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Abstract

The characteristic polynomials of monodendrons is shown to be related to the
Dickson polynomials of the second kind. This relation is then used to derive the char-
acteristic polynomials and approximate the total π-electron energy of dendrimers
and bidendrons.

1 Introduction

Dendrimers are highly branched macromolecules with a regular tree-like structure made

up of repeating units arranged in a hierarchical and self-similar fashion [1]. We recall that

a tree is a connected acyclic graph. The balanced tree is an unweighted rooted tree T
such that in each level the vertices have equal degree. Let the root vertex be at level 1

and let T has k levels, such that the vertices in the level k have degree 1. For j = 1, . . . , k,

the numbers dj and nj denote the degree of the vertices and the number of vertices in the

level j, respectively. Then n2 = d1n1 and for j = 2, . . . , k − 1,

nj+1 = (dj − 1)nj.
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The total number of vertices in the tree is

n =
k∑

j=1

nj.

The dendrimer Dd,k is now a balanced tree for which d1 = d2 = . . . = dk−1 = d + 1,

where vertices represent the dendrimer building blocks. A monodendron D′
d,k−1 is any

largest connected subtree of Dd,k that does not contain the root of Dd,k. In other words,

monodendron D′
d,k is a k-level balanced tree for which d1 = d and d2 = . . . = dk−1 = d+1.

Note that the path on n vertices is a monodendron D′
1,n. We shall exclude this trivial

case by assuming that d ≥ 2 in the sequel.

Let G be a simple molecular graph with the adjacency matrix A(G) having the eigen-

values λ1, . . . , λn. The characteristic polynomial φ(G, λ) of the graph G is the charac-

teristic polynomial of A(G), φ(G, λ) = det(λI − A(G)), and the eigenvalues of G are the

solutions of the equation φ(G, λ) = 0.

We are concerned here with the eigenvalues of monodendrons and dendrimers, and

their total π-electron energy E, as calculated within the simple Hückel molecular orbital

(HMO) model [2, 3]. According to the standard procedure in the theory of the HMO total

π-electron energy (see, for instance, [2]–[9]), E is expressed in the units of the carbon-

carbon resonance integral β, using as an origin the Coulomb integral pertaining to C

atoms, α = 0. In order to further simplify calculations, we shall treat dendrimer building

blocks as if they were single atoms, and assume that h and k values corresponding to non-

carbon atoms are all equal to one (although these assumptions hold only in a hypothetical

carbon dendrimer). The quantity E can be calculated from the eigenvalues of the graph

G, representing the respective molecule [4, 5]:

E = E(G) =

n∑
i=1

|λi|.

2 Spectra and energy of monodendrons

Let Φ = {1, . . . , k − 1} and

Ω = {j ∈ Φ : nk−j < nk−j+1}.

Rojo and Soto proved the following theorem in [10]:
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Theorem 1 Let S0(λ) = 1, S1(λ) = λ and

Sj(λ) = λSj−1(λ) − nk−j+2

nk−j+1

Sj−2(λ)

for j = 2, . . . , k. Then

(a) If Sj(λ) �= 0 for all j = 1, . . . , k − 1, then

φ(A(T ), λ) = Sk(λ)
∏
j∈Ω

S
nk−j+1−nk−j

j (λ).

(b) The distinct eigenvalues of A(T ) are given by

(∪j∈Ω{λ ∈ R : Sj(λ) = 0}) ∪ {λ ∈ R : Sk(λ) = 0}.

Consider now a monodendron D′
d,k. Then Ω = Φ and

nk−j+2

nk−j+1
= d is constant for all

j = 2, . . . , k. Thus,

Sj(λ) = λSj−1(λ) − dSj−2(λ)

for j = 2, . . . , k, which together with S0(λ) = 1, S1(λ) = λ defines Dickson polynomials

[11] of the second kind

Sj(λ) ≡ Ej(λ, d) =

�j/2�∑
p=0

(
j − p

p

)
(−d)pλj−2p.

Dickson polynomial Ej(λ, d) is related to Chebyshev polynomial of the second kind Uj(λ)

by

Ej(λ, d) =
√

dj Uj(
λ

2
√

d
).

Recall that Uj(λ) is defined by

Uj(cos θ) =
sin(j + 1)θ

sin θ

and that the zeros of Uj(λ) are of the form

cos
iπ

j + 1
, i = 1, . . . , j.

Thus, the zeros of Sj(λ) are of the form

2
√

d cos
iπ

j + 1
, i = 1, . . . , j
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and the entire spectrum of monodendron D′
d,k, representing multiplicities as bracketed

exponents, is given by

⋃k−1
j=1 {2

√
d cos

iπ

j + 1

[dk−j−1(d−1)]

: i = 1, . . . , j}

∪ {2
√

d cos
iπ

k + 1
: i = 1, . . . , k}.

The relation φ(Pj, λ) = Uj(λ/2), telling us that the values

2 cos
iπ

j + 1
, i = 1, . . . , j

form the spectrum of the path Pj with j vertices, has been recognized already in [12].

Therefore, we see that the spectrum of the monodendron D′
d,k is formed from an appropri-

ate number copies of the spectra of paths P1, . . . , Pk, multiplied by
√

d. This observation

may be used to represent E(D′
d,k) as

k−1∑
j=1

dk−j−1(d − 1)

j∑
i=1

∣∣∣∣2√d cos
iπ

j + 1

∣∣∣∣
+

k∑
i=1

∣∣∣∣2√d cos
iπ

k + 1

∣∣∣∣
=

√
d

(
k−1∑
j=1

dk−j−1(d − 1)E(Pj) + E(Pk)

)

=
√

d

(
k−1∑
j=1

dk−jE(Pj) −
k∑

j=2

dk−jE(Pj−1) + E(Pk)

)

=
√

d

k∑
j=2

dk−j (E(Pj) − E(Pj−1))

since E(P1) = 0. Thus, the energy of a monodendron is a product of
√

d and a polynomial

in d, whose coefficients are differences of energies of two consecutive paths. The first few

coefficients are given in Table 1. In fact, for j → ∞ we have that E(Pj) ≈ 4j/π, so that

E(Pj) − E(Pj−1) ≈ 4/π ≈ 1.27323954 is the limit value of the coefficients.

3 Energy of dendrimers

Let T be a tree, e = uv its edge and T1, T2 the connected components of T − e (such that

u ∈ T1, v ∈ T2). Then the following relation holds [12, p. 59]

φ(T, λ) = φ(T1, λ)φ(T2, λ) − φ(T1 − u, λ)φ(T2 − v, λ). (1)
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j E(Pj) − E(Pj−1) j E(Pj) − E(Pj−1)
2 2 16 1.36956212
3 0.82842712 17 1.18420171
4 1.64370883 18 1.35902657
5 0.99196566 19 1.19327830
6 1.52381680 20 1.35057053
7 1.06676057 21 1.20067391
8 1.46286198 22 1.34363318
9 1.10996207 23 1.20681629

10 1.42584534 24 1.33783884
11 1.13815986 25 1.21199931
12 1.40095140 26 1.33292639
13 1.15803133 27 1.21643158
14 1.38305352 28 1.32870862
15 1.17279631 29 1.22026527

Table 1: Differences of energies of two consecutive paths.

If T is the dendrimer Dd,k and the edge e = uv is incident to its root (see Figure 1),

Figure 1: Dendrimer D2,5.

then T1 is the monodendron D′
d,k, T2 is the monodendron D′

d,k−1, and T1 − u and T2 − v

consist of d copies of monodendrons D′
d,k−1 and D′

d,k−2, respectively. Then, denoting Sj(λ)

shortly by Sj,

φ(Dd,k, λ)

= φ(D′
d,k, λ)φ(D′

d,k−1, λ) − φd(D′
d,k−1, λ)φd(D′

d,k−2, λ)

= Sk

k−1∏
j=1

S
dk−j−1(d−1)
j Sk−1

k−2∏
j=1

S
dk−j−2(d−1)
j

− Sd
k−1

k−2∏
j=1

S
dk−j−1(d−1)
j Sd

k−2

k−3∏
j=1

S
dk−j−2(d−1)
j
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= Sk−1(Sk − Sk−2)
k−1∏
j=1

S
dk−j−1(d−1)
j

k−2∏
j=1

S
dk−j−2(d−1)
j

= Sd
k−1(Sk − Sk−2)

k−2∏
j=1

S
dk−j−2(d2−1)
j .

So, the spectrum of Dd,k consists of

⋃k−2
j=1 {2

√
d cos

iπ

j + 1

[dk−j−2(d2−1)]

: i = 1, . . . , j}

∪ {2
√

d cos
iπ

k

[d]

: i = 1, . . . , k − 1}

and k roots of Sk(λ)−Sk−2(λ). However, we know of no closed-form formula for the roots

of this polynomial, and we cannot give an exact formula for the energy of dendrimer Dd,k.

Instead, we may use the results of Day and So ([13, Corollary 4.3] and [14, Corollary 2.7])

to estimate the energy of Dd,k:

E(Dd,k − e) < E(Dd,k) ≤ E(Dd,k − e) + 2.

Since Dd,k − e consists of D′
d,k and D′

d,k−1, from previous section we have that

E(Dd,k − e)

=
√

d
k∑

j=2

dk−j(E(Pj) − E(Pj−1))

+
√

d
k−1∑
j=2

dk−1−j(E(Pj) − E(Pj−1))

=
√

d

(
2dk−2 +

k∑
j=3

dk−j(E(Pj) − E(Pj−2))

)
.

This estimate produces an easily calculable interval of length two containing the true

value of E(Dd,k). As an example, Table 2 contains the approximate value of E(Dd,k), the

lower bound E(D′
d,k) + E(D′

d,k−1) and their difference for d = 2 and k ≤ 11. We can see

from the table that the difference oscillates roughly around 0.548, so we can propose an

approximate formula for d = 2:

E(D2,k) ≈
√

2

(
2k−1 +

k∑
j=3

2k−j(E(Pj) − E(Pj−2))

)
+ 0.548.
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k E(D′
d,k) + E(D′

d,k−1) E(Dd,k) difference

3 9.65685425 10.12899020 0.47213595
4 22.80983669 23.38426086 0.57442417
5 49.34708000 49.86588464 0.51880464
6 102.25201367 102.81377581 0.56176214
7 208.16765700 208.70096090 0.53330390
8 419.91274051 420.46975221 0.55701170
9 843.46400369 844.00367659 0.53967290

10 1690.51418059 1691.06889461 0.55471402
11 3384.65441210 3385.19744391 0.54303181

Table 2: The values of E(Dd,k) for d = 2, k ≤ 11 and its bounds.

4 Energy of bidendrons

Bidendron Bd,k is formed from two monodendrons D′
d,k by joining their roots with an edge

(see Figure 2). Applying the relation (1) to this edge, we get

Figure 2: Bidendron B2,4.

φ(Bd,k, λ)

= φ(D′
d,k, λ)φ(D′

d,k, λ) − φd(D′
d,k−1, λ)φd(D′

d,k−1, λ)

= S2
k

k−1∏
j=1

S
2dk−j−1(d−1)
j − S2d

k−1

k−2∏
j=1

S
2dk−j−1(d−1)
j

=
(
S2

k − S2
k−1

) k−1∏
j=1

S
2dk−j−1(d−1)
j .

So, the spectrum of Bd,k consists of

k−1⋃
j=1

{2
√

d cos
iπ

j + 1

[2dk−j−1(d−1)]

: i = 1, . . . , j}
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and 2k roots of S2
k(λ) − S2

k−1(λ). Again, we can estimate the energy of Bd,k as

E(Bd,k − f) < E(Bd,k) ≤ E(Bd,k − f) + 2.

Since Bd,k − f consists of two copies of D′
d,k, we have that

0 < E(Bd,k) − 2
√

d
k∑

j=2

dk−j(E(Pj) − E(Pj−1)) ≤ 2.

Again, we get an interval of length two containing the true value of E(Bd,k). As an

example, Table 3 contains the approximate value of E(Bd,k), the lower bound 2E(D′
d,k)

and the upper bound 2E(D′
d,k) + 2 for d = 2 and k ≤ 10. The difference again oscillates

k 2E(D′
d,k) E(Bd,k) difference

2 5.65685425 6.00000000 0.34314575
3 13.65685425 14.91128026 1.25442601
4 31.96281914 32.38523287 0.42241373
5 66.73134086 67.74899789 1.01765703
6 137.77268649 138.23020400 0.45751751
7 278.56262751 279.46299871 0.90037120
8 561.26285352 561.74029669 0.47744317
9 1125.66515385 1126.49537971 0.83022586

10 2255.363207329 2255.85351433 0.49030700

Table 3: The values of E(Bd,k) for d = 2, k ≤ 10 and its bounds.

about its limit value, but this time the convergence is much slower and we cannot easily

approximate the limit value.
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