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Abstract

The energy F of a graph is defined as the sum of the absolute values of its eigenvalues.
A graph with n vertices is said to be hypoenergetic if £ < n. Li and Ma [X. Li, H.
Ma, Hypoenergetic and strongly hypoenergetic k-cyclic graphs, MATCH Commun. Math.
Comput. Chem. 64 (2010) 41-60] studied hypoenergetic k-cyclic graphs. They showed that
there exist hypoenergetic unicyclic, bicyclic, and tricyclic graphs for all n and the maximum
degree A > 4, except in the following cases of A = 4, for which they did not determine
whether or not there exist hypoenergetic graphs: (i) n = 13 for unicyclic graphs; (ii)
n = 8,10,11,12,14,15 for bicyclic graphs and (iii) n = 8,9, 11,12, 15 for tricyclic graphs.
In this paper, we complete the solution of these problems, and show that there are no
hypoenergetic graphs for all these cases.
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Let G be a simple graph with n vertices, and let Ai, \a, ..., A, be the eigenvalues
of its adjacency matrix. The energy of a graph G is defined as E(G) = |\1| + |Aa| +
-+ |\, . For more information on the energy of graphs, we refer to [1]. Recently, it
has been demonstrated [2] that the energy exceeds the number of vertices for several
classes of graphs, and a result of Nikiforov [3] showed that the number of graphs
satisfying the condition £ < n is relatively small. Thus it is feasible to find them. In
[4] a hypoenergetic graph is defined to be a graph satisfying £ < n. Some results on
hypoenergetic graphs were studied in [4-9] .

In [9] Li and Ma showed that there exist hypoenergetic unicyclic, bicyclic, and
tricyclic graphs for all n and the maximum vertex degree A > 4, except in the
following cases of A = 4, for which they do not determine whether or not there exist
hypoenergetic graphs: (i) n = 13 for unicyclic graphs; (ii) n = 8,10,11,12,14,15
for bicyclic graphs and (iii) n = 8,9,11,12, 15 for tricyclic graphs. In this note, we
complete the solution of these problems,; and show that there are no hypoenergetic

graphs for all these cases.

Lemma [5]. Let G be a graph with n vertices and m edges, possessing ¢ quad-

rangles, and let dq, ds, ..., d, be its vertex degrees. If

8ms3
>n

. =
ST d? —2m + 8¢
i=1

then G is non-hypoenergetic.

Theorem. A k-cyclic graph G with n vertices and maximum vertex degree A = 4,
which satisfies one of the following conditions is non-hypoenergetic:

(I) k=1 and n = 13;

(IT) k =2 and n = 8,10, 11, 12,14, 15;

(III) k =3 and n = 8,9,11,12,15.

Proof. Let nj,no, ng,ny be the number of vertices with degrees 1,2,3,4 in G,

respectively. ny > 1 since A = 4. Let




-233-

where m is the number of edges, ¢ is the number of quadrangles, and dy,ds, ..., d,
are its vertex degrees.
By Lemma, we only need to prove that N > n for the graph G'.
(I) K =1. Note that 0 < ¢ < 1 in any unicyclic graph.
If n =13, then m = n =13 and
ny +ng +ng+ng =13
{ ny + 2ng + 3ns + 4ny = 26 .

We have no + 2n3 + 3ny = 13, and 1 < ny < 4. All the solutions of ny,ns, nz, ny are

shown in Table 1.

Table 1.
i 11 1 1 1 11}2 2 2 2|3 3 3 |4
n3 o 1 2 3 4 5|0 1 2 3]0 1 210
ng 08 6 4 2 0|7 5 3 1|4 2 0|1
ny 2 3 4 5 6 7 |4 5 6 7 |6 7 8 |8
S,d? |58 60 62 64 66 68|64 66 68 70|70 72 74|76

It follows that N > /=2 > 17 > n.

(IT) k = 2. Note that 0 < ¢ < 3 in any bicyclic graph.
(i) Ifn =28, thenm=n+1=9 and

ny+ng+ng+ng =28
ny + 2ns + 3ng + 4nyg = 18 .

We have ny + 2n3 + 3ny = 10, and 1 < ny < 3. All the solutions of ny, ny, ng, ny are

shown in Table 2.

Table 2.
ny 11 1 112 2 2|3
ns o 1 2 3]0 1 210
ng 7 5 3 1 14 2 0|1
ny 0o 0 2 2 3 4 |4
Si,d?[44 45 48 50|50 52 54|56

It follows that N > ,/%>9>n.

(ii) If n = 10, then m =n+ 1 = 11 and

ny + ng +ng +nyg = 10
ny + 2ns + 3ng + 4nyg = 22 .
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We have no + 2n3 + 3ny =12, and 1 < ny < 4. All the solutions of ny,ns, nz, ny are

shown in Table 3.

Table 3.
ny 1 1 1 1 112 2 2 2|3 3 |4
ng o 1 2 3 40 1 2 3]0 11]0
ng 9 7 5 3 1|6 4 2 013 110
ny 0o 1 2 3 412 3 4 5 |4 5|6
>,d? |52 54 56 58 6058 60 62 64|64 66|70

It follows that N > /=5 > 12 > n.

(iii) If n =11, then m =n+ 1 = 12 and

n1+n2+n3+n4:11
ny + 2n9 + 3nsg + 4nyg = 24 .

We have ng + 2n3 + 3ny = 13, and 1 < ny < 4. All the solutions of ny, ny, n3, ny are

shown in Table 4.

Table 4.
4 T 1 1 1 1 1 ]2 2 2 23 3 34
ng 0 1 2 3 4 5|0 1 2 3]0 1 2|0
ny 5 8 6 4 2 0|7 5 3 1|4 2 0|1
ny 5 1 2 3 4 5|2 3 4 5|4 5 6|6
ST d7[41 58 60 62 64 66|62 64 66 68]68 70 7272

It follows that N > ,/mem >13>n.

(iv)yIfn=12and k=2, thenm=n+1=13,0<¢ <3, and
ny+ng +n3+ng =12
n1+2n2+3n3+4n4:26.

We have ng + 2n3 + 3ny = 14, and 1 < ny < 4. All the solutions of ny,ny, n3, ny are

shown in Table 5.

Table 5.
ny 11 1 1 1 12 2 2 2 2|3 3 3 |4 4
ns o 1 2 3 4 5|0 1 2 3 4]0 1 2|0 1
na 1 9 7 5 3 1|8 6 4 2 0|5 3 1|2 0
ny 1 2 3 4 5|2 3 4 5 6|4 5 6 |6 7
S,d? 60 62 64 66 68 70[66 68 70 72 74|72 74 76|78 80

It follows that N > ,/ﬁ% >15>n.
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(v) If n =14, then m =n+1 =15 and

ny+ns +nz+ny =14
s +2n2+3n3+4n4:30 .

We have ny + 2n3 + 3ny = 16, and 1 < ny < 5. All the solutions of ny, ny, ng, ny are

shown in Table 6.

Table 6.
ng 11 1 1 1 1 112 2 2 2 2 2
ns o 1 2 3 4 5 6|0 1 2 3 4 5
ng 3 119 7 5 3 1 ]108 6 4 2 0
ny o 1 2 3 4 5 6|2 3 4 5 6 7
>r,d7|68 70 72 74 76 78 80|74 76 78 80 82 84

4 3 3 3 3|4 4 4|5
n3 01 2 3|0 1 2|0
na 7 5 3 1|4 2 0|1
n 4 5 6 7|6 7 8|8
ST dZ| R0 82 84 86|86 8 90 | 92

It follows that N > ,/% >17>n.

(vi) If n =15, then m =n + 1 =16 and
ny+ng +ng+ng =15
{ ny + 2ng + 3ng + 4ny = 32 .
We have ny + 2n3 + 3ny = 15, and 1 < ny < 5. All the solutions of ny,ns, ng, ny are

shown in Table 7.

Table 7.
Ny 11 1 1 1 1 1 12 2 2 2 2 2
ng 0 2 3 4 5 6 7|0 1 2 3 4 5
ng 4 12 10 8 6 4 2 0 |11 9 7 5 3 1
ny o 1 2 3 4 5 6 7|2 3 4 5 6 7
S>r,d7 |72 74 76 78 80 82 84 86|78 80 82 84 86 83
N4 3 3 3 3 314 4 4|5 5
ns o 1 2 3 410 1 2|0 1
no 8§ 6 4 2 015 3 1|2 0
ny 4 5 6 7 8|6 7 8|8 9
S,d? |84 8 88 90 9290 92 94|96 98

It follows that N > ,/% >19>n.

(II1) k = 3. Note that 0 < ¢ < 6 in any tricyclic graph.
(i)If n =8, then m =n+2 =10 and
ny+ns+nz+ng =8
{ ny + 2n9 + 3ng + 4ny = 20 .
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We have ny + 2n3 + 3ny = 12, and 1 < ny < 4. All the solutions of ny,no, n3, ny are

shown in Table 8.

Table 8.
ny 11 112 2 2 213 3 4
ng 2 3 40 1 2 3]0 1 0
na 5 3 1|6 4 2 013 1 0
ny o 1 210 1 2 3|2 3 4
S, d?[54 56 58|56 58 60 62|62 64 68

It follows that N > ,/68_82’7;;:_48>9>n.

(i) f n=9, then m =n+2 =11 and
ni+ne+ng+ng =9
n1+2n2+3n3+4n4:22

We have ny + 2n3 + 3ng = 13, and 1 < ny < 4. All the solutions of ny, ny, n3, ny are

shown in Table 9.

Table 9.
Ny 1 1 1 12 2 2 2|3 3 3 |4
ng 2 3 4 51/0 1 2 3|0 1 20
no 6 4 2 0|7 5 3 1|4 2 0|1
ny o 1 2 3|0 1 2 3|2 3 4|7
S, d?[58 60 62 64|60 62 64 60|66 68 70|71

It follows that N > 1/% >10>n.

(iii) If n =11, then m =n+ 2 =13 and
ny +n2+n3+n4=11
ny + 2ns + 3ng + 4nyg = 26 .

We have ny + 2n3 + 3ny = 15, and 1 < ny < 5. All the solutions of ny, ny, n3, ny are

shown in Table 10.

Table 10.
ny 1T 1 1 1 112 2 2 2 213 3 3 3|4 4|5
ns 2 3 4 5 610 1 2 3 4]0 1 2 3]0 110
na 8 6 4 2 019 7 5 3 1|6 4 2 013 110
ny o 1 2 3 4]0 1 2 3 412 3 4 5|4 5|6
> d2]66 68 70 72 74[68 70 72 T4 76|74 76 78 80|80 8286

It follows that N > /g0 > 12 > n.



-237-

(iv) If n =12, then m =n+ 2 =14 and
ny+ng+n3+nyg =12
n1+2n2+3n3+4n4:28 .

We have ny + 2n3 + 3ny = 16, and 1 < ny < 5. All the solutions of ny,no, n3, ny are

shown in Table 11.

Table 11.

Ny 1 1 1 1 1 2 2 2 2 2 2
ng 2 3 4 5 6|0 1 2 3 4 5
na 9 7 5 3 1|10 8 6 4 2 0
ny 0o 1 2 3 4]0 1 2 3 4 5
>y d?|70 72 74 76 78|72 74 76 78 80 82
ny 3 3 3 314 4 4 |5

ns o 1 2 3]0 1 2

o 7 5 3 1 |4 2 0|1

ny 2 3 4 514 5 6 |6

> d?|78 80 82 84|84 86 88|90

It follows that N > 1/% >14>n.

(v) If n =15, then m =n +2 =17 and

ny+ng +mn3+ng =15
ny + 2n9 + 3ns + 4ny = 34 .

We have ny + 2n3 + 3ny = 19, and 1 < ny < 6. All the solutions of ny, no, n3, ny are

shown in Table 12.

Table 12.
ny 11 1 1 1 1 112 2 2 2 2 2
ng 2 3 4 5 6 7 8|1 2 3 4 5 6
na 12 10 8 6 4 2 0 |11 9 7 5 3 1
ny 1 2 3 4 5 6|1 2 3 4 5 6
>y d?[82 84 8 8 90 92 948 88 90 92 94 96
ny 3 3 3 3 3 3 4 4 4 4 5 5 5 6
ns 1 2 3 4 5 6 0o 1 2 3 0 1 2 0
no 10 8 6 4 2 0 7T 5 3 1 4 2 0 1
ny 1 2 3 4 5 6 4 5 6 7 6 7 8 8
Z?Zld? 98 100 102 104 106 108 |96 98 100 102|102 104 106 | 108

It follows that N > ,/ﬁm >17>n.
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