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Abstract

Pairs of non-cospectral graphs are constructed, having equal energy (E), Laplacian en-
ergy (LE), and distance energy (DFE). These seem to be the first examples of “triply
equienergetic graphs”. We construct a family of integral circulant graphs (ICG) of or-
der n = 2pq, where p > g > 2 are prime numbers, G,, = ICG(n,{1,2}) and H, =
ICG(n,{p,2p,q,2q}), for which E(G,) = E(H,) =8(p—1)(¢—1), LE(G,) = LE(H,) =
8(p—1)(q—1), and DE(Gy) = DE(Hy) =8(p —1)(¢ — 1) + 4pq.

1 Introduction

Let A be the adjacency matrix of a simple graph G, and let Ay, Ag, ..., A, be its
eigenvalues. These are said to be the eigenvalues of the graph G and form its spectrum
[12]. The energy E(G) of the graph G is defined as the sum of the absolute values of

its eigenvalues [16],

E=E(G)=>_|n|.

i=1

LCorresponding author.
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The concept of graph energy originates from the Hiickel molecular orbital approxi-
mation for the total m-electron energy (for details see [17]). In the last 5-10 years
research on graph energy became a popular theme in both mathematics and mathe-
matical chemistry (see the recent surveys [18, 19|, the papers published in this issue
of MATCH, and the references cited therein).

Motivated by the successes of the theory of graph energy, energy—like quantities,
based on the eigenvalues of graph matrices other than the adjacency matrix, have
been proposed. Of these we are concerned here with the Laplacian graph energy
(LE) and the distance energy (DE).

Let L be the Laplacian matrix of the graph G, and py, pia, . . ., 4, be its eigenvalues
[14, 15, 33]. Then the Laplacian energy of G is [1, 20, 52, 53]

LE = LE(G) = En:

i=1

2m
i — ——
n

where n and m denote the number of vertices and edges. For some recent research
on LE see [13, 40, 45, 49].

The distance matrix D of a graph G is the square matrix whose (7, j)-entry is
the distance between the i-th and j-th vertex of G'. The eigenvalues py, po, ..., p, of
the distance matrix are said to be the distance or D-eigenvalues of the underlying
graph and form its distance spectrum. The distance energy of a graph G is the sum

of absolute values of the D-eigenvalues [26],
DE =DE(G) =) _|pil .
i—1

For some recent research on DFE see [9, 23, 24, 34, 35, 46, 51]. The distance energy
was shown to be a useful molecular structure-descriptor in QSPR modeling [11].
Two graphs G and G5 are said to be cospectral if their spectra coincide [12]. In
full analogy we speak of pairs of Laplacian cospectral and distance cospectral graphs.
Evidently, cospectral graphs have equal energies, Laplacian cospectral graphs have
equal Laplacian energies, and distance cospectral graphs have equal distance energies.
However, there exist pairs of non-cospectral graphs with equal energy. These will be
referred to as A-equienergetic [2, 10]. Analogously, there exist pairs of graphs with
equal Laplacian energy, so-called L-equienergetic graphs, and with equal distance

energy, so-called D-equienergetic graphs.
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In what follows we are interested only in non-cospectral equienergetic graphs, and
non-cospectrality is tacitly assumed.

Many recent papers are devoted to finding and constructing of A-equienergetic
graphs, e. g., [8, 27, 28, 30, 32, 36, 37, 38, 44, 50]. In [45] L-equienergetic graphs are
obtained, whereas the papers [25, 31, 35] report on D-equienergetic graphs.

Using a computer search on graphs with < 10 vertices, we concluded that there
are no pairs of A—, L—, and D-equienergetic graphs.

One of the fundamental properties of Laplacian energy is that in the case of
regular graphs LE is equal to E [20]. Therefore, if two regular graphs G; and G»
are A-equienergetic, then these automatically are also L-equienergetic. A systematic
method for constructing families of A-equienergetic regular graphs was elaborated in
[37, 38]: If G, and G}, are any two regular graphs of the same order and of the same
degree, then their second line graphs (i. e., the line graph of the line graph) are both
A— and L-equienergetic.

Until now, to our best knowledge, no pairs of graphs were found that are both
A-equienergetic, L-equienergetic, and D-equienergetic. We now construct such triply
equienergetic graphs.

In this note, we present a family of pairs (G,,, H,) for n = 2pq, with p > ¢ > 2
being prime numbers, such that G, and H, are A-equienergetic, D-equienergetic,
and L-equienergetic. Based on this construction, one can establish similar pairs of
integral circulant graphs, and use line graphs or graph products for constructing
further pairs of equienergetic graphs. These examples of integral circulant graphs
represent a fruitful connection between Mathematical chemistry, Graph theory, and

Number theory.

2 Preliminaries

A graph is said to be circulant if its adjacency matrix is circulant [7, 42, 47]. A graph
is called integral if all eigenvalues of its adjacency matrix are integers. Integral graphs
were extensively studied in the literature and there was a vast research for specific
classes of graphs with integral spectrum [3].

Integral circulant graphs were imposed as potential candidates for modeling quan-
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tum spin networks with periodic dynamics. For the certain quantum spin system, the
necessary condition for the existence of perfect state transfer in qubit networks is the
periodicity of the system dynamics (see [41]). Various properties of integral circulant
graphs were investigated in [4, 5, 6, 29, 43].

Integral circulant graphs are the natural extension of the class of unitary Cayley
graphs. Let D be a set of positive, proper divisors of the integer n > 1. Define the

graph IC'G(n, D) so that its vertex set be Z,, = {0,1,...,n — 1} and its edge set
{{a,b} | a,be Z,, ged(a—b,n) € D} .

The graph ICG(n, D) is regular of degree Y ., ¢(n/d), where ¢(n) denotes
the Euler function. These graphs are highly symmetric and have some remarkable
properties connecting graph theory and number theory.

Let w denote a complex primitive n-th root of unity. It is proven in [29] that the
eigenvalues of IC'G(n, D) are integral and are given by

A=Y eli,n/d) (1)

deD
where
c(i,n) = Z who<i<n—1.
1<j<n, ged(j,n)=1
The arithmetic function ¢(i, n) is a Ramanujan sum, and for integers ¢ and n these
sums have only integral values,
t; n
N( 2) a =
o(t:) ged(i, n)

where p denotes the Mobius function,

c(i,n) = p(n) -

(—1)* if n is a square-free positive integer

p(n) =
0 if n is not square-free .

In [22] and [39] the authors analyze the energy of integral circulant graphs, and
establish conditions for ICG(n, D) to be hyperenergetic. (Recall that an n-vertex
graph is said to be hyperenergetic if its energy is greater than 2n — 2 [21, 47, 48]).

The distance spectrum of /CG(n, D) is given by [23]:

51 n EP n - Sdiam(G) n
pPi = IZC (’f’, (1)) +2ZC (’f’, (2))++dlam(G) Z C T,m (2)
Jj=1 d; Jj=1 dj dj

J Jj=1
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where

DW= {dP dY,....dP} , 1<p < diam(G)

is the set of divisors determined by the vertices on distance p from the starting vertex

0.

3 Main result

Let n = 2pq, where p > g > 2 are arbitrary prime numbers. Consider the following

integral circulant graphs
G, =I1CG(2pq,{1,2}) and H, = ICG(2pq,{p,2p,q,2q}) .
Based on the formula (1), the adjacency eigenvalues of G,, and H,, are
N = c(i,2pq) + c(i,pq) , i=1,2,...,n .

and

M= c(i,p) + (i, 2p) + c(i, q) + c(i,29) , i=1,2,....n.

For the index i, we have eight possibilities for the greatest common divisor of i

and 2pq . Therefore,the adjacency spectrum of G,, is

0 if ged(i,2pg) =1
2 if ged(7,2pq) =2
0 if ged(i,2pq) =p
\6 0 if ged(i,2pq) =
' —2(p—1) if ged(i, 2pg) =
—2(g—-1) if ged(i, 2pq) =
0 if ged(4, 2pg) = pg
2p—1)(g—1)  if ged(i,2pq) =
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Analogously,the adjacency spectrum of H, is

0 if ged(i,2pg) =1
—4 if ged(i,2pq) =2
0 if ged(i,2pq) =p
= 0 if ged(i,2pq) = ¢
‘ 2(p—2) if ged(i,2pq) = 2p
2(q —2) if ged(i,2pq) = 2q
0 if ged(i,2pq) = pq
2(p+q—2) if ged(i,2pq) =

The energy of G,, is thus
BE(G,) = (p—D@-1)-0+(p-1—-1)-2+(q—-1)-0+(p—1)-0

(¢=1)-Cp-1))+@E-1)-2¢-1)+1-04+1-2(p—1)(¢—1))

= 8(p—1(g—-1).

+

The energy of H, is
BE(,) = (p-1-1)-0+(p-1(@¢-1)-4+(¢—-1)-0+(p—1)-0

(q=1)-Cp—=2)+@—-1)-20¢—=2)+1-0+1-2(p+q—2)
8(p—1)(g—1).

+

We see that G,, and H,, are non-cospectral graphs with equal energy. Because G,,
and H, are regular, it follows that E(G,) = LE(G,) and E(H,) = LE(H,). Thus,
G, and H,, are both A-equienergetic and L-equienergetic.

The graphs G,, and H,, are generated from divisor subsets {1, 2} and {p, 2p, ¢, 2¢} ,
so it follows that the diameter of both graphs is two.

Based on the formula (2), the distance eigenvalues of G,, and H,, are
P = (i, 2pq) + (i, pa) +2[c(i, p) + (i, 2p) +c(i, ) + (i, 2q) +¢(i,2)] , i =1,2,...,n.
and

pit = cli,p)+cli, 2p) +c(i, q) + (i, 2q) +2[c(4, 2pq) + (i, pg) +¢(i,2)] , i = 1,2,...,n
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For the index 7, we have eight possibilities for the greatest common divisor of i

and 2pq . Therefore, the distance spectrum of G, is

2(p—2)

2(q —2)

-2

2p—1)(g—1) +4(p+q—2)+2

Analogously, the distance spectrum of H,, is

—2

-2

-2

—2(p—1)

—2(¢—1)

-2
4p—Dlg-1+2p+q—2)+2

The D-energies of G,, and H,, are

DE(G,) p-D@-1-2+p-D@-1)-4+(@-1)-2+(p—-1)-2
+ (¢—1)-2p-2)+@@-1)-(2¢—-2)+1-2
+ 1-Q2@p-D@-1)+4p+qg—2)+2)
= 4(3pg—2p—2¢+2)=E(G,)+2n

and

DEH, = (@p-1)@g-1)-2+@-1(@-1)-4+(@-1)-2+(p—-1)-2
+ (@-1)-Cr-1))+@-1)-2¢—-1)+1-2
+ 1-(Ap-g-1)+20p+q—2)+2)

4(3pg —2p —2q+2) = E(H,) + 2n .

if ged(i,2pq) =1
if ged(i,2pq) = 2
if ged(4,2pg) = p
if ged(i, 2pg) = q
if ged(4,2pg) = 2p
if ged(i,2pq) = 2q
if ged(4, 2pq) = pq
if ged(i, 2pq) = 2pq
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Thus, we see that the graphs G,, and H,, are non-cospectral and D-equienergetic.

In Figure 1 is depicted the smallest pair of such triply equienergetic graphs, pos-
sessing 30 vertices.

Similarly, one can prove that the integral circulant graphs ICG(8p,{1,2} and
ICG(8p,{4,8,p,2p} are A—, L—, and D-equienergetic.

Figure 1: A pair of triply equienergetic integral circulant graphs on 30 vertices.
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