
Distributional Chaos of Generalized

Belusov–Zhabotinskii’s Reaction Models

Juan Luis Garćıa Guirao
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Abstract

In this paper we study the dynamics of a family of coupled lattice dynamical systems

(CLS), of the form xm+1
n = (1 − ε)f(xmn ) + ε/2[f(xmn−1) + f(xmn+1)], which generalize the

model stated by K. Kaneko in [Phys. Rev. Lett., 65, 1391-1394, 1990] for the Belusov–

Zhabotinskii’s chemical reaction. We present a definition of distributional chaos on a se-

quence (DCS) for CLS systems and we state two different sufficient conditions for having

DCS.

1. INTRODUCTION

Discrete Dynamical Systems (DDS’s), i.e., a couple composed by a space X (usually

compact and metric) and a continuous self–map ψ on X, are an active line of research

in mathematics (see e.g., [1] or [5]) because they model many phenomena coming

from biology, physics, chemistry, engineering and social sciences (see for example, [4],

[12], [18] or [17]). In most cases in the formulation of such models ψ is a C∞, an

analytical or a polynomial map.

Coming from physical/chemical engineering applications, such a digital filtering,

imaging and spatial vibrations of the elements which compose a given chemical prod-

uct, a generalization of DDS’s have recently appeared as an important subject of
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research, we mean the so called Lattice Dynamical Systems or 1d Spatiotemporal Dis-

crete Systems (LDS). In the next section we provide all the definitions. To show the

importance of these type of systems, see for instance [2].

To analyze when one of this type of systems have a complicated dynamics or not

by the observation of one topological dynamics property is an open problem.

The aim of the present paper is, by the introduction of the notion of distribu-

tional chaos on a sequence (DCS) for coupled lattice systems (CLS), to characterize

the dynamical complexity of a coupled lattice family of systems which generalizes

the model stated by K. Kaneko in [11] (for more details see for references therein)

for studying the Belusov–Zhabotinskii chemical reaction. We present two different

sufficient conditions for having DCS for this family of CLS. These results complete

and generalize [6, 7] where Li-Yorke chaos and topological entropy are respectively

studied for the Belusov–Zhabotinskii chemical reaction. Notation and definitions will

be provided in next sections.

The statement of our main results is the following:

Theorem A. Let f be a continuous self-map defined on a compact interval [a, b].

If f is Li–Yorke chaotic, then the CLS system defined by f in the form (4) is dis-

tributionally chaotic with respect to a sequence considering [a, b]∞ endowed with the

metrics ρi, i = 1, 2, respectively.

Theorem B. Let f be a continuous self-map defined on a compact interval [a, b]. If

f has positive topological entropy, then the CLS system defined by f in the form (4)

has an uncountable distributionally scrambled set, composed by almost periodic points,

with respect to a sequence considering [a, b]∞ endowed with the metrics ρi, i = 1, 2,

respectively.

2. LATTICE DYNAMICAL SYSTEMS

The state space of LDS (Lattice Dynamical System) is the set

X = {x : x = {xi}, xi ∈ R
d, i ∈ Z

D, ‖xi‖ < ∞},
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where d ≥ 1 is the dimension of the range space of the map of state xi, D ≥ 1 is

the dimension of the lattice and the l2 norm ‖x‖2 = (Σi∈ZD | xi |2)1/2 is usually taken

(| xi | is the length of the vector xi).

K. Kaneko [11] states the following 1d-LD CML (Coupled Map Lattice) (for more

details see for references therein) which is related to the Belusov–Zhabotinskii reaction

(see [12] and for experimental study of chemical turbulence by this method [10], [9],

[8]):

xm+1
n = (1− ε)f(xm

n ) + ε/2[f(xm
n−1)− f(xm

n+1)], (1)

where m is discrete time index, n is lattice side index with system size L (i.e. n =

1, 2, . . . L), ε is coupling constant and f(x) is the unimodal map on the unite closed

interval I = [0, 1], i.e. f(0) = f(1) = 0 and f has unique critical point c with

0 < c < 1 such that f(c) = 1. For simplicity we will deal with so called “tent map”,

defined by

f(x) =

{
2x, x ∈ [0, 1/2),
2− 2x, x ∈ [1/2, 1].

(2)

In general, one of the following periodic boundary conditions of the system (1) is

assumed:

1. xm
n = xm

n+L,

2. xm
n = xm+L

n ,

3. xm
n = xm+L

n+L ,

standardly, the first case of the boundary conditions is used.

The equation (1) was studied by many authors, mostly experimentally or semi-

analytically than analytically. The first paper with analytic results is [3], where it

was proved that this system is Li–Yorke chaotic, [7] gives alternative and easier proof

of it. Moreover in [6] the complexity via the notion of positive topological entropy is

analyzed.
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Example 1. Consider, as an example the 2–element one–way coupled logistic lattice

(OCLL, see [13]) H : I2 → I2 written as

xm+1
1 = (1− ε)f(xm

1 ) + εf(xm
2 ),

xm+1
2 = εf(xm

1 ) + (1− ε)f(xm
2 ),

(3)

where f is the tent map.

In this paper we consider the family of coupled lattice dynamical systems (CLS),

of the form

xm+1
n = (1− ε)f(xm

n ) + ε/2[f(xm
n−1) + f(xm

n+1)], (4)

where f is a continuous interval map without any more restrictions. This family

contains CML systems of the form (1).

3. FROM CLS TO CLASSICAL DDS

Consider the set of sequences of real numbers

R∞ = {(..., a−2, a−1, a0, a1, a2, ...) : an ∈ R, n ∈ Z}.

Let x1 = (xm
1 )m∈Z, x2 = (xm

2 )m∈Z ∈ R∞, in R∞ we consider the following two non-

equivalent metrics:

ρ1(x1, x2) =
n=∞∑
n=−∞

|x1
n − x2

n|
2|n|

(5)

and

ρ2(x1, x2) = sup{∣∣x1
n − x2

n

∣∣ : n ∈ Z}. (6)

Note that (R∞, ρi), i = 1, 2, is a complete metric space. We consider [a, b]∞

the subset of R∞ composed by sequences with terms in the compact interval [a, b]

endowed with the restriction of ρi.

Let N0 = N ∪ {0} and f : [a, b] → [a, b] be a continuous self–map. Let x =

{xn
m : m ∈ N0, n ∈ Z} be a solution of the CLS system (4) with initial condition

α = (αn = α0
n)n∈Z where αn ∈ [a, b] for all n ∈ Z.
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Define for all m ∈ N0, xm = (..., xm
−1, x

m
0 , x

m
1 , ...) and consider the self-map Ff

defined on [a, b]∞ in the form

Ff (xm) = (..., xm+1
−1 , xm+1

0 , xm+1
1 , ...) = xm+1 (7)

where x0 = α and xm+1
n = (1− ε)f(xm

n ) + ε/2[f(xm
n−1) + f(xm

n+1)], m ∈ N0.

Remark 2. From the previous construction, for a given self-map f defined on a

compact interval [a, b], the CLS system (1) associated with f is equivalent to the

classical dynamical system ([a, b]∞, Ff ) where Ff is defined in (7).

4. DEFINITIONS AND AUXILIARY RESULTS

Let us start introducing two of the most well–known notions of chaos for classical

DDS. Consider f be a self–map defined on a compact interval [a, b].

Definition 3. A pair of points x, y ∈ [a, b] is called a Li-Yorke pair if

1. lim supn→∞ |fn(x), fn(y)| > 0

2. lim infn→∞ |fn(x), fn(y)| = 0.

The map f is Li-Yorke chaotic if it has a Li-Yorke pair.

Remark 4. In the setting of DDS defined on compact metric spaces different from

compact intervals and the circle the definition of Li-Yorke chaos is given via the

existence of an uncountable scrambled set, i.e., an uncountable set such that every

two points are a Li-Yorke pair. In the case of interval and circle system the existence

of one Li-Yorke pair implies the presence of an uncountable number of them (see [14]).

Let {pi}i∈N be an increasing sequence of positive integers, let x, y ∈ [a, b] and

t ∈ R. Let

φ(n)
xy (t, {pi}i∈N) :=

1

n
#{i : |f pi(x)− f pi(y)| < t, 0 ≤ i < n},

φxy(t, {pi}i∈N) := lim inf
n→∞

φ(n)
xy (t, {pi}i∈N),

φ∗
xy(t, {pi}i∈N) := lim sup

n→∞
φ(n)
xy (t, {pi}i∈N)

where #(A) denotes the cardinality of a set A. Using these notations distributional

chaos with respect to a sequence is defined as follows:
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Definition 5. A pair of points (x, y) ∈ [a, b]2 is called distributionally chaotic with re-

spect to a sequence {pi}i∈N if φxy(s, {pi}i∈N) = 0 for some s > 0 and φ∗
xy(t, {pi}i∈N) =

1 for all t > 0.

A set S containing at least two points is called distributionally scrambled with

respect to {pi}i∈N if any pair of distinct points of S is distributionally chaotic with

respect to {pi}i∈N.
A map f is distributionally chaotic with respect to {pi}i∈N, if it has an uncount-

able set distributionally scrambled with respect to {pi}i∈N.

Definition 6. A point x is called almost periodic of f , if for any ε > 0 there exists

N > 0 such that for any q ≥ 0, there exists r, q < r ≤ q+N , holding |f r(x)− x| < ε.

By AP(f) we denote the set of all almost periodic points of f .

The following results from Oprocha [16] and Liao et al. [15] will play a key role in

the proof of our main results.

Lemma 1. Let f be a continuous self-map on [a, b]. The map f is Li–Yorke chaotic

iff there exists an increasing sequence {pi}i∈N such that f is distributionally chaotic

repect to {pi}i∈N.

Lemma 2. Let f be a continuous self-map on [a, b]. If f has positive topological

entropy, then there exists an increasing sequence {pi}i∈N such that f has an uncount-

able distributionally scrambled set T with respect to {pi}i∈N. Moreover, the set T is

composed by almost periodic points.

For details on the definition of topological entropy see [19].

5. PROOF OF THE MAIN RESULTS

Note that the definition of distributional chaos in a sequence {pi}i∈N for a continuous

self-map f defined on an interval [a, b] is equivalent to the existence of an uncountable

subset S ⊂ [a, b] such that for any x, y ∈ S, x 
= y,

• there exists δ > 0 such that

lim inf
n→∞

1

n

n∑
i=1

χ[0,δ)(|f pi(x)− f pi(y)|) = 0,
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• for every t > 0,

lim sup
n→∞

1

n

n∑
i=1

χ[0,t)(|f pi(x)− f pi(y)|) = 1,

where χA(x) = 1 if x ∈ A and χA(x) = 0 otherwise.

Proof of Theorem A. Since the map f is Li–Yorke chaotic, by Lemma 1 there exists

an increasing sequence {pi}i∈N such that f is distributionally chaotic with repect to

{pi}i∈N. Let S ⊂ [a, b] be the uncountable set distributionally scrambled with respect

to {pi}i∈N for f . Let E ⊂ [a, b]∞ be the uncountable set such that each element

of it is a constant sequence equal to an element of S. Let x = {xn = a}n∈N and

y = {yn = b}n∈N be two differnt elements of E. Then, there exists δ > 0 such that

lim inf
n→∞

1

n

n∑
i=1

χ[0,δ)(ρ1(F
pi(x), F pi(y))) =

lim inf
n→∞

1

n

n∑
i=1

χ[0,δ)(
∞∑

n=−∞

|fpi(a)− f pi(b)|
2|n|

) =

lim inf
n→∞

1

n

n∑
i=1

χ[0,δ)(3 |f pi(a)− f pi(b)|) = 0.

and for every t > 0 is

lim sup
n→∞

1

n

n∑
i=1

χ[0, t
3
)(ρ1(F

pi(x), F pi(y))) =

lim sup
n→∞

1

n

n∑
i=1

χ[0, t
3
)(

∞∑
n=−∞

|f pi(a)− f pi(b)|
2|n|

) =

lim sup
n→∞

1

n

n∑
i=1

χ[0, t
3
)(3 |f pi(a)− f pi(b)|) = 1.

In a similar way for the distance ρ2 we have that there exists δ∗ > 0 such that

lim inf
n→∞

1

n

n∑
i=1

χ[0,δ∗)(ρ2(F
pi(x), F pi(y))) =

lim inf
n→∞

1

n

n∑
i=1

χ[0,δ∗)(sup |fpi(a)− fpi(b)|) =

lim inf
n→∞

1

n

n∑
i=1

χ[0,δ∗)(|f pi(a)− fpi(b)|) = 0,
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and for every t > 0 is held

lim sup
n→∞

1

n

n∑
i=1

χ[0,t)(ρ2(F
pi(x), F pi(y))) =

lim sup
n→∞

1

n

n∑
i=1

χ[0,t)(sup |f pi(a)− f pi(b)|) =

lim sup
n→∞

1

n

n∑
i=1

χ[0,t)(|f pi(a)− f pi(b)|) = 1.

Thus, F is distributionally chaotic with respect to {pi}i∈N respectively using in

[a, b]∞ the metrics ρ1 and ρ2 ending the proof.

Proof of Theorem B. Since f has positive topological entropy by Lemma 2 there exists

an increasing sequence {pi}i∈N such that f is distributionally chaotic with repect

to {pi}i∈N. Let S ⊂ [a, b] be the uncountable set distributionally scrambled with

respect to {pi}i∈N for f composed by almost periodic points. Let E ⊂ [a, b]∞ be

the uncountable set such that each element of it is a constant sequence equal to an

element of S. The proof of Theorem A states that E is an uncontable distributionally

scrambled set for F with respect to {pi}i∈N. Now, we shall see that E is composed

by almost periodic points of F respectively for the metrics ρ1 and ρ2. Indeed, let

α = {xn = x∗}n∈N ∈ E where x ∈ AP(f). Then, for any ε > 0 there exists N > 0

such that for any q ≥ 0, there exists r, q < r ≤ q +N , holding |f r(x∗)− x∗| < ε. In

this setting,

ρ1(F
r(x0), x0) =

∞∑
n=−∞

|f r(x∗)− x∗|
2|n|

< 3ε

and

ρ2(F
r(x0), x0) = sup |f r(x∗)− x∗| ≤ ε

3
,

proving that E ⊂ AP(F ) ending the proof.

Acknowledgement . This work has been partially supported by MCI (Ministerio de

Ciencia e Innovacin) and FEDER (Fondo Europeo Desarrollo Regional), grant num-

ber MTM2008–03679/MTM, Fundacin Sneca de la Regin de Murcia, grant number

08667/PI/08 and JCCM (Junta de Comunidades de Castilla-La Mancha), grant num-

ber PEII09-0220-0222.

-342-



References

[1] L. S. Block, W. A. Coppel, Dynamics in One Dimension, Springer–Verlag,

Berlin, 1992.

[2] J. R. Chazottes, B. Fernández, Dynamics of Coupled Map Lattices and of Re-

lated Spatially Extended Systems, Lecture Notes in Physics 671, Springer–Verlag,

Berlin, 2005.

[3] G. Chen, S. T. Liu, On spatial periodic orbits and spatial chaos, Int. J. Bifurc.

Chaos 13 (2003) 935–941.

[4] R. A. Dana, L. Montrucchio, Dynamical complexity in duopoly games, J. Econom.

Theory 40 (1986) 40–56.

[5] R. L. Devaney, An Introduction to Chaotics Dynamical Systems, Ben-

jamin/Cummings, Menlo Park, 1986.
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