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Abstract

We use a lemma due to Fiedler to obtain eigenspaces of some graphs and apply these
results to graph energy (= the sum of absolute values of the graph eigenvalues = the sum of
singular values of the adjacency matrix). We obtain some new upper and lower bounds for
graph energy and find new examples of graphs whose energy exceeds the number of vertices.

1 INTRODUCTION

Let A be an n x n matrix. The scalars A and vectors v # 0 satisfying Av = \v we
call eigenvalues and eigenvectors of A, respectively, and any such pair (), v) is called
an eigenpair for A.

The set of distinct eigenvalues (including multiplicities), denoted by o(A), is called
the spectrum of A. The eigenvectors of the adjacency matrix of a graph G, together

with the eigenvalues, provide a useful tool in the investigation of the structure of the
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graph. In this work, having a result presented in [1] as motivation, we obtain, for
graphs with a special type of adjacency matrix, a lower bound for the energy of these
graphs. In 1974 Fiedler obtained the following result [1] .

Let A, B be m x m and n X n symmetric matrices with corresponding eigenpairs

(aiyu), i=1,....,m, (Be,v0), £ =1,...,n, respectively.

Lemma 1.1. [1] Let A, B be mxm and nxn symmetric matrices with corresponding

eigenpairs (o, u;), @ = 1,....m, (Bi,v;), i = 1,...,n, respectively. Suppose that
|ui|l =1 = |lv1||. Then, for any p, the matriz
A puy vl
C =
pvpuf B
has eigenvalues g, ..., y, Poy -y By Y1, V2, Where y1,7y2 are eigenvalues of

~ a
C= ( ) gl ) :
We now offer a generalization of Fiedler’s lemma.
Suppose now that wy, ..., U, (resp. vq,...,v,) constitute an orthonormal system
of eigenvectors of A (resp. B). Let (uy|,...,|u,) and (v1],...,|v,) be the matrices

whose columns consist of the cordinates of the eigenvectors u; and v; associated to

the eigenvalues «; and [3;, respectively.

In fact,
Uil U2 Uim
Uz U2 U2m
(u1|7"')|u77I) =
Um1  Um2 Umm
U1p
UQp
where u, = . forp=1,...,m, and
Ump
V11 V12 Uin
V21 V22 Van
(vlseees Jon) = :
Up1  Un2 Unn
V1p
V2p .
where v, = : forp=1,...,n.

Unp
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Lemma 1.2. Let k < min{m,n} and U = (uy|,...,|ux), V = (v1],...,|vx).

A pUVT
C—
pVUT B

has eigenvalues i, ...,y Bigts - Buy Vg, Vo5, J = 1,2,...,k, where for s =

A _ (o5 b
© (P ﬂj)'

Proof. For j =1,2,...,k, let (/‘/sj?w/\sj) ,$ =1,2, be an eigenpair of the matrix

N a
C; = 7
! (P ﬁj)

where Wy, = (wlsj wzsj)T. Then, for j =1,2,....k, s = 1,2, we have,
aj P Wisj \ _ Y Wiy
p o Bi) \was; M \wasj )

Let (wl“"j uj) be an (m + n)—vector. Then,

Then, for any p, the matriz

1,2, v is an eigenvalue of

’11)25]‘ 1)j
A pUv?t W) Uy Wisj Aujerwzsj UVij
pVUT B Wagj Vj PW1; VUTuj—l—sz]- Buo;
as
0
Uyj .
T U2; )
w5 Auj +pwsg; UV'ivj = w4 . + pwo; U1l
and
0
T ) U2j
pwig; VU ujtwesj Buj = pwyg; Vo[ 1| + wag; 55
: "y
0 J
Therefore,

A pUvT W) Uy Wigj O Uj+Puwag; Uj
pVUT B Wagj Vj PW1; Vj+Wass Bjv;

(wisj @ + pwas; ) u; Vaj Wisj U Wis; U;
f— = = ’ysj .
(pwis; + was; 3;) v; Vsj Wasj Vj Wasj Vj
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a; p .
J . _
) , where w,; =

Recall that (%j71’0\5]_) , s = 1,2 is an eigenpair of @- = (p B;

T
(wlsj ’LUQS]') . Then, for s = 1,2, we have,

(O‘J‘ ﬂ) (wls]‘) = s (wlsj)
p B Wasj I Wasj
Wisj Uy

])) are 2k eigenpairs for C. For

Wasj Vs

Therefore, for j =1,2,.... k, s =1,2, (fys]-, (

i=k+1,...,m, we have

A pUuvT u; Au; u;
= =
pVUT B 0 0 0

and fort =k +1,...,n, we set

A pUVT 0 0 0
e o ) ()= () ()
pVUT B s Buy v

U;

Therefore, (ui, (0 ) fori=k4+1,...,m, and (ﬁt, (1()))) fort =k+1,...,n,
t

are eigenpairs for C'. Thus the result is proved. O

2 APPLICATIONS

A simple graph G is a pair of sets (V, E), such that V' is a nonempty finite set of n
vertices and F' is the set of m edges. We say that G is a simple (n,m)— graph. Let
A(G) be the adjacency matrix of the graph G. Its eigenvalues Ay, ..., \, form the
spectrum of G (cf. [2]).

The notion of energy of an (n, m)-graph G (written E(G)) is a nowadays much
studied spectral invariant, see the reviews [3, 4] and the recent works [5-9]. This
concept is of great interest in a vast range of fields, especially in chemistry since it
can be used to approximate the total m-electron energy of a molecule. It is defined
as [10]

n
BG) =S Il -
j=1

Given a complex m xn matrix C', we index its singular values by s;(C'), s2(C), .. ..

The value

B(C) =Y s(C)

J
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is the energy of C' (cf. [11]), thereby extending the concept of graph energy. Con-
sequently, if the matrix C' € R™*" is symmetric with eigenvalues 3,(C), ..., 3,(C),
then its energy is given by
n
E(C) =) 15(C)] -
i=1
In this section, using Lemma 1.2, we present an application of the concept of
energy to some special kinds of graphs.
We first formulate an auxiliary result.
Let @ = (g;;) be an ny x ny matrix with real-valued elements. Without loss of
generality we may assume that ny < ny. Let the singular values of Q) be s1, 59, ..., Sy, -
ni
Then E(Q) =>_s;.
i=1
Lemma 2.1.

EQ) < v [1Qlp
where [|Q| p is the Frobenius norm of Q , defined as [12]

ni  n2

DI E

i=1 j=1

Proof. Let &, &, ..., &, be real numbers. Their variance

1, 1<\’
p;&—(p;&)

is known to be non-negative. Therefore,

14 P
DGV D> &
i=1 i=1

Setting in the above inequality p = ny and & = s;, we obtain

n1

n1

Now, the singularities of the matrix @ are just the square roots of the eigenvalues of
ni
QQT. Therefore, > s? is equal to the sum of the eigenvalues of QQT, which in turn

i=1
is the trace of QQ”. Lemma 2.1 follows from

ni n2 ni no

Tr(QQ") => > aydi=>_> a; =Ql% -

i=1 j=1 i=1 j=1
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Let

a6 =y %)

be a partition of the adjacency matrix of a graph G, where B and C have orders

ny X np and ng X ng, respectively. Thus X has order ny x ng.

Theorem 2.2. Let G be a graph of order n = ni+ns , such that its adjacency matriz is

given by A(G) = )?T

Moreover, let k < min{ny,na} and consider the eigenpairs {(a;,u;) : 1 <i <k} of
B and {(Bi,vi) : 1 <i <k} of C, such that the sets {uy,...,u;} and {vy,... ,v3} are

X . .
C’) , where B and C' represent adjacency matrices of graphs.

orthonormal vectors. Let U = (uq|...|ug) and V = (vq]...|vx). Then
1 1
2 2
E(G) 5; a; + B + /(o — ;) +4’+2i21 a; + B — /(i — ) +4'
k k
+ Vi =k IBIE =Y lail” + Vo — k| ICI1 = Y 16
i=1 i=1
+ 2y/min{ny, no} HXfUVTHF .
Proof.

B X B UVT 0 X -UvT
A(G) = = + =M+N.
Xt c vur  C XT—yur 0

Thus, according by the Ky Fan theorem [13], E(G) < E(M) + E(N).

LB

o (A1) :{%<ai+@;i (ai—@)2+4)}.

Then, by applying Lemma 1.2,

k
= %Z a; + B + 4/ (a; — ;) +4’

i=1
ni 2

+ Z || + Z 1Bl -

i=k+1 i=k+1

Note that the spectrum of the matrix M; = (a ) is

«; + ﬂz (ai - ﬁi)g + 4‘
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By Lemma 2.1,

i
> lauf?

i=k+1

Yo+ > 18I < Vm—k

i=k+1 i=k+1

k k
= Vi =k IBl7 = > lail* +v/ne =k [ IC15 = D161 -
i=1 i=1

Moreover, also by Lemma 2.1,
E(N)=2E(X —UV") < 2y/min {ny,n:} || X = UV"||,, .
O

Consider the following special case of Theorem 2.2. Let both submatrices B and
C be equal, say equal to A, the adjacency matrix of an (n,m)-graph G. Further,
let K = ny = ney = n. By setting in Lemma 1.2, A = B = A(G), and considering

(Nisui), ¢ = 1,...,n, such that U = (wu],...,|u,) is an orthonormal matrix and
p =1, the matrix
A pUUT A I,
C = —
pUUT A I, A
has eigenvalues 3,1, B2, - - ., Bsn, s = 1,2, where for j =1,2,...,n, s =1,2, §,; is an

eigenvalue of

~ )‘j 1
a=(v 1)

Thus $1; =A; — 1, (25 = A; + 1, and for the symmetric matrix C', we have

E(C)=> =1+ IN+1= D =D+ D (N+1)|=n+n=2n.
i=1 i=1 i=1 i=1
Hence E(C) > 2n holds, except if for all i = 1,2,...,n, the value of the terms

[A; — 1] and |A\; + 1] is either zero or equal to some constant v > 0. This can happen
only if either for all i = 1,2,...,n, \; =0 or \; € {—1,+1}, i. e., if either (a) the
underlying graph G is without edges, or (b) all components of G are isomorphic to
K5 . In these two cases, E(C) is equal to the number of vertices of the graph whose
adjacency matrix is C'.

In conclusion, except in the two “pathological” cases (a) and (b), the energy of

the graph whose adjacency matrix is C' is greater than its number of vertices.
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At this point it is worth noting that the graph whose adjacency matrix is C' is
just the sum of the graphs G and K5 , denoted by G + K, , where K5 is the complete
graph on two vertices.

The graph operation marked by + is described in detail elsewhere [2, 14]. Let G
and G5 be two graphs, with (disjoint) vertex sets V(G;) and V(G3) . Then the vertex
set of Gy + Gy is V(G) x V(Gg). The vertices (x1,x2) and (y1,y2) of Gy + Go are
adjacent if and only if z; = y; and (@9, y2) is an edge of Gy or if 2o = y» and (z1,v1)
is an edge of G .

For the present consideration it is important that the spectrum of G; 4G5 consists
of the sums of eigenvalues of Gy and G [2]. In view of this, the finding that 8;; =
Aj — 1, By = Aj + 1 is an immediate consequence of the fact that the spectrum of
K5 consists of the numbers +1 and —1.

The result E(C') > 2n can now be generalized as follows.

Let ay,...,ap, and fy, ..., B,, be, respectively, the eigenvalues of G; and G5 . Then

the eigenvalues of G; + G5 are of the form a; +3; , i =1,...,n1, j=1,...,n2, and
ny  no
E(Gi+Ga) =Y > |ai+ 5
i=1 j=1

We thus have,

n1

G1+GQ Z

i=1

n2

Z «; +ﬂ]

j=1

n1 n1
= Z |ng | = ngy Z || = ne E(GY)
-1 =1

because of
n2

ZO{Z‘:TLQO[i and iﬁj:o.
j=1

j=1

In an analogous manner it can be shown that E(Gy + G3) > ny E(G2).

Same as in the above example, equality E(Gy + G2) = ny E(G4) occurs if (a’)
G is without edges, whereas equality E(Gy + G3) = ny E(G2) occurs if (a”) Gy is
without edges. Both equalities E(G1 + G2) = ne E(G1) and E(Gy + G2) = nqy E(Gs)
oceur if (b’) all components of both G and G5 are isomorphic to K .

The graph G + G4 has ny ny vertices. Bearing this in mind we arrive at:
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Theorem 2.3. With the exception of the (above specified) “pathological” cases (a’),
(a”), and (b’), if either the energy of Gy exceeds or is equal to the number of vertices
of Gy, or the energy of G exceeds or is equal to the number of vertices of Go , then

the energy of G1 + Ga exceeds the number of vertices of Gy + G .

In connection with Theorem 2.3 it is worth noting that the problem of construct-
ing and characterizing graphs whose energy exceeds the number of vertices was first
considered in [15] and thereafter in [16-19]. A closely related problem is the con-
struction and characterization of hypoenergetic graphs, namely (connected) graphs
whose energy is less than the number of vertices [13,20-25]. Also graphs whose en-
ergy is equal to the number of vertices were recently studied [26]. From this point
of view, Theorem 2.3 provides an additional possibility to obtain (infinitely many)
non-hypoenergetic graphs.

Let A, B,C, X,U and V be the same matrices as in the formulation and proof of
Theorem 2.2. Let, as before

B UVT 0o uvT
M = and Q= .
vur  C vur 0
Theorem 2.4. E(A) > E(M) — E(Q) .

-~ b -X
i-( %)

Then, as well known, E(A) = E(A). We have A= M + P and A = M + P, where

0 X -UuvT = 0 -X -UuvT
P = and P = .
X' -vur 0 —XT —vyur 0

Therefore

Proof. Let

A+ A=2M-2Q.

By Ky Fan theorem [13],
2E(M) < E(A) + E(A) +2E(Q)

implying the theorem. O
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As a special case of Theorem 2.4, for k =1,

B Uy ’UlT 0 Uy ’UlT
M = and Q= .
vul C vul 0

Hence, E(Q) = 2 }vful| and E(A) > E(M) — 2 |U1Tu1| .

! ar + B+ \ (a1 _/31)2”‘4'

E(M) = E(B)+E(C)+3

By Fiedler’'s Lemma 1.1,

+ % ar+ b — (al_ﬂ1)2+4‘—(‘(11|+|ﬁl|).

Therefore, E(A) > E(B) + E(C) + ¢, where

al+ﬁ1+\/(al_ﬁl)2+4‘+%

= (Jaal + 4] -2 |Ufu1| .

g =

a; + 61—/ (a —/31)2+4|

1
2

The inequality E(A) > E(B) + E(C) has been reported earlier [27]. Therefore

our result will be an improvement of that inequality only ife > 0. If oy > 0, 8, > 0,

a1+ B — e — A +4' ~(Jau] + 1B:) = 0

and therefore ¢ < 0. Thus, in order to get an improvement, we must choose a; and

and a3 1 > 1, then

1 1
a1+ﬂ1+\/(a1*ﬁl)2+4‘+§

2

1 such that aq 5y < 1. For instance, for ay = 31 =0 we get € =2 — 2 ’vlTu1| , which

is positive because of [vfui| < [lvi|| [Jus]| =1-1=1.

Acknowledgement. This research was supported by the Centre for Research on Op-
timization and Control (CEOC) from the “Fundagao para a Ciéncia e a Tecnologia
— FCT”, cofinanced by the European Community Fund FEDER/POCI 2010. The
third thanks for support by the Serbian Ministry of Science (Grant No. 144015G).

References

[1] M. Fiedler, Eigenvalues of nonnegative symmetric matrices, Lin. Algebra Appl.
9 (1974) 119-142.

[2] D. Cvetkovié¢, M. Doob, H. Sachs, Spectra of Graphs — Theory and Applications,
Academic Press, New York, 1980.



3]

[4]

5

[6]

[7]

8

[9

(10]

(11]

(12]

(13]

(14]

(15]

(16]

-155-

I. Gutman, The energy of a graph: Old and new results, in: A. Betten, A. Kohn-
ert, R. Laue, A. Wassermann (Eds.), Algebraic Combinatorics and Applications,
Springer—Verlag, Berlin, 2001, pp. 196-211.

I. Gutman, X. Li, J. Zhang, Graph energy, in: M. Dehmer, F. Emmert-Streib
(Eds.), Analysis of Complex Networks. From Biology to Linguistics, Wiley—VCH,
Weinheim, 2009, pp. 145-174.

G. Indulal, A. Vijayakumar, A note on energy of some graphs, MATCH Commun.
Math. Comput. Chem. 59 (2008) 269-274.

C. Heuberger, S. G. Wagner, On a class of extremal trees for various indices,
MATCH Commun. Math. Comput. Chem. 62 (2009) 437-464.

O. Rojo, L. Medina, Constructing graphs with energy /7 E(G) where G is a
bipartite graph, MATCH Commun. Math. Comput. Chem. 62 (2009) 465-472.

X. Lin, X. Guo, On the minimal energy of trees with a given number of vertices
of degree two, MATCH Commun. Math. Comput. Chem. 62 (2009) 473-480.

J. Zhang, B. Zhou, Minimal energies of non-starlike trees with given number of
pendent vertices, MATCH Commun. Math. Comput. Chem. 62 (2009) 481-490.

I. Gutman, The energy of a graph, Ber. Math.-Statist. Sekt. Forschungsz. Graz
103 (1978) 1-22.

V. Nikiforov, The energy of graphs and matrices, J. Math. Anal. Appl. 326
(2007) 1472-1475.

C. D. Meyer, Matrixz Analysis and Applied Linear Algebra, SIAM, Providence,
2005.

W. So, M. Robbiano, N. M. M. de Abreu, I. Gutman, Applications of the Ky
Fan theorem in the theory of graph energy. Lin. Algebra Appl., in press.

W. Imrich, S. Klavzar, Product of Graphs — Structure and Recognition, Wiley,
New York, 2000.

I. Gutman, On graphs whose energy exceeds the number of vertices, Lin. Algebra
Appl. 429 (2008) 2670-2677.

C. Adiga, Z. Khoshbakht, I. Gutman, More graphs whose energy exceeds the
number of vertices, Iran. J. Math. Sci. Inf. 2 (2) (2007) 13-19.



(17]

(18]

(19]

(20]

21]

22]

23]

[24]

[25]

[26]

[27]

-156-

I. Gutman, A. Klobucar, S. Majstorovié¢, C. Adiga, Biregular graphs whose en-
ergy exceeds the number of vertices;, MATCH Commun. Math. Comput. Chem.
62 (2009) 499-508.

S. Majstorovié¢, A. Klobucar, I. Gutman, Triregular graphs whose energy exceeds
the number of vertices, MATCH Commun. Math. Comput. Chem. 62 (2009) 509—
524.

S. Majstorovi¢, A. Klobucar, I. Gutman, Selected topics from the theory of graph
energy: hypoenergetic graphs, in: D. Cvetkovi¢, I. Gutman (Eds.), Applications
of Graph Spectra, Math. Inst., Belgrade, 2009, pp. 65-105.

[. Gutman, S. Radenkovi¢, Hypoenergetic molecular graphs, Indian J. Chem.
46A (2007) 1733-1736.

I. Gutman, X. Li, Y. Shi, J. Zhang, Hypoenergetic trees, MATCH Commun.
Math. Comput. Chem. 60 (2008) 415-426.

Z. You, B. Liu, On hypoenergetic unicyclic and bicyclic graphs, MATCH Com-
mun. Math. Comput. Chem. 61 (2009) 479-486.

Z. You, B. Liu, I. Gutman, Note on hypoenergetic graphs, MATCH Commun.
Math. Comput. Chem. 62 (2009) 491-498.

X. Li, H. Ma, Hypoenergetic and strongly hypoenergetic k-cyclic graphs,
MATCH Commun. Math. Comput. Chem. 64 (2010) 41-60.

X. Li, H. Ma, All hypoenergetic graphs with maximum degree at most 3, Lin.
Algebra Appl., in press.

X. Li, H. Ma, All connected graphs with maximum degree at most 3 whose
energies are equal to the number of vertices, MATCH Commun. Math. Comput.
Chem. 64 (2010) 7-24.

J. Day, W. So, Graph energy change due to edge deletion, Lin. Algebra Appl.
428 (2007) 2070-2078.



