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Abstract

Short time ago Liu and Liu [MATCH Commun. Math. Comput. Chem. 59 (2008)
355–372] put forward a so-called Laplacian–energy like invariant (LEL), defined as the
sum of the square roots of the Laplacian eigenvalues. From its name, one could get the
impression that the properties of LEL are similar to those of the Laplacian energy LE .
However, already the inventors of LEL realized that LEL resembles much more the ordinary
graph energy (E) than LE . We now provide further arguments supporting this conclusion.
In particular, numerous earlier obtained bounds and approximations for E can be simply
“translated” into bounds and approximations for LEL .

1. INTRODUCTION

In this paper we are concerned with some spectrum–based invariants of (molecu-

lar) graphs. Let G be a graph. Its number of vertices and edges will be denoted by

n and m , respectively.

Let A(G) be the adjacency matrix of G , and let λ1, λ2, . . . , λn be its eigenvalues.

These eigenvalues form the (ordinary) spectrum of the graph G [1]. Let L(G) be the
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Laplacian matrix of G , and let μ1, μ2, . . . , μn be its eigenvalues. These eigenvalues

form the Laplacian spectrum of the graph G [2–4].

The energy E(G) of a graph G is defined as follows:

E = E(G) :=
n∑

i=1

|λi| . (1)

This graph invariant, whose origins are in the molecular orbital theory of conju-

gated π-electron systems [5–9], has recently attracted much attention of mathemati-

cal chemists. For details on the mathematical aspects of the theory of graph energy

see the reviews [10, 11] and the references cited therein.

In an attempt to provide a Laplacian–spectral analogue of the graph energy, two

of the present authors proposed the so-called Laplacian energy , defined as [12, 13]

LE = LE(G) :=

n∑
i=1

∣∣∣∣μi − 2m

n

∣∣∣∣ . (2)

It could be shown that LE and E have a number of analogous properties [12–17],

but there also were some drastic disagreements. In particular, if G1 ∪G2 is the graph

composed of two connected components G1 and G2 , then

E(G1 ∪ G2) = E(G1) + E(G2) (3)

whereas, in the general case it is not true that

LE(G1 ∪ G2) = LE(G1) + LE(G2) . (4)

If, in addition, G1 is connected and has n vertices and m edges, whereas G2 has p

vertices and no edges, then

E(G1 ∪ G2) = E(G1) (5)

whereas for sufficiently large values of p ,

LE(G1 ∪ G2) = 4m
p + 1

p + n
and lim

p→∞
LE(G1 ∪ G2) = 4m . (6)

Thus, in this case, the Laplacian energy of G1 ∪ G2 depends only on the numbers of

vertices and edges, and is independent of any other structural detail of G1 .

The Laplacian energy is currently much investigated [12–28]. It is worth mention-

ing that LE found remarkable chemical applications, beyond the molecular orbital

theory of conjugated molecules [29].
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J. Liu and B. Liu [30] proposed recently another Laplacian–spectrum based “en-

ergy”, and called it Laplacian–energy like invariant , LEL . It is defined as

LEL(G) :=
n∑

i=1

√
μi . (7)

At this point one should recall that all Laplacian eigenvalues of any graph are non-

negative real numbers [2, 3]. One Laplacian eigenvalue is necessarily equal to zero;

let this be μn . In view of this, we may write Eq. (7) as

LEL(G) :=
n−1∑
i=1

√
μi . (8)

After the publication of the paper [30], a number of properties of LEL have

been established [31–33]. Especially intriguing is the recently discovered [34] equality

between LEL and the, seemingly unrelated, incidence energy [35], which holds in the

case of bipartite graphs.

2. LEL IS NOT LAPLACIAN–ENERGY LIKE

Liu and Liu [30] named LEL “Laplacian–energy like”, which gives the impression

that it was expected to be similar to LE . Yet, already in the paper [30] it was

recognized that there are fundamental disagreements between LEL and LE , and

that LEL is more an “energy like” invariant. In particular, in contrast to Eq. (4)

which in the general case is violated, the relation

LEL(G1 ∪ G2) = LEL(G1) + LEL(G2) (9)

is always satisfied. In contrast to Eq. (6), in the case of edgeless G2 we have

LEL(G1 ∪ G2) = LEL(G1) . (10)

Not only that the properties of LEL and LE disagree in the above specified manner,

but the form of Eqs. (9) and (10) precisely agrees with the form of Eqs. (3) and (5).

Already this indicates that LEL is not “Laplacian–energy like”, but “energy like”.

More arguments in favor of this claim are given in the subsequent section.
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3. LEL IS ENERGY LIKE

Starting with the seminal work of McClelland [36], the basic results (bounds and

approximations) for graph energy could be deduced by relying to a limited number

of simple properties of the graph eigenvalues (for details see [7, 8], the recent works

[37, 38], and the references cited therein).

Let G be a (molecular) graph with n vertices and m edges. Let N and M be two

positive integers. Consider an auxiliary quantity Q , defined as

Q = Q(G) =

N∑
i=1

qi

where qi , i = 1, 2, . . . , N , are some numbers which somehow can be computed from

the graph G , for which we only need to know that they satisfy the conditions

qi ≥ 0 for all i = 1, 2, . . . , N (11)

and
N∑

i=1

(qi)
2 = 2M (12)

or, the conditions (11), (12), and

P = P (G) =
N∏

i=1

qi (13)

From (11) & (12) it is possible to deduce an upper bound for Q , whereas from

(11)–(13) both lower and upper bounds for Q , see below.

What now needs to be observed is that if we choose N = n , M = m , and qi = |λi|
for i = 1, 2, . . . , n , then the auxiliary quantity Q is the graph energy, cf. Eq. (1).

In this case the quantity P in Eq. (13) is just the determinant of the adjacency

matrix (taken with positive sign). In the case of molecular graphs of benzenoid

hydrocarbons, P is equal to the square of the number of Kekulé structures [39]. In

the case of molecular graphs of alternant non-benzenoid hydrocarbons, P is equal

to the square of the so-called algebraic structure count [39]. In the case of acyclic

systems, P = 1 for Kekuléan and P = 0 for non-Kekuléan species.

Now, all the three conditions (11)–(13) are obeyed also for the choice N = n− 1 ,

M = m , and qi =
√

μi for i = 1, 2, . . . , n − 1 , in which case Q ≡ LEL(G) , cf. Eq.
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(8). The only difference is that for the latter choice, P =
√

n Θ , where Θ is the

number of spanning trees of the underlying graph G [2, 3] . In particular, if G is not

connected, then Θ = 0 . If G is a tree, then Θ = 1 . If G is connected and unicyclic,

with cycle size c , then Θ = c . If G is a molecular graph of a benzenoid system, then

Θ = φ(G, 6) , where φ(G, x) is the characteristic polynomial of G [40, 41]. For such

molecular graphs, P (G) =
√

nφ(G, 6) .

Bearing the above in mind, we may simply “translate” various know results for the

graph energy into analogous results for LEL . We point out only a few such results.

1◦ Using the conditions (11) and (12), assuming N = n , M = m , and qi = |λi| , one

gets [36, 42]

E(G) ≤
√

2mn .

The LEL-counterpart of this formula is, of course,

LEL(G) ≤
√

2m(n − 1)

a known result [30].

2◦ If all the three conditions (11)–(13) are taken into account, then [43]

√
2MN − (N − 1)D ≤ Q ≤ √

2MN − D (14)

where

D = 2M − N P 2/N (15)

For the graph energy (namely, by setting into (14) and (15) N = n , M = m , and

P = | detA|), this yields [43]√
2m + n(n − 1) | detA|2/n ≤ E ≤

√
2m(n − 1) + n | detA|2/n .

The LEL-counterpart of the above estimates is obtained by by setting into (14) and

(15) N = n − 1 , M = m , and P =
√

n Θ , resulting in:√
2m + (n − 1)(n − 2)(n Θ)1/(n−1) ≤ LEL ≤

√
2m(n − 2) + (n − 1)(n Θ)1/(n−1) .

(16)
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In particular, for disconnected graphs the bounds (16) reduce to:

√
2m ≤ LEL ≤

√
2m(n − 2)

whereas for trees to:√
2n − 2 + (n − 1)(n − 2) nn/(n−1) ≤ LEL ≤

√
2(n − 1)(n − 2) + (n − 1) n1/(n−1) .

3◦ In the chemical literature there are countless approximate expressions for E ,

in which the only variables are n and m . Several systematic comparative studies

of such (n,m)-type formulas were reported [44–47]. The final conclusion of these

examinations was somewhat surprising: no (n,m)-type approximation can reproduce

E better than the simple McClelland formula:

E ≈ a1

√
2mn (17)

and

E ≈ a2

√
2mn + b2 (18)

where a1, a2, b2 are empirically determined fitting constants. In fact, a number of

other, algebraically much more complicated, (n, m)-type expressions yield approxi-

mations for E of comparable accuracy, but none is superior to (17) and (18).

For the usually employed standard set of 106 benzenoid hydrocarbons [44–47], one

gets a1 = 0.908 ± 0.002 , a2 = 0.898 ± 0.002 , b2 = 0.44 ± 0.07 , correlation coefficient

R = 0.99982 , and average relative error of (18) equal to 0.30% . If in (17) and (18)

E is replaced by LEL , and n by n − 1 , then we arrive at an even more accurate

approximation: a1 = 0.9334 ± 0.0002 , a2 = 0.9256 ± 0.0007 , b2 = 0.33 ± 0.03 ,

R = 0.99997 , and average relative error of modified Eq. (18) equal to 0.13% .

Knowing the above, it is no surprise that an excellent linear correlation is found

between E and LEL, whose correlation coefficient is R(E, LEL) = 0.99980 .

As explained above, E and LEL have similar properties, which significantly dif-

fer from the analogous properties of LE . In spite of this, for benzenoid molecules

both E and LE , as well as LEL and LE are well linearly correlated. For the stan-

dard set of 106 benzenoid hydrocarbons [44–47] we found R(E, LE) = 0.99967 and
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R(LEL,LE) = 0.99971 . Thus, as far as benzenoid molecular are concerned, there

is essentially no difference in the structure–dependency of energy, Laplacian energy,

and the Laplacian–energy like invariant.

4. NORDHAUS–GADDUM–TYPE RESULTS

Recall that Nordhaus and Gaddum [48] gave bounds for the sum of the chromatic

numbers of a graph G and its complement G . We have pointed out that earlier

obtained bounds and approximations for E can be simply “translated” into bounds

and approximations for LEL . Now the Nordhaus–Gaddum–type results for E [18, 27]

are “translated” into LEL as follows. Let Kn be the complete graph with n vertices

and Ka,b be the complete bipartite graph with a and b vertices in its two partite sets,

respectively. We first need a lemma.

Lemma 1. [49] Let G be a graph with at least one edge and maximum vertex degree

Δ . Then

μ1 ≥ 1 + Δ

with equality for connected graphs if and only if Δ = n − 1 .

Proposition 2. Let G be a graphs with n ≥ 2 vertices. Then

√
n(n − 1) ≤ LEL(G) + LEL(G) <

√
2(n + 1) +

√
2(n − 2)(n2 − 2n − 1)

with left equality if and only if G ∼= Kn or G ∼= Kn .

Proof. Let m and m be respectively the number of edges of G and G . Let

μ1, μ2, . . . , μn be the Laplacian eigenvalues of G arranged in an non-increasing or-

der . Then μi = n − μn−i for i = 1, 2, . . . , n − 1 .

It follows that

LEL(G) + LEL(G) =
n−1∑
i=1

(
√

μi +
√

n − μi ) ≥
n−1∑
i=1

√
n = (n − 1)

√
n

with equality if and only if either μ1 = · · · = μn−1 = n and then G ∼= Kn , or (by

Lemma 1) μ1 = · · · = μn−1 = 0 and then G ∼= Kn .
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On the other hand, by the Cauchy–Schwarz inequality,

LEL(G) + LEL(G) ≤ √
μ1 +

√
μ1 +

√
(n − 2)(2m − μ1) +

√
(n − 2)(2m − μ1)

≤
√

2(μ1 + μ1) +
√

2(n − 2) [n(n − 1) − (μ1 + μ1)] .

Consider the function g(x) =
√

2x +
√

2(n − 2) [n(n − 1) − x] . It is decreasing for

x ≥ n .

If one of G or G is empty, then μ1 + μ1 = n . Otherwise, since one of G and

G is connected, we have by Lemma 1 that μ1 + μ1 ≥ 1 + Δ + 1 + (n − 1 − δ) =

n + 1 + Δ − δ > n + 1 , where Δ and δ are respectively the maximum and minimum

vertex degree of G . Thus,

LEL(G) + LEL(G) < g(n + 1) =
√

2(n + 1) +
√

2(n − 2)(n2 − 2n − 1) ,

as desired. �

Note that

LEL
(
Kn/2,n/2

)
=

√
n +

√
2

2
(n − 1)

√
n and LEL

(
Kn/2,n/2

)
=

√
2

2
(n − 2)

√
n .

Then

LEL
(
Kn/2,n/2

)
+ LEL

(
Kn/2,n/2

)
=

√
n +

√
2

(
n − 3

2

)√
n .

This example shows that the upper bound in the previous proposition is asymptot-

ically best possible. More precisely: Let max LELNG(n) be the maximum value of

LEL(G) + LEL(G) over all graphs with n vertices. Then

lim
n→∞

max LELNG(n)

n3/2
=

√
2 .
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