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Abstract

In 1970s, Gutman introduced the concept of energy E(G) for a simple graph

G, which is defined as the sum of the absolute values of the eigenvalues of G

and can be used to estimate the total π-electron energy in conjugated hydro-

carbons. The concept attracted lots of attention and furthermore, some other

similar notions were also considered such as Laplacian energy LE(G), signless

Laplacian energy LE+(G), incidence energy IE(G), distance energy DE(G)

and Lapacian-energy like invariant LEL(G). Moreover, many researchers es-

tablished a large number of upper and lower bounds for those invariants. But

there are only a few graphs attaining the equalities of those bounds. In the

present paper, however, we present exact estimates of LEL(G) , IE(G) , and

DE(G) , and a tight bound of LE+(G) for almost all graphs by probabilistic

and algebraic approaches.

1 Introduction

Throughout this paper, G stands for a simple graph on vertex set [n] = {1, . . . , n}.
The eigenvalues λ1, . . . , λn of the adjacency matrix A(G) = (aij)n×n (or A for short)

are said to be the eigenvalues of G. In chemistry, there is a closed relation between

the molecular orbital energy levels of π-electrons in conjugated hydrocarbons and the

eigenvalues of the corresponding molecular graph. For the Hückel molecular orbital

approximation, the total π-electron energy in conjugated hydrocarbons is given by
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the sum of absolute values of the eigenvalues corresponding to the molecular graph G

in which the maximum degree is not more than three in general. In 1970s, Gutman

[6] extended the concept of energy to all simple graphs G, and defined the energy of

G as

E(G) =

n∑
i=0

|λi| (1)

where λ1, . . . , λn are the eigenvalues of G. Evidently, one can immediately get the

energy of a graph by computing the eigenvalues of the graph. Unfortunately, it is

rather hard to deal directly with even the special case, (0, 1)-matrix A. So, many

researchers established a lot of lower and upper bounds to estimate the invariant for

some classes of graphs. For further details, we refer readers to the comprehensive

survey [9]. But there is a common flaw of those inequalities that only a few graphs

attain the equalities of those bounds. Consequently one can hardly see the major

behavior of the invariant E(G) for most graphs with respect to other graph parameters

(|V (G)|, for instance). However, it is surprising that one can employ probabilistic and

algebraic approaches to obtain an exact estimate of energy for almost all graphs. For

instance, it was shown in [4] that almost every graph Gn(p) in Gn(p) satisfies

E(Gn(p)) =

(
8

3π

√
p(1− p) + o(1)

)
· n3/2 (2)

where Gn(p) stands for the Erdős–Rényi random graph model and p is a constant

with 0 < p < 1 .

Recently, several other energy-like quantities to be presented below, such as Lapla-

cian energy, signless Laplacian energy, Laplacian-energy like invariant, incidence en-

ergy, and distance energy, have been proposed and studied in the mathematical and

mathematico-chemical literature.

For the convenience of description, we first present the notion of energy of a matrix.

Let X be a real symmetric matrix of order n , and λ1(X), . . . , λn(X) the eigenvalues

of X . We define the energy of X as

E(X) =
n∑

i=1

|λi(X)| .

Accordingly, E(G) = E(A). The Laplacian matrix of G is defined as L(G) = Δ(G)−
A(G), where Δ(G) is the diagonal matrix in which every diagonal entry is equal to
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the degree of the corresponding vertex. In what follows, we shall sometimes use L

and Δ to denote L(G) and Δ(G), respectively. Supposing that λ1(L), . . . , λn(L) are

the eigenvalues of L , Gutman and Zhou [10] defined the Laplacian energy of G as

LE = LE(G) = E

(
Δ−A− 2m

n
I

)
=

n∑
i=1

∣∣∣∣λi(L)− 2m

n

∣∣∣∣
where m is the number of edges of G and I is the unit matrix of order n. It was

shown in [4] that for almost every graph Gn(p) ∈ Gn(p), the Laplacian energy of

Gn(p) satisfies the following bounds(
2
√
2

3

√
p(1− p) + o(1)

)
·n3/2 ≤ LE(Gn(p)) ≤

(√
2 ·
√

p(1− p) + o(1)
)
·n3/2 . (3)

The signless Lapacian energy of G is directly relevant to the signless Lapacian

matrix of G, which is defined as L+ = L+(G) = Δ(G) + A(G). Supposing that

λ1(L
+), . . . , λn(L

+) are the eigenvalues of L+, So et al. [18] defined the signless

Lapacian energy of G as

LE+ = LE+(G) = E

(
Δ+A− 2m

n
I

)
=

n∑
i=1

∣∣∣∣λi(L
+)− 2m

n

∣∣∣∣
where m is the number of edges of G. Furthermore, Liu et al. [12] proposed a

Laplacian-energy-like invariant, which is defined as

LEL = LEL(G) =
n∑

i=1

√
λi(L) .

Gutman et al. pointed out in [11] that LEL is more similar to E than to LE.

Moreover, Jooyandeh et al. [15] introduced the incidence energy IE of G, which

is defined as the sum of the singular values of the incidence matrix of G. Gutman et

al. [7] showed that

IE = IE(G) =
n∑

i=1

√
λi(L+) .

Finally, we present the concept of distance energy of G. Let D = D(G) be the

distance matrix of G in which the entry D(i, j) is equal to the distance between

vertices i and j. Indulal et al. [14] defined the distance energy of G as

DE = DE(G) = E(D) =

n∑
i=1

|λi(D)| .
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Some upper and lower bounds were established for those energy-like quantities so

far. For instance, we refer readers to [8, 13, 16, 17] for further details. Those inequal-

ities, however, have a common flaw similar to E(G) that only a few graphs attain

the equalities of the bounds. In this paper, we employ probabilistic and algebraic

approaches to investigate those energy-like quantities, and present exact estimates of

LEL, IE and DE, and a tight bound of LE+ like (3) for almost all graphs.

2 The estimates of LE+, LEL, IE, and DE for ran-

dom graphs

In this section, we shall present the estimates of LE+ , LEL , IE , and DE for

random graphs. Let us begin with the Erdős–Rényi model Gn(p) of random graphs,

which consists of all simple graphs with vertex set [n] in which the edges are chosen

independently with probability p . Throughout this paper, we assume p is a constant

with 0 < p < 1 for the convenience of description. In fact, one can obtain similar

results to be formulated below for a larger range of p (for instance, p = p(n) → c , n →
∞ and 0 < c < 1). Evidently, the adjacency matrix A(Gn(p)) (we still abbreviate it

to A) of a random graph Gn(p) ∈ Gn(p) is a random matrix whose entries are i.i.d

random variables with Bernoulli distribution. For the model Gn(p), we shall estimate

those energy-like quantities by using probabilistic and algebraic approaches to be

presented below.

Throughout this paper, following the term introduced in Bollobás’s book [2], we

say that almost every (a.e.) graph Gn(p) in Gn(p) has a certain property Q if the

probability that Gn(p) has Q converges to 1 as n tends to infinity. Sometimes, we may

use “almost all” instead of “almost every”. Evidently, if the probability of random

graphs satisfying Q converges almost surely (a.s.), we can deduce that almost every

graph in Gn(p) has Q .

First, we estimate LE+ for random graphs Gn(p) in Gn(p) by virtue of (2), (3)

and the following lemma.

Lemma 1 (Fan Ky’s inequality [5]). Let X,Y,Z be real symmetric matrices of

order n such that X+Y = Z. Then

E(X) + E(Y) ≥ E(Z) .
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Set L̂+ = Δ+A− 2m
n
I and L̂ = Δ−A− 2m

n
I . In accordance with the definitions

of LE+ and LE , one can readily see that LE+ = E(L̂+) and LE = E(L̂) . Applying

Lemma 1 to L̂+ = L̂+ 2A and L̂+ + (−L̂) = 2A , we have

2E(A)− E(L̂) ≤ E(L̂+) ≤ 2E(A) + E(L̂) .

According to the inequality (3), a.e. graph Gn(p) in Gn(p) satisfies

LE(Gn(p)) = E(L̂) ≤
(√

2 ·
√

p(1− p) + o(1)
)
· n3/2 .

Using the equation (2), we thus obtain that for a.e. graph Gn(p), the following

inequalities hold[(
16

3π
−

√
2

)
·
√
p(1− p) + o(1)

]
· n3/2 ≤ E

(
L̂+[Gn(p)]

) ≤[(
16

3π
+
√
2

)
·
√

p(1− p) + o(1)

]
· n3/2 .

Consequently, the following theorem is relevant.

Theorem 2. A.e. graph Gn(p) in Gn(p) satisfies the following inequalities[(
16

3π
−

√
2

)
·
√
p(1− p) + o(1)

]
· n3/2 ≤ LE+(Gn(p)) ≤[(

16

3π
+
√
2

)
·
√

p(1− p) + o(1)

]
· n3/2 .

Next, we explore LEL and IE for random graphs Gn(p) in Gn(p). In fact, we shall

present the explicit information about the eigenvalues of the corresponding matrices.

We start with a useful lemma concerning the asymptotic of the spectral radius ||M||
of a random matrix M.

Lemma 3 (Bryc et al. [3]). Suppose X is a real symmetric random matrix of order

n in which the entries on the diagonal are zeros and X(ij), 1 ≤ i < j, are i.i.d

random variables with mean zero and variance one. Furthermore, we assume that the

fourth moments of X(ij), 1 ≤ i < j, are finite. Set S = diag(
∑

i �=j X(ij))1≤i≤n and

M = S−X. Then

lim
n→∞

||M||√
2n log n

= 1 a.s.

Let L = L(Gn(p)) be the Laplacian matrix of a random graph Gn(p) . Setting

R = p(n− 1)I− p(J− I) where J is the matrix of order n in which all entries equal

1, we define an auxiliary matrix L as

L = L−R
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i. e., L =
(
Δ − p(n − 1)I

) − (
A − p(J − I)

)
. It is not difficult to verify that the

random matrix
(
p(1− p)

)−1/2
L satisfies the conditions of Lemma 3. Consequently,

lim
n→∞

||L||√
2p(1− p)n log n

= 1 a.s.

and thus,

lim
n→∞

||L||
n

= 0 a.s.

i. e., ||L|| = o(1)n a.s. In order to estimate the eigenvalues of L, we need the famous

result below.

Lemma 4 (Weyl’s Inequality [19]). If X , Y , and Z are all n× n real symmetric

matrices, and X = Y + Z where X,Y,Z have eigenvalues, respectively, λ1(X) ≥
· · · ≥ λn(X) , λ1(Y) ≥ · · · ≥ λn(Y) , λ1(Z) ≥ · · · ≥ λn(Z) , then

λi(Y) + λn(Z) ≤ λi(X) ≤ λi(Y) + λ1(Z) .

Since L+R = L, it follows from Lemma 4 that

λi(R) + λn(L) ≤ λi(L) ≤ λi(R) + λ1(L) .

Moreover, it is easy to see that the eigenvalues ofR are pn (with multiplicity n−1) and

0 (with multiplicity 1). Therefore, by the fact that ||L|| = o(1)n a.s., the eigenvalues

of L satisfy a.s. the following

λi(L) = (p+ o(1))n, 1 ≤ i ≤ n− 1, and λn(L) = o(1)n .

Consequently, by the definition of LEL , a.e. random graph Gn(p) satisfies

LEL(Gn(p)) =
n−1∑
i=1

√
(p+ o(1))n+

√
o(1)n = (

√
p+ o(1))n3/2 .

We thus obtain the result below.

Theorem 5. A.e. graph Gn(p) in Gn(p) satisfies the relation

LEL(Gn(p)) = (
√
p+ o(1))n3/2 .

In accordance with the definition of L+, we have L+ = L+2A. We shall estimate

E(L+) by the relation between the eigenvalues of L and L+.
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Lemma 6 (Bai [1]). Let A be the adjacency matrix of a random graph Gn(p), and

let A′ = A− p(J− I) . Then

lim
n→∞

||n−1/2A′|| = 2
√

p(1− p) a.s.

Since A = A′ + p(J− I), it follows from Lemma 4 that

pλi(J− I) + λn(A
′) ≤ λi(A) ≤ pλi(J− I) + λ1(A

′) .

It is easy to get that λ1(J− I) = n− 1 , λ2(J− I) = · · · = λn(J− I) = −1 . Moreover,

by Lemma 6, we have ||A′|| = O(n1/2) a.s. Thus, the eigenvalues of A satisfy a.s. the

following

λ1(A) = O(n) and λi(A) = O(n1/2) , 2 ≤ i ≤ n .

Since L+ = L+ 2A , it follows again from Lemma 4 that

λi(L
+) ≤ 2λi(A) + λ1(L)

and

λi(L
+) ≥ λi(L) + 2λn(A) .

Consequently, together with the estimates of the eigenvalues of L andA , the following

relation holds a.s.

λ1(L
+) = O(n)

λi(L
+) = (p+ o(1))n, 1 < i < n

and

λn(L
+) = O(n1/2) .

Therefore, it follows that

IE(Gn(p)) =
√

(p+ o(1))n · (n− 2) +
√
λ1(L+) +

√
λn(L+)

= (
√
p+ o(1))n3/2 a.s.

Hence, the following result is relevant.

Theorem 7. A.e. graph Gn(p) in Gn(p) satisfies the relationj

IE(Gn(p)) = (
√
p+ o(1))n3/2 .

-257-



Finally, we investigate the distance energy DE for random graphs in Gn(p), and

use D = D(Gn(p)) to denote the distance matrix of a random graph Gn(p). Recall

that the diameter of a graph G is the greatest distance between two vertices of G. In

order to estimate DE(Gn(p)), we first present a result due to Bollobás [2]:

Lemma 8. Suppose p2n− 2 log n → ∞ and n2(1− p) → ∞ . Then a.e. graph Gn(p)

in Gn(p) has diameter 2.

Since p is a constant with 0 < p < 1 in this paper, it follows from Lemma 8 that

a.e. graph Gn(p) has diameter 2. Let Dn(p) be a subset of Gn(p) consisting of graphs

with diameter 2. By virtue of Lemma 8, we have

lim
n→∞

|Dn(p)|
|Gn(p)| = 1 . (4)

In accordance with the definition of the term “almost every”, if we prove that a.e.

graph Gn(p) in Dn(p) has a certain property Q, then so is in Gn(p). Thus, to estimate

DE(Gn(p)) for graphs Gn(p) ∈ Gn(p), it suffices to do it for Dn(p).

Let Gn(p) be a random graph in Dn(p). Evidently, the entries of D(Gn(p)) satisfy

the following

D(ij) =

⎧⎪⎨⎪⎩
0 if i = j

1 if i and j are adjacent

2 if i and j are nonadjacent.

Consequently,

D = 2(J− I)−A . (5)

According to relations (2) and (4), a.e. graph Gn(p) in Dn(p) satisfies the relation

E(Gn(p)) = E(A) =

(
8

3π

√
p(1− p) + o(1)

)
n3/2 .

Furthermore, applying Lemma 1 to D = 2(J− I)−A and A = 2(J− I)−D, we have

E(D) ≤ 2E(J− I) + E(−A) and E(A) ≤ 2E(J− I) + E(−D) . Thus,

E(A)− 2E(J− I) ≤ E(D) ≤ E(A) + 2E(J− I) .

It is easy to see that E(J− I) = 2(n− 1). Consequently, a.e. graph Gn(p) in Dn(p)

satisfies

DE(Gn(p)) = E(D) =

(
8

3π

√
p(1− p) + o(1)

)
n3/2 .

Therefore, we obtain the result below.
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Theorem 9. A.e. graph Gn(p) in Gn(p) obeys the relation

DE(Gn(p)) =

(
8

3π

√
p(1− p) + o(1)

)
n3/2 .
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