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HAPPY 80-th BIRTHDAY

PROFESSOR RANDIĆ

Abstract

Let G be a simple connected graph with n vertices and let di be the degree of its i-th
vertex. The Randić matrix of G is the square matrix of order n whose (i, j)-entry is equal
to 1/

√
di dj if the i-th and j-th vertex of G are adjacent, and zero otherwise. The Randić

eigenvalues are the eigenvalues of the Randić matrix. The greatest Randić eigenvalue is
the Randić spectral radius of G . The Randić energy is the sum of the absolute values
of the Randić eigenvalues. Lower bounds for Randić spectral radius and an upper bound
for Randić energy are obtained. Graphs for which these bounds are best possible are
characterized.
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1 Introduction

Let G be a simple connected graph on the vertex set V (G) = {v1, v2, . . . , vn} . If two

vertices vi and vj of G are adjacent, then we use the notation vi ∼ vj . For vi ∈ V (G) ,

the degree of the vertex vi , denoted by di , is the number of the vertices adjacent to

vi . Let A(G) be adjacency matrix of G and λ1, λ2, . . . , λn its eigenvalues. These are

said to be the eigenvalues of the graph G and to form its spectrum [1,2].

The energy E(G) of a graph G is defined as the sum of the absolute values of its

eigenvalues:

E = E(G) =

n∑
i=1

|λi| . (1)

Details and more information on graph energy can be found in the reviews [3–6] and

the recent papers [7–13].

The Randić matrix of G is the n × n matrix R = R(G) = ‖Rij‖ defined via

Rij =

⎧⎪⎨
⎪⎩

1√
di dj

if vi ∼ vj

0 otherwise

.

This matrix was earlier studied [14–17] in connection with the Randić index. Its role

in the Laplacian spectral theory was clarified in the recent article [18].

The Randić eigenvalues ρ1, ρ2, . . . , ρn of a graph G are the eigenvalues of its Randić

matrix R . Since R is a real symmetric matrix, all its eigenvalues are real numbers

and thus we can order them so that ρ1 ≥ ρ2 ≥ · · · ≥ ρn . The greatest eigenvalue ρ1

will be called the Randić spectral radius of the graph G .

The concept of Randić energy of a graph G , denoted by RE(G) , was introduced

in [18] as:

RE = RE(G) =
n∑

i=1

|ρi|

and was conceived in full analogy with the ordinary graph energy, Eq. (1). In [18]

some bounds for RE were obtained.

In this paper, we obtain lower bounds for ρ1 and an upper bound for RE . We

then characterize graphs for which these bounds are best possible.

In the subsequent section we give a few definitions that will be needed for the

formulation and proof of our main results.
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2 Auxiliary definitions

• Let G be a graph with vertex set V (G) = {v1, v2, . . . , vn} and Randić matrix

R . Then the Randić degree of vi , denoted by Ri , is given by

Ri =
n∑

j=1

Rij .

• Let G be a graph with vertex set V (G) = {v1, v2, . . . , vn} and Randić matrix R.

Let its Randić degree sequence be {R1, R2, . . . , Rn} . Then the second Randić

degree of vi , denoted by Si , is given by

Si =
n∑

j=1

Rij Rj .

• Let G be a graph with Randić degree sequence {R1, R2, . . . , Rn} . Then G is a

k-Randić regular if Ri = k , for all i .

• Let G be a graph with Randić degree sequence {R1, R2, . . . , Rn} and second

Randić degree sequence {S1, S2, . . . , Sn} . Then G is pseudo k-Randić regular if

Si/Ri = k for all i .

• Let G be a graph with the Randić matrix R. Then the Randić index of G ,

denoted by R(G) , is given by

R(G) =
1

2

n∑
i=1

Ri .

Although well known, we repeat that this molecular structure descriptor was

invented by Milan Randić in 1976 [19]; for details see the books [20–22], reviews

[23–26], and recent papers [27–29].

3 Lower bounds for Randić spectral radius

The following lemma is important for finding the best lower bound for Randić spectral

radius ρ1 .
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Lemma 1. Let G be a graph with n vertices. Then

n∑
i=1

Si =
n∑

i=1

R2
i .

Proof. By the definitions given in the preceding section,

Ri =
∑
i∼j

1√
di dj

and Si =
∑
i∼j

1√
di dj

Rj .

By the associativity of matrix multiplication, we obtain

S1 + S2 + · · · + Sn = (1, 1, . . . , 1) (R (R1, R2, . . . , Rn)T )

= ((1, 1, . . . , 1)R) (R1, R2, . . . , Rn)T

= R2
1 + R2

2 + · · · + R2
n .

Hence the result. �

Theorem 1. Let G be a simple connected graph with n vertices and let R(G) be

its Randić index. Then

ρ1 ≥ 2R(G)

n
. (2)

The equality holds in (2) if and only if G is Randić regular.

Proof is analogous to what was earlier used in [30]. Let X = 1√
n

(1, 1, . . . , 1)T

be a unit n-vector. By applying the Rayleigh principle to Randić matrix R of G we

obtain

ρ1 ≥ XTRX

XT X
=

1√
n

(R1,R2, . . . , Rn) 1√
n

(1, 1, . . . , 1)T

1

=
1

n

n∑
i=1

Ri =
2R(G)

n
.

Suppose now that G is Randić regular. The sum of each rows of R is equal to

a constant, say k . Clearly 2R(G) = nk . Then, by the Perron–Frobenius theorem,

k is the greatest and simple eigenvalue of R . Thus ρ1 = k = 2R(G)/n . Hence we

get the equality in (2), as required. Conversely if the equality holds, then X is the

eigenvector corresponding to ρ1 i. e., RX = ρ1 X . This implies that Ri = ρ1 holds

for all i . �
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Theorem 2. Let G be a simple connected graph on the vertex set

V (G) = {v1, v2, . . . , vn} and let Ri be the Randić degree of vi . Then

ρ1 ≥
√√√√ 1

n

n∑
i=1

R2
i . (3)

The equality holds in (3) if and only if G is Randić regular.

Proof. Let R be the Randić matrix of G and let X = (x1,x2, . . . , xn)T be the

unit positive Perron eigenvector of R corresponding to ρ1 . We take

C =
1√
n

(1, 1, . . . , 1)T .

Since C is a unit positive vector, we have

ρ1 = ρ1(R) =
√

ρ1(R2) =
√

XT R2 X ≥
√

CT R2 C .

Now

RC =
1√
n

R (1, 1, . . . , 1)T =
1√
n

(R1, R2, . . . , Rn)T .

Therefore

ρ1 ≥
√

CT R2 C =

√√√√1

n

n∑
i=1

R2
i .

Hence we arrived at inequality (3).

Consider now the case of equality. Suppose that G is Randić regular. Then Ri = k

for all i , and hence, by the Perron–Frobenius theorem, k is the greatest and simple

eigenvalue of R . Then

ρ1 = k =

√
nk2

n
=

√√√√ 1

n

n∑
i=1

R2
i

and hence the equality holds in (3). Conversely, if the equality holds in (3), then C is

the eigenvector corresponding to ρ1 . Then as in the proof of Theorem 1, we conclude

that G is Randić regular. �

In order to obtain a better lower bound for the Randić spectral radius we define

the sequence L
(1)
i , L

(2)
i , . . . , L

(p)
i , . . . , such that L

(1)
i = Rα

i whereas for p ≥ 2 ,

L
(p)
i =

∑
i∼j

1√
di dj

L
(p−1)
j .
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In these formulas, α ∈ R .

Theorem 3. Let G be a simple connected graph, α be a real number, and p be

an integer. Then

ρ1 ≥

√√√√√√√
n∑

i=1

(
L

(p+1)
i

)2

n∑
i=1

(
L

(p)
i

)2
. (4)

Equality in (4) holds if and only if

L
(p+1)
1

L
(p)
1

=
L

(p+1)
2

L
(p)
2

= · · · =
L

(p+1)
n

L
(p)
n

.

Proof. Let X = (x1, x2,...,xn)T be the unit positive Perron eigenvector of R

corresponding to ρ1 . In this case, let us take

C =
1√

n∑
i=1

(
L

(p)
i

)2

(
L

(p)
1 , L

(p)
2 , . . . , L(p)

n

)T

.

As previously, since C is a unit positive vector, we have

ρ1 = ρ1(R) =
√

ρ1(R2) =
√

XT R2 X ≥
√

CT R2 C . (5)

Furthermore

RC =
1√

n∑
i=1

(
L

(p)
i

)2

(∑
1∼j

1√
d1 dj

L
(p)
j ,
∑
2∼j

1√
d2 dj

L
(p)
j , . . . ,

∑
n∼j

1√
dn dj

L
(p)
j

)T

=
1√

n∑
i=1

(
L

(p)
i

)2

(
L

(p+1)
1 , L

(p+1)
2 , . . . , L(p+1)

n

)T

.

Then we obtain

ρ1 ≥
√

CT R2 C =

√√√√√√√
n∑

i=1

(
L

(p+1)
i

)2

n∑
i=1

(
L

(p)
i

)2
.

Suppose now that the equality holds in (4). From inequality (5), we get that C is

an eigenvector corresponding to ρ1 . Then RC = ρ1 C which implies L
(p+1)
i /L

(p)
i = ρ1

for all i .
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Conversely, let

L
(p+1)
1

L
(p)
1

=
L

(p+1)
2

L
(p)
2

= · · · =
L

(p+1)
n

L
(p)
n

= k .

Then RC = k C , that is, C is an eigenvector corresponding to k . Hence we get

ρ1 = k . Thus the equality holds in (4), as claimed. �

By setting α = 1 and p = 1 in (4), we directly get:

Corollary 1. Let G be a simple connected graph with Randić degree sequence

{R1, R2, . . . , Rn} and second Randić degree sequence {S1, S2, . . . , Sn} . Then

ρ1 ≥

√√√√√√√
n∑

i=1

S2
i

n∑
i=1

R2
i

. (6)

Equality holds if and only if G is pseudo k-Randić regular, for some k .

Theorem 4. The lower bound for ρ1 given in (4) improves the lower bounds

given in (2), (3), and (6).

Proof. For any fixed values α ∈ R and p ∈ N ,

ρ1 ≥

√√√√√√√
n∑

i=1

(
L

(p+1)
i

)2

n∑
i=1

(
L

(p)
i

)2
≥

√√√√√√√
n∑

i=1

S2
i

n∑
i=1

R2
i

.

By the Cauchy–Schwarz inequality and Lemma 1 we have√√√√√√√
n∑

i=1

S2
i

n∑
i=1

R2
i

≥

√√√√√√√
(

n∑
i=1

Si

)2

n
n∑

i=1

R2
i

=

√√√√√√√
(

n∑
i=1

R2
i

)2

n
n∑

i=1

R2
i

=

√√√√ n∑
i=1

R2
i

n
≥

√√√√√
(

n∑
i=1

Ri

)2

n2
=

2R(G)

n
.

Hence the result. �

Lemma 2. A simple connected graph G has two distinct Randić eigenvalues if

and only if G is complete.
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Proof is similar to that of Lemma 2 in [7]. Let G be a simple connected graph with

Randić matrix R . We suppose that G has exactly two distinct Randić eigenvalues.

Let these be ρ1 > ρ2 . Since G is connected, R is irreducible and by the Perron–

Frobenius theorem, ρ1 is the greatest and simple eigenvalue of R . Thus all other

eigenvalues of R are equal to ρ2 . In order to prove that G ∼= Kn we show that its

diameter is one. For this reason, we show that G does not contain an induced shortest

path Pm , m ≥ 3 .

Suppose that G contains an induced shortest path Pm , m ≥ 3 . Let B be the

principal submatrix of R indexed by the vertices of Pm and let μi(B) denote the i-th

eigenvalue of B . Then by the interlacing theorem we obtain

ρi(R) ≥ μi(B) ≥ ρr−m+i(R) , i = 1, 2, . . . , m

i. e.,

ρ2 ≥ μ2(B) ≥ μ3(B) ≥ · · · ≥ ρr = ρ2 .

From this we conclude that Pm has at most two distinct Randić eigenvalues for m ≥ 3 ,

which is impossible. Therefore G does not contain two vertices at distance two or

more, and hence it is complete graph. Conversely, if G ∼= Kn , then all non-zero terms

in R are equal to 1/(n − 1) which implies that R = 1
n−1

A . Therefore ρi = 1
n−1

λi for

i = 1, 2, . . . , n . From [1] it follows that G has exactly two distinct Randić eigenvalues

1 and −1/(n − 1) . �

4 Upper bound for Randić energy

In this section we present an upper bound for the Randić energy of graphs and

characterize those graphs for which this bound is the best possible. Our considerations

emulate those of Koolen and Moulton [31–33], used for estimating the ordinary graph

energy.
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Theorem 5. Let G be a simple connected graph. For any fixed values of α ∈ R

and p ∈ N ,

RE(G) ≤

√√√√√√√
n∑

i=1

(
L

(p+1)
i

)2

n∑
i=1

(
L

(p)
i

)2
+

√√√√√√√(n − 1)

⎡
⎢⎢⎣2
∑
i∼j

1

di dj

−

n∑
i=1

(
L

(p+1)
i

)2

n∑
i=1

(
L

(p)
i

)2

⎤
⎥⎥⎦. (7)

Equality holds if and only if G is a complete graph or a connected graph satisfying

L
(p+1)
1

L
(p)
1

=
L

(p+1)
2

L
(p)
2

= · · · =
L

(p+1)
n

L
(p)
n

= k ≥

√√√√2
∑
i∼j

1
di dj

n

with three distinct Randić eigenvalues

k ,

√√√√2
∑
i∼j

1
di dj

− k2

n − 1
and −

√√√√2
∑
i∼j

1
di dj

− k2

n − 1
. (8)

Proof. Let ρ1 ≥ ρ2 ≥ . . . ≥ ρn be the Randić eigenvalues of G . We know that

n∑
i=1

ρi = 0 ,

n∑
i=1

|ρi| = RE(G) ,

n∑
i=1

ρ2
i = 2

∑
i∼j

1

di dj

.

By the Cauchy–Schwarz inequality we get

n∑
i=2

|ρi| ≤
√√√√(n − 1)

n∑
i=1

ρ2
i =

√√√√(n − 1)

(
2
∑
i∼j

1

di dj

− ρ2
1

)
. (9)

Thus

RE(G) ≤ ρ1 +

√√√√(n − 1)

(
2
∑
i∼j

1

di dj

− ρ2
1

)
.

Again by the Cauchy–Schwarz inequality, we also get

R2
i =

(
n∑

j=1

Rij

)2

≤ n

n∑
j=1

R2
ij .

Then
n∑

i=1

R2
i ≤ n

n∑
i=1

n∑
j=1

R2
ij = 2n

∑
i∼j

1

di dj

.

Moreover

Si =
n∑

j=1

RijRj ≥
n∑

j=1

R2
ij and

n∑
i=1

S2
i ≥

n∑
i=1

(
n∑

j=1

R2
ij

)2

≥
(

2
∑
i∼j

1

di dj

)2
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resulting in

ρ1 ≥

√√√√√√√
n∑

i=1

S2
i

n∑
i=1

R2
i

≥
√

2

n

∑
i∼j

1

di dj

. (10)

By Theorem 4 and Eq. (10) we have

ρ1 ≥

√√√√√√√
n∑

i=1

(
L

(p+1)
i

)2

n∑
i=1

(
L

(p)
i

)2
≥

√√√√√√√
n∑

i=1

S2
i

n∑
i=1

R2
i

≥
√

2

n

∑
i∼j

1

di dj

. (11)

Let f be the function given by

f(x) = x +

√√√√(n − 1)

(
2
∑
i∼j

1

di dj

− x2

)

where x ≤
√

2
∑
i∼j

1/(di dj) . By direct calculation it can be shown that f monotoni-

cally decreases for x ≥
√

(2/n)
∑
i∼j

1/(di dj) , from which it follows

RE(G) ≤ f (ρ1) ≤ f

⎛
⎜⎜⎜⎝
√√√√√√√

n∑
i=1

(
L

(p+1)
i

)2

n∑
i=1

(
L

(p)
i

)2

⎞
⎟⎟⎟⎠

resulting in the inequality (7).

Now we suppose that the equality holds in (7). Then all inequalities in the above

argument must be equalities. From (11) we have

ρ1 =

√√√√√√√
n∑

i=1

(
L

(p+1)
i

)2

n∑
i=1

(
L

(p)
i

)2

which implies

L
(p+1)
1

L
(p)
1

=
L

(p+1)
2

L
(p)
2

= · · · =
L

(p+1)
n

L
(p)
n

.

In particular, by (9), we have

|ρi| =

√√√√2
∑
i∼j

1
di dj

− ρ2
1(R)

n − 1

for i = 2, . . . , n . Then there are three possibilities:
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• G has only one distinct Randić eigenvalue. Since
n∑

i=1

ρi = 0 and G is connected,

then G ∼= K1 .

• G has exactly two distinct Randić eigenvalues. Then by Lemma 2, G ∼= Kn for

some n ≥ 2 .

• G has exactly three distinct Randić eigenvalues. In this case,

ρ1 =

√√√√√√√
n∑

i=1

(
L

(p+1)
i

)2

n∑
i=1

(
L

(p)
i

)2
and |ρi| =

√√√√2
∑
i∼j

1
di dj

− ρ2
1

n − 1

for i = 2, . . . , n . Since L
(p+1)
i /L

(p)
i = k holds for all i , we get that G is a con-

nected graph with three distinct Randić eigenvalues given by (8). Conversely,

one can easily see that the equality in (7) holds for the graphs specified in the

second part of the theorem. �

By setting α = 1 and p = 1 in (7), we obtain:

Corollary 2. Let G be a simple connected graph with Randić degree sequence

{R1, R2, . . . , Rn} and second Randić degree sequence {S1, S2, . . . , Sn} . Then

RE(G) ≤

√√√√√√√
n∑

i=1

S2
i

n∑
i=1

R2
i

+

√√√√√√√(n − 1)

⎡
⎢⎢⎣2
∑
i∼j

1

di dj

−

n∑
i=1

S2
i

n∑
i=1

R2
i

⎤
⎥⎥⎦. (12)

Equality in (12) holds if and only if G is a complete graph or a pseudo k-Randić

regular graph with three distinct Randić eigenvalues given by (8).

5 Concluding remarks

In this paper the Randić matrix and its eigenvalues, the Randić eigenvalues,

are studied. Bounds obtained for the greatest Randić eigenvalue, referred to as

the Randić spectral radius. A new bound for the Randić energy is also

put forward. These bounds depend on the Randić degrees and the second
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Randić degrees of the vertices, and become equalities when the underlying graph

is Randić regular or pseudo Randić regular. We hope that this work will

be accepted as a proper birthday present to Milan Randić, on the occasion of

his 80-th anniversary.
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400 (2005) 339–344.
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