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Abstract

We use a lemma due to Fiedler to obtain eigenspaces of some graphs and apply these
results to graph energy (= the sum of absolute values of the graph eigenvalues = the sum of
singular values of the adjacency matrix). We obtain some new upper and lower bounds for
graph energy and find new examples of graphs whose energy exceeds the number of vertices.

1 INTRODUCTION

Let A be an n × n matrix. The scalars λ and vectors v �= 0 satisfying Av = λv we

call eigenvalues and eigenvectors of A, respectively, and any such pair (λ, v) is called

an eigenpair for A.

The set of distinct eigenvalues (including multiplicities), denoted by σ(A), is called

the spectrum of A. The eigenvectors of the adjacency matrix of a graph G, together

with the eigenvalues, provide a useful tool in the investigation of the structure of the
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graph. In this work, having a result presented in [1] as motivation, we obtain, for

graphs with a special type of adjacency matrix, a lower bound for the energy of these

graphs. In 1974 Fiedler obtained the following result [1] .

Let A, B be m×m and n× n symmetric matrices with corresponding eigenpairs

(αi, ui) , i = 1, . . . , m , (β�, v�) , � = 1, . . . , n , respectively.

Lemma 1.1. [1] Let A, B be m×m and n×n symmetric matrices with corresponding

eigenpairs (αi, ui) , i = 1, . . . ,m , (βi, vi) , i = 1, . . . , n , respectively. Suppose that

‖u1‖ = 1 = ‖v1‖ . Then, for any ρ , the matrix

C =

(
A ρ u1 vT

1

ρ v1 uT
1 B

)
has eigenvalues α2, . . . , αn, β2, . . . , βm, γ1, γ2, where γ1, γ2 are eigenvalues of

Ĉ =

(
α1 ρ
ρ β1

)
.

We now offer a generalization of Fiedler’s lemma.

Suppose now that u1, . . . , um (resp. v1, . . . , vn) constitute an orthonormal system

of eigenvectors of A (resp. B). Let (u1| , . . . , |um ) and (v1| , . . . , |vn ) be the matrices

whose columns consist of the cordinates of the eigenvectors ui and vi associated to

the eigenvalues αi and βi, respectively.

In fact,

(u1| , . . . , |um ) =

⎛⎜⎜⎜⎝
u11 u12 u1m

u21 u22 u2m
...

...
...

um1 um2 umm

⎞⎟⎟⎟⎠

where up =

⎛⎜⎜⎜⎝
u1p

u2p
...

ump

⎞⎟⎟⎟⎠ for p = 1, . . . , m , and

(v1| , . . . , |vn ) =

⎛⎜⎜⎜⎝
v11 v12 v1n

v21 v22 v2n
...

...
...

vn1 vn2 vnn

⎞⎟⎟⎟⎠

where vp =

⎛⎜⎜⎜⎝
v1p

v2p
...

vnp

⎞⎟⎟⎟⎠ for p = 1, . . . , n .
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Lemma 1.2. Let k ≤ min {m, n} and U = (u1| , . . . , |uk ) , V = (v1| , . . . , |vk ) .

Then, for any ρ , the matrix

C =

(
A ρUV T

ρV UT B

)
has eigenvalues αk+1, . . . , αm, βk+1, . . . , βn, γ1j, γ2j, j = 1, 2, . . . , k, where for s =

1, 2, γsj is an eigenvalue of

Ĉj =

(
αj ρ
ρ βj

)
.

Proof. For j = 1, 2, . . . , k , let
(
γsj, ŵsj

)
, s = 1, 2 , be an eigenpair of the matrix

Ĉj =

(
αj ρ
ρ βj

)
where ŵsj =

(
w1sj w2sj

)T
. Then, for j = 1, 2, . . . , k, s = 1, 2, we have,(
αj ρ
ρ βj

)(
w1sj

w2sj

)
= γsj

(
w1sj

w2sj

)
.

Let

(
w1sj uj

w2sj vj

)
be an (m + n)−vector. Then,(
A ρUV T

ρV UT B

)(
w1sj uj

w2sj vj

)
=

(
w1sj Auj+ρw2sj UV T vj

ρw1sj V UT uj+w2sj Bvj

)

as

w1sj Auj +ρw2sj UV T vj = w1sj αj

⎛⎜⎜⎜⎝
u1j

u2j
...

umj

⎞⎟⎟⎟⎠+ ρw2sj U

⎛⎜⎜⎜⎜⎜⎝
0
...
1
...
0

⎞⎟⎟⎟⎟⎟⎠
and

ρw1sj V UT uj+w2sjBvj = ρw1sj V

⎛⎜⎜⎜⎜⎜⎝
0
...
1
...
0

⎞⎟⎟⎟⎟⎟⎠+ w2sj βj

⎛⎜⎜⎜⎝
v1j

v2j
...

vnj

⎞⎟⎟⎟⎠ .

Therefore, (
A ρUV T

ρV UT B

)(
w1sj uj

w2sj vj

)
=

(
w1sj αj uj+ρw2sj uj

ρw1sj vj+w2sj βj vj

)

=

(
(w1sj αj + ρw2sj ) uj

(ρw1sj + w2sj βj) vj

)
=

(
γsj w1sj uj

γsj w2sj vj

)
= γsj

(
w1sj uj

w2sj vj

)
.
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Recall that
(
γsj, ŵsj

)
, s = 1, 2 is an eigenpair of Ĉj =

(
αj ρ
ρ βj

)
, where ŵsj =(

w1sj w2sj

)T
. Then, for s = 1, 2, we have,(

αj ρ
ρ βj

)(
w1sj

w2sj

)
= γsj

(
w1sj

w2sj

)
.

Therefore, for j = 1, 2, . . . , k, s = 1, 2,

(
γsj,

(
w1sj uj

w2sj vj

))
are 2k eigenpairs for C. For

i = k + 1, . . . ,m , we have(
A ρUV T

ρV UT B

)(
ui

0

)
=

(
Aui

0

)
= αi

(
ui

0

)
and for t = k + 1, . . . , n , we set(

A ρUV T

ρV UT B

)(
0

vt

)
=

(
0

Bvt

)
= βt

(
0

vt

)
.

Therefore,

(
αi,

(
ui

0

))
for i = k +1, . . . , m , and

(
βt,

(
0
vt

))
for t = k +1, . . . , n ,

are eigenpairs for C . Thus the result is proved.

2 APPLICATIONS

A simple graph G is a pair of sets (V, E) , such that V is a nonempty finite set of n

vertices and E is the set of m edges. We say that G is a simple (n,m)− graph. Let

A(G) be the adjacency matrix of the graph G . Its eigenvalues λ1, . . . , λn form the

spectrum of G (cf. [2]).

The notion of energy of an (n,m)-graph G (written E(G) ) is a nowadays much

studied spectral invariant, see the reviews [3, 4] and the recent works [5–9]. This

concept is of great interest in a vast range of fields, especially in chemistry since it

can be used to approximate the total π-electron energy of a molecule. It is defined

as [10]

E(G) =

n∑
j=1

|λj| .

Given a complex m×n matrix C , we index its singular values by s1(C), s2(C), . . . .

The value

E(C) =
∑

j

sj(C)
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is the energy of C (cf. [11]), thereby extending the concept of graph energy. Con-

sequently, if the matrix C ∈ R
n×n is symmetric with eigenvalues β1(C), . . . , βn(C) ,

then its energy is given by

E(C) =
n∑

i=1

|βi(C)| .

In this section, using Lemma 1.2, we present an application of the concept of

energy to some special kinds of graphs.

We first formulate an auxiliary result.

Let Q = (qij) be an n1 × n2 matrix with real-valued elements. Without loss of

generality we may assume that n1 ≤ n2 . Let the singular values of Q be s1, s2, ..., sn1 .

Then E(Q) =
n1∑
i=1

si .

Lemma 2.1.

E(Q) ≤ √
n1 ‖Q‖F

where ‖Q‖F is the Frobenius norm of Q , defined as [12]

‖Q‖F =

√√√√ n1∑
i=1

n2∑
j=1

q2
ij .

Proof. Let ξ1, ξ2, ..., ξp be real numbers. Their variance

1

p

p∑
i=1

ξ2
i −
(

1

p

p∑
i=1

ξi

)2

is known to be non-negative. Therefore,

p∑
i=1

ξi ≤ √
p

√√√√ p∑
i=1

ξ2
i .

Setting in the above inequality p = n1 and ξi = si, we obtain

E(Q) =

n1∑
i=1

si ≤ √
n1

√√√√ n1∑
i=1

s2
i .

Now, the singularities of the matrix Q are just the square roots of the eigenvalues of

QQT . Therefore,
n1∑
i=1

s2
i is equal to the sum of the eigenvalues of QQT , which in turn

is the trace of QQT . Lemma 2.1 follows from

Tr(QQT ) =

n1∑
i=1

n2∑
j=1

qij qT
ji =

n1∑
i=1

n2∑
j=1

q2
ij = ‖Q‖2

F .
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Let

A(G) =

(
B X
XT C

)
be a partition of the adjacency matrix of a graph G, where B and C have orders

n1 × n1 and n2 × n2, respectively. Thus X has order n1 × n2 .

Theorem 2.2. Let G be a graph of order n = n1+n2 , such that its adjacency matrix is

given by A(G) =

(
B X
XT C

)
, where B and C represent adjacency matrices of graphs.

Moreover, let k ≤ min {n1, n2} and consider the eigenpairs {(αi, ui) : 1 ≤ i ≤ k} of

B and {(βi, vi) : 1 ≤ i ≤ k} of C , such that the sets {u1, . . . , uk} and {v1, . . . , vk} are

orthonormal vectors. Let U = (u1| . . . |uk ) and V = (v1| . . . |vk ) . Then

E(G) ≤ 1

2

k∑
i=1

∣∣∣∣αi + βi +

√
(αi − βi)

2 + 4

∣∣∣∣+ 1

2

k∑
i=1

∣∣∣∣αi + βi −
√

(αi − βi)
2 + 4

∣∣∣∣
+
√

n1 − k

√√√√‖B‖2
F −

k∑
i=1

|αi|2 +
√

n2 − k

√√√√‖C‖2
F −

k∑
i=1

|βi|2

+ 2
√

min {n1, n2}
∥∥X − UV T

∥∥
F

.

Proof.

A(G) =

(
B X

XT C

)
=

(
B UV T

V UT C

)
+

(
0 X − UV T

XT − V UT 0

)
= M + N .

Thus, according by the Ky Fan theorem [13], E(G) ≤ E(M) + E(N) .

Note that the spectrum of the matrix M̂i =

(
αi 1
1 βi

)
is

σ
(
M̂i

)
=

{
1

2

(
αi + βi ±

√
(αi − βi)

2 + 4

)}
.

Then, by applying Lemma 1.2,

E(M) =
1

2

k∑
i=1

∣∣∣∣αi + βi +

√
(αi − βi)

2 + 4

∣∣∣∣+ 1

2

k∑
i=1

∣∣∣∣αi + βi −
√

(αi − βi)
2 + 4

∣∣∣∣
+

n1∑
i=k+1

|αi| +
n2∑

i=k+1

|βi| .
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By Lemma 2.1,

n1∑
i=k+1

|αi| +
n2∑

i=k+1

|βi| ≤
√

n1 − k

√√√√ n1∑
i=k+1

|αi|2

=
√

n1 − k

√√√√‖B‖2
F −

k∑
i=1

|αi|2 +
√

n2 − k

√√√√‖C‖2
F −

k∑
i=1

|βi|2 .

Moreover, also by Lemma 2.1,

E(N) = 2E(X − UV T ) ≤ 2
√

min {n1, n2}
∥∥X − UV T

∥∥
F

.

Consider the following special case of Theorem 2.2. Let both submatrices B and

C be equal, say equal to A, the adjacency matrix of an (n,m)-graph G . Further,

let k = n1 = n2 = n . By setting in Lemma 1.2, A = B = A(G) , and considering

(λi, ui) , i = 1, . . . , n, such that U = (u1| , . . . , |un ) is an orthonormal matrix and

ρ = 1, the matrix

C =

(
A ρUUT

ρUUT A

)
=

(
A In

In A

)
has eigenvalues βs1, βs2, . . . , βsn, s = 1, 2, where for j = 1, 2, . . . , n, s = 1, 2, βsj is an

eigenvalue of

Ĉj =

(
λj 1
1 λj

)
.

Thus β1j = λj − 1 , β2j = λj + 1 , and for the symmetric matrix C , we have

E(C) =
n∑

i=1

|λi − 1| +
n∑

i=1

|λi + 1| ≥
∣∣∣∣∣

n∑
i=1

(λi − 1)

∣∣∣∣∣+
∣∣∣∣∣

n∑
i=1

(λi + 1)

∣∣∣∣∣ = n + n = 2n .

Hence E(C) > 2n holds, except if for all i = 1, 2, . . . , n , the value of the terms

|λi − 1| and |λ1 + 1| is either zero or equal to some constant γ > 0 . This can happen

only if either for all i = 1, 2, . . . , n , λi = 0 or λi ∈ {−1, +1} , i. e., if either (a) the

underlying graph G is without edges, or (b) all components of G are isomorphic to

K2 . In these two cases, E(C) is equal to the number of vertices of the graph whose

adjacency matrix is C .

In conclusion, except in the two “pathological” cases (a) and (b), the energy of

the graph whose adjacency matrix is C is greater than its number of vertices.
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At this point it is worth noting that the graph whose adjacency matrix is C is

just the sum of the graphs G and K2 , denoted by G+K2 , where K2 is the complete

graph on two vertices.

The graph operation marked by + is described in detail elsewhere [2, 14]. Let G1

and G2 be two graphs, with (disjoint) vertex sets V (G1) and V (G2) . Then the vertex

set of G1 + G2 is V (G1) × V (G2) . The vertices (x1, x2) and (y1, y2) of G1 + G2 are

adjacent if and only if x1 = y1 and (x2, y2) is an edge of G2 or if x2 = y2 and (x1, y1)

is an edge of G1 .

For the present consideration it is important that the spectrum of G1+G2 consists

of the sums of eigenvalues of G1 and G2 [2]. In view of this, the finding that β1j =

λj − 1 , β2j = λj + 1 is an immediate consequence of the fact that the spectrum of

K2 consists of the numbers +1 and −1 .

The result E(C) ≥ 2n can now be generalized as follows.

Let α1, . . . , αn1 and β1, ..., βn2 be, respectively, the eigenvalues of G1 and G2 . Then

the eigenvalues of G1 +G2 are of the form αi +βj , i = 1, . . . , n1 , j = 1, . . . , n2 , and

E(G1 + G2) =

n1∑
i=1

n2∑
j=1

|αi + βj| .

We thus have,

E(G1 + G2) ≥
n1∑
i=1

∣∣∣∣∣
n2∑

j=1

(αi + βj)

∣∣∣∣∣ =
n1∑
i=1

|n2 αi| = n2

n1∑
i=1

|αi| = n2 E(G1)

because of
n2∑

j=1

αi = n2 αi and

n2∑
j=1

βj = 0 .

In an analogous manner it can be shown that E(G1 + G2) ≥ n1 E(G2) .

Same as in the above example, equality E(G1 + G2) = n2 E(G1) occurs if (a’)

G2 is without edges, whereas equality E(G1 + G2) = n1 E(G2) occurs if (a”) G1 is

without edges. Both equalities E(G1 + G2) = n2 E(G1) and E(G1 + G2) = n1 E(G2)

occur if (b’) all components of both G1 and G2 are isomorphic to K2 .

The graph G1 + G2 has n1 n2 vertices. Bearing this in mind we arrive at:
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Theorem 2.3. With the exception of the (above specified) “pathological” cases (a’),

(a”), and (b’), if either the energy of G1 exceeds or is equal to the number of vertices

of G1 , or the energy of G2 exceeds or is equal to the number of vertices of G2 , then

the energy of G1 + G2 exceeds the number of vertices of G1 + G2 .

In connection with Theorem 2.3 it is worth noting that the problem of construct-

ing and characterizing graphs whose energy exceeds the number of vertices was first

considered in [15] and thereafter in [16–19]. A closely related problem is the con-

struction and characterization of hypoenergetic graphs, namely (connected) graphs

whose energy is less than the number of vertices [13,20–25]. Also graphs whose en-

ergy is equal to the number of vertices were recently studied [26]. From this point

of view, Theorem 2.3 provides an additional possibility to obtain (infinitely many)

non-hypoenergetic graphs.

Let A,B, C, X, U and V be the same matrices as in the formulation and proof of

Theorem 2.2. Let, as before

M =

(
B UV T

V UT C

)
and Q =

(
0 UV T

V UT 0

)
.

Theorem 2.4. E(A) ≥ E(M) − E(Q) .

Proof. Let

Â =

(
B −X

−XT C

)
.

Then, as well known, E(A) = E(Â) . We have A = M + P and Â = M + P̂ , where

P =

(
0 X − UV T

XT − V UT 0

)
and P̂ =

(
0 −X − UV T

−XT − V UT 0

)
.

Therefore

A + Â = 2M − 2Q .

By Ky Fan theorem [13],

2E(M) ≤ E(A) + E(Â) + 2E(Q)

implying the theorem.
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As a special case of Theorem 2.4, for k = 1 ,

M =

(
B u1 vT

1

v1 uT
1 C

)
and Q =

(
0 u1 vT

1

v1 uT
1 0

)
.

Hence, E(Q) = 2
∣∣vT

1 u1

∣∣ and E(A) ≥ E(M) − 2
∣∣vT

1 u1

∣∣ .
By Fiedler’s Lemma 1.1,

E(M) = E(B) + E(C) +
1

2

∣∣∣∣α1 + β1 +

√
(α1 − β1)

2 + 4

∣∣∣∣
+

1

2

∣∣∣∣α1 + β1 −
√

(α1 − β1)
2 + 4

∣∣∣∣− (|α1| + |β1|) .

Therefore, E(A) ≥ E(B) + E(C) + ε , where

ε =
1

2

∣∣∣∣α1 + β1 +

√
(α1 − β1)

2 + 4

∣∣∣∣+ 1

2

∣∣∣∣α1 + β1 −
√

(α1 − β1)
2 + 4

∣∣∣∣
− (|α1| + |β1|) − 2

∣∣vT
1 u1

∣∣ .

The inequality E(A) ≥ E(B) + E(C) has been reported earlier [27]. Therefore

our result will be an improvement of that inequality only if ε > 0 . If α1 > 0 , β1 > 0 ,

and α1 β1 ≥ 1 , then

1

2

∣∣∣∣α1 + β1 +

√
(α1 − β1)

2 + 4

∣∣∣∣+ 1

2

∣∣∣∣α1 + β1 −
√

(α1 − β1)
2 + 4

∣∣∣∣− (|α1| + |β1|) = 0

and therefore ε < 0. Thus, in order to get an improvement, we must choose α1 and

β1 such that α1 β1 < 1 . For instance, for α1 = β1 = 0 we get ε = 2− 2
∣∣vT

1 u1

∣∣ , which

is positive because of
∣∣vT

1 u1

∣∣ ≤ ‖v1‖ ‖u1‖ = 1 · 1 = 1 .
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