
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Case 1: 6 ≤ p5 ≤ 13. Let P = H0
0 +H0

p5
, if 6 ≤ p5 ≤ 11 and P = H0

6 +H0
p5−6 otherwise.

Case 2: p5 ≥ 14. Then there exist nonnegative integer k, r such that p5 − 6 = 8k + r, 0 ≤
r ≤ 7. Now 6 ≤ r + 6 ≤ 13. Hence, by Case 1, we may set P = H0

0 + kB0
8 + H0

r+6, if

0 ≤ r ≤ 5 and P = H0
6 + kB0

8 +H0
r otherwise.

H
0

0
H

0

6

H
0

11H
0

10
H

0

9

H
0

8
H

0

7

Fig. 2. Some hats with p4 = 0.

Case 3: p5 ≤ 5. If p5 = 0 then let P = H0
0 +H0

0 be the octahedron. The polyhedra with

p5 = 2, 4 are listed in Fig. 3. There exists no polyhedron with p5 = 1, 3, 5 and p4 = 0.

,p p= =2
5 4

0 ,p p == 4
5

0
4

,p p 2
5

0
4

= = ,p p= =0 3
5 4

,p p= =1 3
5 4

Fig. 3. Some polyhedra with little p5 and p4.

Lemma 3.2 The p-vector (p5 + 8, 1, p5) is 4-realizable if and only if p5 ∈ N0 \ {0, 1}.

Proof: In the same way, we construct the polyhedron P by belt B0
8 and some hats

shown in Fig. 2 and Fig. 4.

Case 1: 2 ≤ p5 ≤ 9. Let P = H0
0 +H1

p5
, if 2 ≤ p5 ≤ 7 and P = H0

6 +H1
p5−6 otherwise.
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H
1

2

H
1

7
H

1

6H
1

5

H
1

4
H

1

3

Fig. 4. Some hats with p4 = 1.

Case 2: p5 ≥ 10. Then there exist nonnegative integer k, r such that p5 − 2 = 8k + r, 0 ≤
r ≤ 7. Now 2 ≤ r + 2 ≤ 9. Hence, by Case 1, we may set P = H0

0 + kB0
8 + H1

r+2, if

0 ≤ r ≤ 5 and P = H0
6 + kB0

8 +H1
r−4 otherwise.

Case 3: There exists no polyhedron with p5 = 0, 1 and p4 = 1.

Lemma 3.3 The p-vector (p5 + 8, 2, p5) is 4-realizable if and only if p5 ∈ N0 \ {1}.

Proof: We construct the polyhedron P by belt B0
8 and hats shown in Fig. 2, Fig. 4

and Fig. 5.

Case 1: 2 ≤ p5 ≤ 9. Let P = H0
0 +H2

p5
, if 2 ≤ p5 ≤ 5 and P = H1

2 +H1
p5−2 otherwise.

H
2

5
H

2

3
H

2

2
H

2

4

Fig. 5. Some hats with p4 = 2.

Case 2: p5 ≥ 10. Then there exist nonnegative integer k, r such that p5 − 2 = 8k + r, 0 ≤
r ≤ 7. Now 2 ≤ r + 2 ≤ 9. Hence, by Case 1, we may set P = H0

0 + kB0
8 + H2

r+2, if

0 ≤ r ≤ 3 and P = H1
2 + kB0

8 +H1
r otherwise.
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Case 3: p5 ≤ 1. The polyhedron with p5 = 0 is listed in Fig. 3. There exists no polyhedron

with p5 = 1 and p4 = 2.

Lemma 3.4 The p-vector (p5 + 8, 3, p5) is 4-realizable for all nonnegative integer p5.

Proof: We construct the polyhedron P by belt B0
8 and hats shown in Fig. 2, Fig. 4,

Fig. 5 and Fig. 6.

Case 1: 2 ≤ p5 ≤ 9. Let P = H0
0 +H3

p5
, if 2 ≤ p5 ≤ 5 and P = H1

p5−2 +H2
2 otherwise.

H
3

3
H

3

4
H

3

2
H

3

5

Fig. 6. Some hats with p4 = 3.

Case 2: p5 ≥ 10. Then there exist nonnegative integer k, r such that p5 − 2 = 8k + r, 0 ≤
r ≤ 7. Now 2 ≤ r + 2 ≤ 9. Hence, by Case 1, we may set P = H0

0 + kB0
8 + H3

r+2, if

0 ≤ r ≤ 3 and P = H1
r + kB0

8 +H2
2 otherwise.

Case 3: p5 ≤ 2. The polyhedra with p5 = 0, 1 are listed in Fig. 3.

Lemma 3.5 The p-vector (p5 + 8, 4, p5) is 4-realizable for all nonnegative integer p5.

Proof: We construct the polyhedron P by belts B0
8 , B

4
0 and hats shown in Fig. 2, Fig.

7 and Fig. 8.

Case 1: 1 ≤ p5 ≤ 5. Let P = H0
0 +H4

p5
.

Case 2: p5 = 0 or p5 ≥ 6. By Lemma 3.1, there exist a polyhedron P ′ with p5 pentagons

and 0 quadrilaterals such that P ′ = H0
a+kB

0
8+H

0
b , where k, a, b ∈ N0 and 8k+a+b = p5.

Then P = H0
a + kB0

8 + B4
0 +H0

b is the expected polyhedron.

Lemma 3.6 The p-vector (9, p4, 1) is 4-realizable for all integer p4 ≥ 3.

Proof: We construct the polyhedron P by belt B4
0 and hats shown in Fig. 8.
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H
4

3
H

4

4
H

4

2
H

4

5

Fig. 7. Some hats with p4 = 4.

H
5

1
H

6

1
H

4

1
H

7

1

Fig. 8. Some polyhedra with p5 = 1.

Case 1: 4 ≤ p4 ≤ 7. Let P = H0
0 +Hp4

1 .

Case 2: p4 ≥ 8. Then there exist nonnegative integer l, s such that p4 − 4 = 4l + s, 0 ≤
s ≤ 3. Now 4 ≤ s+ 4 ≤ 7. Hence, by Case 1, we may set P = H0

0 + lB4
0 +Hs+4

1 .

Case 3: p4 ≤ 3. The polyhedra with p4 = 3 are listed in Fig. 3. There exists no

polyhedron with p5 = 1 and p4 = 0, 1, 2.

Now it is the time to prove our main result.

Proof of Theorem 2.6: Case 1: p5 = 0. This is just the result of Theorem 2.5.

Case 2: p5 = 1. This has been solved in Lemma 3.6.

Case 3: 0 ≤ p4 ≤ 4. They are the results of Lemmas 3.1 to 3.5.

Case 4: p4 ≥ 5 and p5 ≥ 2. Then there exist nonnegative integer l, s such that p4−1 = 4l+
s, 0 ≤ s ≤ 3. Now 1 ≤ s+1 ≤ 4. Hence, by Lemmas 3.2 to 3.5, there exists a polyhedron

P ′ with p-vector (p5+8, s+1, p5) and P ′ = Hma
a + kB0

8 +H
mb
b , where a, b, k,ma,mb ∈ N0

and ma + mb = s + 1, a + b + 8k = p5. Now let P = Hma
a + kB0

8 + lB4
0 + Hmb

b , where

ma +mb + 4l = s + 1 + 4l = p4, a + b + 8k = p5. It easy to see that P is the required

polyhedron.
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4 Conclusions

Using belts and hats as building patches, two new classes of 4-regular polyhedra containing

pentagons have been constructed. One has only faces of 3-gons and 5-gons, the other has

faces of 3-gons, 4-gons and 5-gons. Furthermore, the sufficient and necessary condition

for their existence is given.

It has also been shown that 3-regular polyhedra are feasible candidates for carbon

molecular models. So the justification of chemical polyhedra is just limit to 3-regular.

Likewise, the study of 4-regular polyhedra may be of another interest in forming blueprint

for supermolecules and clusters. This systematic research therefore is an effective com-

plement to earlier works.

The symmetry principle derived from nature plays an important role in determining

the structure of molecules. Applying symmetry constraints to these polyhedra provide

potential models for virus capsids. For patches of belts and hats, they all have positive

curvaturtes and main building blocks are pentagons. The construction provides a novel

insight into the structural puzzles that especial viruses whose capsomers are all pentamers.

The further consideration of such polyhedra with high symmetry shall be discussed in

detail elsewise.
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